Skip to main content
Log in

Fast and exact simulation of Gaussian random fields defined on the sphere cross time

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We provide a method for fast and exact simulation of Gaussian random fields on the sphere having isotropic covariance functions. The method proposed is then extended to Gaussian random fields defined over the sphere cross time and having covariance functions that depend on geodesic distance in space and on temporal separation. The crux of the method is in the use of block circulant matrices obtained working on regular grids defined over longitude and latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chiles, J.P., Delfiner, P.: Geostatistics: Modelling Spatial Uncertainty. Wiley, New York (1999)

    Book  Google Scholar 

  • Clarke, J., Alegría, A., Porcu, E.: Regularity properties and simulations of Gaussian random fields on the sphere cross time. Electron. J. Stat. 12, 399–426 (2018)

    Article  MathSciNet  Google Scholar 

  • Coxeter, H.S.M.: Regular Polytopes. Methuen, London (1973)

    MATH  Google Scholar 

  • Creasey, P.E., Lang, A.: Fast generation of isotropic Gaussian random fields on the sphere. Monte Carlo Methods Appl. 24(1), 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  • Davies, T.M., Bryant, D., et al.: On circulant embedding for Gaussian random fields in R. J. Stat. Softw. 55(9), 1–21 (2013)

    Article  Google Scholar 

  • Davis, P.J.: Circulant Matrices. Wiley, New York (1979)

    MATH  Google Scholar 

  • Dietrich, C., Newsam, G.: A fast and exact method for multidimensional Gaussian stochastic simulations: extension to realizations conditioned on direct and indirect measurements. Water Resour. Res. 32(6), 1643–1652 (1996)

    Article  Google Scholar 

  • Dietrich, C., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18, 1088–1107 (1997)

    Article  MathSciNet  Google Scholar 

  • Emery, X., Arroyo, D., Porcu, E.: An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields. Stoch. Environ. Res. Risk Assess. 30(7), 1863–1873 (2016)

    Article  Google Scholar 

  • Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19, 1327–1349 (2013)

    Article  MathSciNet  Google Scholar 

  • Gneiting, T., Ševčíková, H., Percival, D.B., Schlather, M., Jiang, Y.: Fast and exact simulation of large Gaussian lattice systems in \({\mathbb{R}}^2\): exploring the limits. J. Comput. Graph. Stat. 15(3), 483–501 (2006)

    Article  Google Scholar 

  • Huang, C., Zhang, H., Robeson, S.M.: On the validity of commonly used covariance and variogram functions on the sphere. Math. Geosci. 43, 721–733 (2011)

    Article  MathSciNet  Google Scholar 

  • Huang, C., Zhang, H., Robeson, S.M.: A simplified representation of the covariance structure of axially symmetric processes on the sphere. Stat. Probab. Lett. 82(7), 1346–1351 (2012)

    Article  MathSciNet  Google Scholar 

  • Jun, M., Stein, M.L.: Nonstationary covariance models for global data. Ann. Appl. Stat. 2, 1271–1289 (2008)

    Article  MathSciNet  Google Scholar 

  • Lang, A., Schwab, C.: Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations. Ann. Appl. Probab. 25, 3047–3094 (2015)

    Article  MathSciNet  Google Scholar 

  • Møller, J., Syversveen, A.R., Waagepetersen, R.P.: Log Gaussian Cox processes. Scand. J. Stat. 25, 451–482 (1998)

    Article  MathSciNet  Google Scholar 

  • Møller, J., Nielsen, M., Porcu, E., Rubak, E.: Determinantal point process models on the sphere. Bernoulli 24, 1171–1201 (2015)

    Article  MathSciNet  Google Scholar 

  • Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H., Hahn, U.: Global envelope tests for spatial processes. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79(2), 381–404 (2017)

    Article  MathSciNet  Google Scholar 

  • Park, M.H., Tretyakov, M.: A block circulant embedding method for simulation of stationary Gaussian random fields on block-regular grids. Int. J. Uncertain. Quantif. 5, 527544 (2015)

    Article  MathSciNet  Google Scholar 

  • Porcu, E., Bevilacqua, M., Genton, M.G.: Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Am. Stat. Assoc. 111(514), 888–898 (2016)

    Article  MathSciNet  Google Scholar 

  • Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, Berlin (2012)

    Google Scholar 

  • Wood, A.T., Chan, G.: Simulation of stationary Gaussian processes in [0,1]\(^d\). J. Comput. Graph. Stat. 3, 409–432 (1994)

    MathSciNet  Google Scholar 

  • Zhihao, C.: A note on symmetric block circulant matrix. J. Math. Res. Expo. 10, 469–473 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by The Danish Council for Independent Research—Natural Sciences, Grant DFF 7014-00074 “Statistics for point processes in space and beyond,” and by the “Centre for Stochastic Geometry and Advanced Bioimaging,” funded by Grant 8721 from the Villum Foundation. Third author was supported by FONDECYT Number 1170290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cuevas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas, F., Allard, D. & Porcu, E. Fast and exact simulation of Gaussian random fields defined on the sphere cross time. Stat Comput 30, 187–194 (2020). https://doi.org/10.1007/s11222-019-09873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-019-09873-1

Keywords

Mathematics Subject Classification

Navigation