Skip to main content
Log in

Dynamic model-based clustering for spatio-temporal data

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In many research fields, scientific questions are investigated by analyzing data collected over space and time, usually at fixed spatial locations and time steps and resulting in geo-referenced time series. In this context, it is of interest to identify potential partitions of the space and study their evolution over time. A finite space-time mixture model is proposed to identify level-based clusters in spatio-temporal data and study their temporal evolution along the time frame. We anticipate space-time dependence by introducing spatio-temporally varying mixing weights to allocate observations at nearby locations and consecutive time points with similar cluster’s membership probabilities. As a result, a clustering varying over time and space is accomplished. Conditionally on the cluster’s membership, a state-space model is deployed to describe the temporal evolution of the sites belonging to each group. Fully posterior inference is provided under a Bayesian framework through Monte Carlo Markov chain algorithms. Also, a strategy to select the suitable number of clusters based upon the posterior temporal patterns of the clusters is offered. We evaluate our approach through simulation experiments, and we illustrate using air quality data collected across Europe from 2001 to 2012, showing the benefit of borrowing strength of information across space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For notation simplicity, same symbols are re-used.

References

  • Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data, 2nd edn. Chapman and Hall, Boca Raton (2014)

    MATH  Google Scholar 

  • Bruno, F., Cocchi, D., Paci, L.: A practical approach for assessing the effect of grouping in hierarchical spatio-temporal models. AStA Adv. Stat. Anal. 97(2), 93–108 (2013)

    Article  MathSciNet  Google Scholar 

  • Carlin, B.P., Polson, N.G., Stoffer, D.S.: A Monte Carlo approach to nonnormal and nonlinear state-space modeling. J. Am. Stat. Assoc. 87(418), 493–500 (1992)

    Article  Google Scholar 

  • Celeux, G., Forbes, F., Robert, C.P., Titterington, D.M.: Deviance information criteria for missing data models. Bayesian Anal. 1(4), 651–673 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Cocchi, D., Greco, F., Trivisano, C.: Hierarchical space-time modelling of PM10 pollution. Atmos Environ 41(3), 532–542 (2007)

    Article  Google Scholar 

  • Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  • Dellaportas, P., Papageorgiou, I.: Multivariate mixtures of normals with unknown number of components. Stat. Comput. 16(1), 57–68 (2006)

    Article  MathSciNet  Google Scholar 

  • Duan, J.A., Guindani, M., Gelfand, A.E.: Generalized spatial Dirichlet process models. Biometrika 94, 809–825 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • EU: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union L 152:1–44 (2008). http://eur-lex.europa.eu/eli/dir/2008/50/oj

  • EU: Commission implementing decision 2011/850/EU of 12 December 2011 laying down rules for directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council as regards the reciprocal exchange of information and reporting on ambient air quality. Off. J. Eur. Union L 335:86–106 (2011). http://data.europa.eu/eli/dec_impl/2011/850/oj

  • Fernández, C., Green, P.J.: Modelling spatially correlated data via mixtures: a Bayesian approach. J. R. Stat. Soc. Ser. B 64, 805–826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Finazzi, F., Haggarty, R., Miller, C., Scott, M., Fassò, A.: A comparison of clustering approaches for the study of the temporal coherence of multiple time series. Stoch. Environ. Res. Risk Assess. 29, 463–475 (2015)

    Article  Google Scholar 

  • Frühwirth-Schnatter, S.: Finite Mixture and Markov Switching Models. Springer, New York (2006)

    MATH  Google Scholar 

  • Frühwirth-Schnatter, S., Kaufmann, S.: Model-based clustering of multiple time series. J. Bus. Econ. Stat. 26, 78–89 (2008)

    Article  MathSciNet  Google Scholar 

  • Gelfan, A.E., Ghosh, S.K.: Model choice: a minimum posterior predictive loss approach. Biometrika 85(1), 1–11 (1998)

    Article  MathSciNet  Google Scholar 

  • Gelfand, A.E., Kottas, A., MacEachern, S.N.: Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Am. Stat. Assoc. 100(471), 1021–1035 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Guerreiro, C.B., Foltescu, V., de Leeuw, F.: Air quality status and trends in Europe. Atmos. Environ. 98, 376–384 (2014)

    Article  Google Scholar 

  • Hennig, C.: Methods for merging gaussian mixture components. Adv. Data Anal. Classif. 4(1), 3–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Hossain, M.M., Lawson, A.B., Cai, B., Choi, J., Liu, J., Kirby, R.S.: Space-time areal mixture model: relabeling algorithm and model selection issues. Environmetrics 25, 84–96 (2014)

