Application of the Micropolar Theory to the Strength Analysis of Bioceramic Materials for Bone Reconstruction

The application of the linear micropolar theory to the strength analysis of bioceramic materials for bone reconstruction is described. Micropolar elasticity allows better results to be obtained for microstructural and singular domains as compared to the classical theory of elasticity. The fundamental equations of the Cosserat continuum are cited. The description of FEM implementation of micropolar elasticity is given. The results of solving selected 3D test problems are presented. Comparison of classical and micropolar solutions is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S. Cowin (Ed.), Bone Mechanics Handbook, CRC Press, Boca Raton, FL (2001).

    Google Scholar 

  2. 2.

    Y. H. An and R. A. Draughn (Eds.), Mechanical Testing of Bone and the Bone–Implant Interface, CRC Press, Boca Raton, FL (2000).

    Google Scholar 

  3. 3.

    S. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elasticity, 6, No. 3, 313–326 (1976).

    Article  Google Scholar 

  4. 4.

    D. H. Hegedus and S. C. Cowin, “Bone remodeling II: small strain adaptive elasticity,” J. Elasticity, 6, No. 4, 337–352 (1976).

    Article  Google Scholar 

  5. 5.

    T. Lekszycki and F. dell’Isola, “A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials,” Z. Angew. Math. Mech, 92, No. 6, 426–444 (2012).

  6. 6.

    I. Giorgio, U. Andreaus, D. Scerrato, and F. dell’Isola, “A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials,” Biomech. Model. Mechanobiol., 15, No. 5, 1325–1343 (2016).

  7. 7.

    I. Giorgio, U. Andreaus, D. Scerrato, and P. Braidotti, “Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material,” Math. Mech. Solids (2016), DOI: 10.1177/1081286516644867.

    Google Scholar 

  8. 8.

    I. Giorgio, U. Andreaus, T. Lekszycki, and A. Della Corte, “The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bio-resorbable material mixture with voids,” Math. Mech. Solids (2015), DOI: 10.1177/1081286515616052.

    Google Scholar 

  9. 9.

    M. Vallet-Regi, I. Izquierdo-Barba, and M. Colilla, “Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery,” Phil. Trans. R. Soc. A, 370, 1400–1421 (2012).

    Article  Google Scholar 

  10. 10.

    V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, 26, 5474–5491 (2005).

    Article  Google Scholar 

  11. 11.

    A. C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer-Verlag, New York (1999).

    Book  Google Scholar 

  12. 12.

    V. A. Eremeyev, L. P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics, Springer, Berlin (2013).

    Book  Google Scholar 

  13. 13.

    J. F. C. Yang and R. S. Lakes, “Experimental study of micropolar and couple stress elasticity in compact bone in bending,” J. Biomech., 15, No. 2, 91–98 (1982).

    Article  Google Scholar 

  14. 14.

    H. C. Park and R. S. Lakes, “Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent,” J. Biomech., 19, No. 5, 385–397 (1986).

    Article  Google Scholar 

  15. 15.

    R. S. Lakes, “Experimental microelasticity of two porous solids,” Int. J. Solids Struct., 22, No. 1, 55–63 (1986).

    Article  Google Scholar 

  16. 16.

    R. S. Lakes, “Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua,” J. Eng. Mater. Technol., 113, No. 1, 148–155 (1991).

    Article  Google Scholar 

  17. 17.

    I. Goda, M. Assidi, S. Belouettar, and J. F. Ganghoffer, “A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization,” J. Mech. Behav. Biomed. Mater., 16, 87–108 (2012).

    Article  Google Scholar 

  18. 18.

    I. Goda, M. Assidi, and J. F. Ganghoffer, “A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure,” Biomech. Model. Mechan., 13, No. 1, 53–83 (2014).

    Article  Google Scholar 

  19. 19.

    I. Goda and J. F. Ganghoffer, “Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures,” J. Mech. Behav. Biomed. Mater., 51, 99–118 (2015).

    Article  Google Scholar 

  20. 20.

    F. dell’Isola, D. Steigmann, and A. Della Corte, “Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response,” Appl. Mech. Rev., 67, No. 6, 060804-060804-21 (2016).

  21. 21.

    F. dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium,” Proc. Roy. Soc. A, 472, Issue 2185 (2016), DOI: 10.1098/rspa.2015.0790.

  22. 22.

    D. Scerrato, I. Giorgio, N. L. Rizzi, “Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations,” Z. Angew. Math. Phys., 67, No. 3, 1–19 (2016).

    Article  Google Scholar 

  23. 23.

    D. Scerrato, I. A. Zhurba Eremeeva, T. Lekszycki, and N. L. Rizzi, “On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets,” Z. Angew. Math. Mech. (2016), DOI: 10.1002/zamm.201600066.

    Google Scholar 

  24. 24.

    V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry group of the non-linear polar-elastic continuum,” Int. J. Solids Struct., 49, No. 14, 1993–2005 (2012).

    Article  Google Scholar 

  25. 25.

    V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry group and constitutive equations of micropolar anisotropic elastic solids,” Math. Mech. Solids, 21, No. 2, 210–221 (2016).

    Article  Google Scholar 

  26. 26.

    T. C. Kennedy and J. B. Kim, “Dynamic stress concentrations in micropolar elastic materials,” Comput. Struct., 45, No. 1, 53–60 (1992).

    Article  Google Scholar 

  27. 27.

    P. Kaloni and T. Ariman, “Stress concentration effects in micropolar elasticity,” Z. Angew. Math. Phys., 18, No. 1, 136–141 (1967).

    Article  Google Scholar 

  28. 28.

    A. R. Khoei, S. Yadegari, and S. O. R. Biabanaki, “3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory,” Comp. Mater. Sci., 49, No. 4, 720–733 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

The research received funding from the People Program (Marie Curie ITN transfer) of the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. PITN-GA-2013- 606878.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Eremeyev.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 119 – 128, July – August, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eremeyev, V.A., Skrzat, A. & Vinakurava, A. Application of the Micropolar Theory to the Strength Analysis of Bioceramic Materials for Bone Reconstruction. Strength Mater 48, 573–582 (2016). https://doi.org/10.1007/s11223-016-9800-1

Download citation

Keywords

  • Cosserat continuum
  • micropolar elasticity
  • stress concentration
  • finite element analysis
  • porous media
  • bones