Strength of Materials

, Volume 50, Issue 1, pp 184–192 | Cite as

Hot Extrusion Effect on the Microstructure and Mechanical Properties of a Mg–Y–Nd–Zr Alloy

  • L. Y. Sheng
  • B. N. Du
  • B. J. Wang
  • D. K. Xu
  • C. Lai
  • Y. Gao
  • T. F. Xi

Mg–Zn–Y–Nd alloy was prepared by casting and hot extrusion. The microstructure and mechanical properties of OM, SEM, XRD, TEM, and tensile tests were investigated with casting and hot extruded alloys. The results demonstrate that in a casting Mg–Y–Nd–Zr alloy, the α-Mg matrix is separated into the cell structure by a discontinuously distributed coarse Mg24Y5/α-Mg eutectic structure and fine Mg12Nd particles. TEM analysis shows that the Mg12Nd and Mg24Y5 phases have the orientation of \( {\left[001\right]}_{{\mathrm{Mg}}_{12}\mathrm{Nd}}//{\left[0221\right]}_{\upalpha -\mathrm{Mg}} \), and \( {\left[111\right]}_{{\mathrm{Mg}}_{24}{\mathrm{Y}}_5}//{\left[0001\right]}_{\upalpha -\mathrm{Mg}} \) and \( {\left(10\overline{1}\right)}_{{\mathrm{Mg}}_{24}{\mathrm{Y}}_5}//{\left(10\overline{1}0\right)}_{\upalpha -\mathrm{Mg}} \), respectively. The hot extrusion separates the Mg24Y5/α-Mg eutectic structure into fragments and aligns fragmentary Mg24Y5 particles along the extrusion direction. The interaction of hot extrusion and strengthening particles refines the α-Mg matrix greatly. Moreover, large strains result in the stacking faults of the matrix. As compared to the casting alloy, the hot-extruded one exhibits high yield strength, ultimate tensile strength, and elongation, which should be ascribed to the grain fineness, optimum distribution of strengthening particles and multiple substructures.


Mg–Y–Nd–Zr alloy hot extrusion mechanical properties TEM microstructure 



The authors are grateful to the Shenzhen Technology Innovation Plan (CXZZ20140731091722497 and CXZZ20140419114548507) and the Strategic New Industry Development Special Foundation of Shenzhen (JCYJ20150529162228734, JCYJ20160427100211076, JCYJ20170306141749970, JCYJ20160329161539885, JCYJ 20150625155931806 and JCYJ20160427170611414) for the financial support.


