Skip to main content
Log in

Assessment of the Microstructure and Mechanical Properties of a Laser-Joined Carbon Fiber-Reinforced Thermosetting Plastic and Stainless Steel

  • Published:
Strength of Materials Aims and scope

The thermosetting plastic and stainless steel were joined with a fiber laser. The influence of processing parameters on the joint was studied. The laser scanning on stainless steel is shown to result in the formation of the heat-affected and fusion zones. In the first zone, lathy ferrite precipitates along the boundary, which modifies austenite, while in the second zone, ferrite forms the skeleton structure and separates austenite into a small cellular structure. The laser joining improves the microstructure of both zones. With an increase in the laser scanning speed and power, the shear strength of the stainless steel/plastic joint first increases and then decreases. A low laser scanning speed or high laser power would overheat polyphenylene sulphide and lead to its decomposition. Those factors would also reduce heat transfer and lead to its insufficient melting. The stainless steel/plastic joint acquires a maximum shear strength at a laser scanning speed of 4–5 mm/s and laser power of 320-350 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. X. L. Zhao and L. Zhang, “State-of-the-art review on FRP strengthened steel structures,” Eng. Struct., 29, 1808–1823 (2007).

    Article  Google Scholar 

  2. F. Lambiase, S. Genna, C. Leone, and A. Paoletti, “Laser-assisted direct-joining of carbon fibre reinforced plastic with thermosetting matrix to polycarbonate sheets,” Opt. Laser Technol., 94, 45–58 (2017).

    Article  CAS  Google Scholar 

  3. G. Williams, R. Trask, and I. Bond, “A self-healing carbon fiber reinforced polymer for aerospace applications,” Compos. Part A-Appl. S., 38, No. 6, 1525–32 (2007).

    Article  Google Scholar 

  4. A. Mayyas, A. Qattawi, M. Omar, and D. Shan, “Design for sustainability in automotive industry: a comprehensive review,” Renew. Sust. Energ. Rev., 16, No. 4, 1845–62 (2012).

    Article  Google Scholar 

  5. Z. Zhang, J. Shan, X. Tan, and J. Zhang, “Improvement of the laser joining of CFRP and aluminum via laser pre-treatment,” Int. J. Adv. Manuf. Technol., 90, Nos. 9–12, 3465–3472 (2017).

    Article  Google Scholar 

  6. G. Marannano and B. Zuccarello, “Numerical experimental analysis of hybrid double lap aluminum-CFRP Joints,” Compos. Part B-Eng., 71, 28–39 (2015).

    Article  CAS  Google Scholar 

  7. J. Kweon, J. Jung, T. Kim, et al., “Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding,” Compos. Struct., 75, 192–198 (2006).

    Article  Google Scholar 

  8. P. P. Camanho, A. Fink, A. Obst, and S. Pimenta, “Hybrid titanium-CFRP laminates for high-performance bolted joints,” Compos. Part A-Appl. S., 40, No. 12, 1826–1837 (2009).

    Article  Google Scholar 

  9. S. M. Goushegir, “Friction spot joining (FSPJ) of aluminum-CFRP hybrid structures,” Weld World, 60, No. 6, 1073–1093 (2016).

    Article  CAS  Google Scholar 

  10. J. Min, Y. Li, J. Li, et al., “Friction stir blind riveting of carbon fiber-reinforced polymer composite and aluminum alloy sheets,” Int. J. Adv. Manuf. Technol., 76, No. 5, 1403–1410 (2015).

    Article  Google Scholar 

  11. S. Katayama and Y. Kawahito, “Laser direct joining of metal and plastic,” Scripta Mater., 59, 1247–1250 (2008).

    Article  CAS  Google Scholar 

  12. X. Tan, J. Shan, and J. Ren, “Effects of Cr plating layer on shear strength and interface bonding characteristics of mild steel/CFRP joint by laser heating,” Acta Metall. Sin., 49, 751–756 (2013).