    Article  MathSciNet  Google Scholar 

  • Inoue, L.Y.T., Neira, M., Nelson, C., Gleave, M., Etzioni, R.: Cluster-based network model for time-course gene expression data. Biostatistics 8, 507–525 (2007)

    Article  MATH  Google Scholar 

  • Jasra, A., Holmes, C.C., Stephens, D.A.: Markov chain monte carlo methods and the label switching problem in Bayesian mixture modeling. Stat. Sci. 20(1), 50–67 (2005)

  • Knorr-Held, L.: Conditional prior proposals in dynamic models. Scand. J. Stat. 26(1), 129–144 (1999)

    Article  MATH  Google Scholar 

  • Lau, J.W., Green, P.J.: Bayesian model-based clustering procedures. J. Comput. Gr. Stat. 16(3), 526–558 (2007)

  • Malsiner-Walli, G., Frühwirth-Schnatter, S., Grün, B.: Model-based clustering based on sparse finite gaussian mixtures. Stat. Comput. 26(1), 303–324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Melnykov, V.: Merging mixture components for clustering through pairwise overlap. J. Comput. Gr. Stat. 25(1), 66–90 (2016)

    Article  MathSciNet  Google Scholar 

  • Neelon, B., Gelfand, A.E., Miranda, M.L.: A multivariate spatial mixture model for areal data: examining regional differences in standardized test scores. J. R. Stat. Soc. Ser. C 63, 737–761 (2014)

    Article  MathSciNet  Google Scholar 

  • Nguyen, X., Gelfand, A.E.: The Dirichlet labeling process for clustering function data. Stat. Sin. 21, 1249–1289 (2011)

    Article  MATH  Google Scholar 

  • Nieto-Barajas, L.E., Contreras-Cristán, A.: A Bayesian nonparametric approach for time series clustering. Bayesian Anal. 9(1), 147–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Page, G.L., Quintana, F.A.: Spatial product partition models. Bayesian Anal. 11, 265–298 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Polson, N.G., Scott, J.G., Windle, J.: Bayesian inference for logistic models using PlyaGamma latent variables. J. Am. Stat. Assoc. 108(504), 1339–1349 (2013)

    Article  MATH  Google Scholar 

  • Ranciati, S., Viroli, C., Wit, E.: Mixture model with multiple allocations for clustering spatially correlated observations in the analysis of ChIP-Seq data. ArXiv e-prints 1601, 04879 (2016)

    MATH  Google Scholar 

  • Reich, B.J., Fuentes, M.: A multivariate semiparametric Bayesian spatial modeling framework for hurricane surface wind fields. Ann. Appl. Stat. 1(1), 249–264 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. Ser. B 59(4), 731–792 (1997)

    Article  MATH  Google Scholar 

  • Sperrin, M., Jaki, T., Wit, E.: Probabilistic relabelling strategies for the label switching problem in Bayesian mixture models. Stat. Comput. 20(3), 357–366 (2010)

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 64(4), 583–639 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Stephens, M.: Dealing with label switching in mixture models. J. R. Stat. Soc. Ser. B 62(4), 795–809 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Vincent, K., Stedman, J.: A review of air quality station type classifications for UK compliance monitoring. Tech. rep. The Department for Environment, Food and Rural Affairs, Welsh Government, Scottish Government and the Department of the Environment for Northern Ireland, rICARDO-AEA/R/3387 (2013). https://uk-air.defra.gov.uk/library/reports?report_id=765

  • Viroli, C.: Model based clustering for three-way data structures. Bayesian Anal. 6(4), 573–602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • West, M., Harrison, J.: Bayesian Forecasting and Dynamic Models, 2nd edn. Springer, New York (1997)

    MATH  Google Scholar 

  • Zhang, H.: Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99, 250–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Gianluca Mastrantonio and the air quality service at ARPAE Emilia-Romagna for helpful discussions. We also thank the anonymous reviewers for their comments which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Paci.