  1. 1.
    M. M. Avedesian and H. Baker (Eds.), Magnesium and Magnesium Alloys, ASM International, Materials Park, OH (1999).Google Scholar
  2. 2.
    Z. Liu, Y. Wang, and Z. G. Wang, “The research and application of magnesium matrix of lightweight materials,” J. Mater. Res., 14, No. 5, 449–56 (2000).Google Scholar
  3. 3.
    Z. J. Li, X. N. Gu, S. Q. Lou, and Y. F. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, 29, No. 10, 1329–1344 (2008).CrossRefGoogle Scholar
  4. 4.
    B. L. Mordike and T. Ebert, “Magnesium: properties – applications – potential,” Mater. Sci. Eng. A, 302, No. 1, 37–45 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Haude, H. Ince, A. Abizaid, et al., “Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial,” Lancet, 387, No. 10013, 31–39 (2016).CrossRefGoogle Scholar
  6. 6.
    S. B. Yi, C. H. J. Davies, H. G. Brokmeier, et al., “Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading,” Acta Mater., 54, No. 2, 549–562 (2006).CrossRefGoogle Scholar
  7. 7.
    C. Q. Li, D. K. Xu, B. J. Wang, et al., “Natural ageing responses of duplex structured Mg-Li based alloys,” Sci. Rep., 7, 40078 (2017).CrossRefGoogle Scholar
  8. 8.
    J. A. del Valle, F. Carreno, and O. A. Ruano, “Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling,” Acta Mater., 54, No. 16, 4247–4259 (2006).CrossRefGoogle Scholar
  9. 9.
    B. Feng, Y. C. Xin, F. L. Guo, et al., “Compressive mechanical behavior of Al/Mg composite rods with different types of Al sleeve,” Acta Mater., 120, 379–390 (2016).CrossRefGoogle Scholar
  10. 10.
    Y. M. Zhu, A. J. Morton, and J. F. Nie, “The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys,” Acta Mater., 58, No. 8, 2936–2947 (2010).CrossRefGoogle Scholar
  11. 11.
    L. Gao, R. S. Chen, and E. H. Han, “Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys,” J. Alloy. Compd., 481, Nos. 1–2, 379–384 (2009).Google Scholar
  12. 12.
    S. Sandloebes, M. Friak, S. Zaefferer, et al., “The relation between ductility and stacking fault energies in Mg and Mg–Y alloys,” Acta Mater., 60, Nos. 6–7, 3011–3021 (2012).Google Scholar
  13. 13.
    J. Cheng, Y. L. Mu, G. Y. Zu, and G. C. Yao, “Impact toughness and fractography in Mg–Y alloy,” Mater. Design, 123, 64–68 (2017).CrossRefGoogle Scholar
  14. 14.
    A. Kula, X. Jia, R. K. Mishra, and M. Niewczas, “Flow stress and work hardening of Mg–Y alloys,” Int. J. Plasticity, 92, 96–121 (2017).CrossRefGoogle Scholar
  15. 15.
    C. Q. Li, D. K. Xu, Z. R. Zeng, et al., “Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys,” Mater. Design, 121, 430–441 (2017).CrossRefGoogle Scholar
  16. 16.
    H. Z Li, F. Lv, X. P. Liang, et al., “Effect of heat treatment on microstructures and mechanical properties of a cast Mg–Y–Nd–Zr alloy,” Mater. Sci. Eng. A, 667, 409–416 (2016).Google Scholar
  17. 17.
    Z. Xu, M. Weylandm, and J. F. Nie, “On the strain accommodation of β1 precipitates in magnesium alloy WE54,” Acta Mater., 75, 122–133 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Zhao, E. Guo, G. Cao, et al., “Microstructure and mechanical properties of Mg–Nd–Zn–Zr alloy processed by integrated extrusion and equal channel angular pressing,” J. Alloy. Compd., 705, 118–125 (2017).CrossRefGoogle Scholar
  19. 19.
    X. Liu, R. Chen, and E. Han, “High temperature deformations of Mg–Y–Nd alloys fabricated by different routes,” Mater. Sci. Eng. A, 497, 326–332 (2008).CrossRefGoogle Scholar
  20. 20.
    L. Y. Sheng, F. Yang, J. T. Guo, and T. F. Xi, “Anomalous yield and intermediate temperature brittleness behaviors of directionally solidified nickel-based superalloy,” Trans. Nonferr. Metal. Soc. China, 24, 673–681 (2014).CrossRefGoogle Scholar
  21. 21.
    L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion,” Mater. Sci. Eng. A, 555, 131–138 (2012).CrossRefGoogle Scholar
  22. 22.
    L. Y. Sheng, T. F. Xi, C. Lai, et al., “Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis,” Trans. Nonferr. Metal. Soc. China, 22, No. 3, 489–495 (2012).CrossRefGoogle Scholar
  23. 23.
    L. Y. Sheng, F. Yang, T. F. Xi, et al., “Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling,” Compos. Part B - Eng., 42, 1468–1473 (2011).CrossRefGoogle Scholar
  24. 24.
    L. Y. Sheng, J. T. Guo, T. F. Xi, et al., “ZrO2 strengthened NiAl/Cr(Mo,Hf) composite fabricated by powder metallurgy,” Prog. Nat. Sci. - Mater., 22, No. 3, 231–236 (2012).CrossRefGoogle Scholar
  25. 25.
    L. Y. Sheng, F. Yang, T. F. Xi, et al., “Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment,” Intermetallics, 27, 14–20 (2012).CrossRefGoogle Scholar
  26. 26.
    C. Q. Li, D. K. Xu, S. Yu, et l., “Effect of icosahedral phase on crystallographic texture and mechanical anisotropy of Mg–4%Li based alloys,” J. Mater. Sci. Technol., 33, No. 5, 475–480 (2017).Google Scholar
  27. 27.
    L. Y. Sheng, F. Yang, J. T. Guo, et al., “Investigation on NiAl–TiC–Al2O3 composite prepared by self-propagation high temperature synthesis with hot extrusion,” Compos. Part B - Eng., 45, No. 1, 785–791 (2013).CrossRefGoogle Scholar
  28. 28.
    L. Y. Sheng, W. Zhang, J. T. Guo, et al., “Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion,” Intermetallics, 17, No. 7, 572–577 (2009).CrossRefGoogle Scholar
  29. 29.
    L. Y. Sheng, J. T. Guo, W. L. Ren, et al., “Preliminary investigation on strong magnetic field treated NiAl–Cr(Mo)–Hf near eutectic alloy,” Intermetallics, 19, No. 2, 143–148 (2011).CrossRefGoogle Scholar
  30. 30.
    L. Y. Sheng, B. N. Du, C. Lai, et al., “Influence of tantalum addition on micro- structure and mechanical properties of the NiAl-based eutectic alloy,” Strength Mater., 49, No. 1, 109–117 (2017).CrossRefGoogle Scholar
  31. 31.
    L. Y. Sheng, “Microstructure and wear properties of the quasi-rapidly solidified NiAl/Cr(Mo,Dy) hypoeutectic alloy,” Strength Mater., 48, No. 1, 107–112 (2016).CrossRefGoogle Scholar
  32. 32.
    L. Y. Sheng, J. T. Guo, and H. Q. Ye, “Microstructure and mechanical properties of NiAl–Cr(Mo)/Nb eutectic alloy prepared by injection-casting,” Mater. Design, 30, No. 4, 964–969 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Y. Sheng
    • 1
  • B. N. Du
    • 1
  • B. J. Wang
    • 1
  • D. K. Xu
    • 2
  • C. Lai
    • 1
  • Y. Gao
    • 3
  • T. F. Xi
    • 1
  1. 1.Shenzhen InstitutePeking UniversityShenzhenChina
  2. 2.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.Department of Stomatology, Longgang District Central HospitalAffiliated to Zunyi Medical CollegeShenzhenChina

Personalised recommendations