    Article  CAS  Google Scholar 

  13. X. H. Tan, J. Zhang, J. G. Shan, et al., “Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel,” Compos. Part B-Eng., 70, 35–43 (2015).

    Article  CAS  Google Scholar 

  14. L. Y. Sheng, F. Yang, T. F. Xi, et al., “Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling,” Compos. Part B-Eng., 42, No. 6, 1468–1473 (2011).

    Article  Google Scholar 

  15. K. W. Jung, Y. Kawahito, and S. Katayama, “Laser direct joining of carbon fibre reinforced plastic to stainless steel,” Sci. Technol. Weld Joint, 16, No. 8, 676–80 (2011).

    Article  CAS  Google Scholar 

  16. J. Jiao, Q. Wang, F. Wang, et al., “Numerical and experimental investigation on joining CFRTP and stainless steel using fiber lasers,” J. Mater. Process. Tech., 240, 362–369 (2017).

    Article  CAS  Google Scholar 

  17. J. Jiao, Z. Xu, Q. Wang, et al., “CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization,” Opt. Laser Technol., 103, 170–176 (2018).

    Article  CAS  Google Scholar 

  18. H. Di, Q. Sun, X. Wang, and J. Li, “Microstructure and properties in dissimilar/ similar weld joints between DP780 and DP980 steels processed by fiber laser welding,” J. Mater. Sci. Technol., 33, No. 12, 1561–1571 (2017).

    Article  Google Scholar 

  19. L. J. Wang, L. Y. Sheng, and C. M. Hong, “Influence of grain boundary carbides on mechanical properties of high nitrogen austenitic stainless steel,” Mater. Design, 37, 349–355 (2012).

    Article  CAS  Google Scholar 

  20. M. Alali, I. Todd, and B. P. Wynne, “Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel,” Mater. Design, 130, 488–500 (2017).

    Article  CAS  Google Scholar 

  21. L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure and elevated temperature tensile behaviour of directionally solidified nickel based superalloy,” Mater. Res. Innov., 17, No. S1, 101–106 (2013).

    Article  Google Scholar 

  22. L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion,” Mater. Sci. Eng. A, 555, 131–138 (2012).

    Article  CAS  Google Scholar 

  23. L. Y. Sheng, B. N. Du, B. J. Wang, et al., “Hot extrusion effect on the microstructure and mechanical properties of an Mg–Y–Nd–Zr alloy,” Strength Mater., 50, No. 1, 184–192 (2018).

    Article  CAS  Google Scholar 

  24. L. Y. Sheng, W. Zhang, J. T. Guo, et al., “Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion,” Intermetallics, 17, No. 7, 572–577 (2009).

    Article  CAS  Google Scholar 

  25. L. Sheng, F. Yang, T. Xi, et al., “Microstructure and room temperature mechanical properties of NiAl–Cr (Mo)–(Hf, Dy) hypoeutectic alloy prepared by injection casting,” Trans. Nonferrous Met. Soc. China, 23, No. 4, 983–990 (2013).

    Article  CAS  Google Scholar 

  26. K. W. Jung, Y. Kawahito, and S. Katayama, “Laser direct joining of carbon fiber-reinforced plastic to stainless steel,” Sci. Technol. Weld Joint, 16, 676–680 (2011).

    Article  CAS  Google Scholar 

  27. M. Wahba, Y. Kawahito, and S. Katayama, “Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate,” J. Mater. Process. Tech., 211, No. 6, 1166–1174 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support of Shenzhen Basic Research Projects (JCYJ20150529162228734, JCYJ20160427170611414, and JCYJ20170306141506805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. Sheng.

Additional information

Translated from Problemy Prochnosti, No. 5, pp. 76 – 88, September – October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, L.Y., Jiao, J.K. & Lai, C. Assessment of the Microstructure and Mechanical Properties of a Laser-Joined Carbon Fiber-Reinforced Thermosetting Plastic and Stainless Steel. Strength Mater 50, 752–763 (2018). https://doi.org/10.1007/s11223-018-0020-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-018-0020-8

Keywords

Navigation