Additional information

The research was partially funded by a FIRB2012 grant (project no. RBFR12URQJ) provided by the Italian Ministry of Education, Universities and Research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1544 KB)

Appendix

Appendix

The full conditional distribution of the variances \(\lambda ^2_k\), for \(k=2,\dots ,K\), is

$$\begin{aligned} \lambda ^2_k&\mid \text {rest} \sim \mathcal {IG} \Biggl (a+\frac{Tn}{2}, b+\frac{1}{2}\sum _{t=1}^T\left( \varvec{\phi }_{t,k}-\rho _k \varvec{\phi }_{t-1,k}\right) ^\prime \\&\times C(\theta )^{-1} \left( \varvec{\phi }_{t,k}-\rho _k \varvec{\phi }_{t-1,k}\right) \Biggr ). \end{aligned}$$

The full conditional distribution of the variances \(\tau ^2_k\), for \(k=1,\dots ,K\), is

$$\begin{aligned} \tau ^2_k \mid \text {rest} \sim \mathcal {IG} \left( a+\frac{T}{2}, b+ \frac{1}{2} \sum _{t=1}^T{\left( z_{t,k}-g_k z_{t-1,k}\right) ^2} \right) . \end{aligned}$$

The full conditional distribution of the error variance \(\sigma ^2\) is given by

$$\begin{aligned} \sigma ^2 \mid \text {rest}\! \sim \! \mathcal {IG}\left( a\!+\!\frac{Tn}{2}, b\!+\!\frac{1}{2} \sum _{t=1}^T{\left( \mathbf {y}_t\!-\!\mathbf {H}_t\mathbf {z}_t\right) ^\prime \left( \mathbf {y}_t\!-\!\mathbf {H}_t\mathbf {z}_t\right) } \right) . \end{aligned}$$

The full conditional distribution of \(\rho _k\), \(k=2,\dots ,K\), is a univariate normal distribution \(\mathcal {N}(vd,v)\) restricted in the interval \(I(-1<\rho _k<1)\), where

$$\begin{aligned}&v^{-1} = \frac{1}{\lambda _k^2}\varvec{\phi }_{t-1,k}^\prime C(\theta )^{-1} \varvec{\phi }_{t-1,k} + 10^{-4}\\&d = \frac{1}{\lambda _k^2}\varvec{\phi }_{t-1,k}^\prime C(\theta )^{-1} \varvec{\phi }_{t,k} . \end{aligned}$$

The full conditional distribution of \(g_k\), \(k=1,\dots , K\), is a univariate normal distributionFootnote 1 \(\mathcal {N}(vd,v)\) truncated in the interval \(I(-1<g_k<1)\), where

$$\begin{aligned}&v^{-1} = \frac{1}{\tau ^2_k}\sum _{t=1}^T{z_{t-1,k}^2} + 10^{-4}\\&d = \frac{1}{\tau ^2_k} \sum _{t=1}^T{z_{t-1,k}z_{t,k}} . \end{aligned}$$

The full conditional distribution of the allocation variables \(w_t(\mathbf {s})\) is given by

$$\begin{aligned} w_t(\mathbf {s}) \mid \text {rest} \sim \text {Multinomial}\left( \pi _{t,1}(\mathbf {s})^\star , \dots , \pi _{t,K}(\mathbf {s})^\star \right) \end{aligned}$$

where the posterior probabilities are

$$\begin{aligned} \pi ^\star _{t,k}(\mathbf {s})=\frac{\pi _{t,k}(\mathbf {s}) N(z_{t,k}, \sigma ^2)}{\sum _{l=1}^K{\pi _{t,l}(\mathbf {s}) N(z_{t,l}, \sigma ^2)}} . \end{aligned}$$

The full conditional distribution of the latent states \(\mathbf {z}_{t}\) is a K-dimensional multivariate normal distribution \(\mathcal {N}_K(VD,V)\), where

  • \(t=1\)

    $$\begin{aligned}&V^{-1} = \frac{1}{\sigma ^2}\mathbf {H}_t^\prime \mathbf {H}_t + \mathbf {G}^\prime \varSigma _\eta ^{-1} \mathbf {G} + 10^{-4}I_K \\&D = \frac{1}{\sigma ^2}\mathbf {H}_t^\prime \mathbf {y}_t + \mathbf {G}^\prime \varSigma _\eta ^{-1} \mathbf {z}_{t+1} \end{aligned}$$
  • \(t=2,\dots ,T-1\)

    $$\begin{aligned}&V^{-1} = \frac{1}{\sigma ^2}\mathbf {H}_t^\prime \mathbf {H}_t + \mathbf {G}^\prime \varSigma _\eta ^{-1} \mathbf {G} + \varSigma _\eta ^{-1} \\&D = \frac{1}{\sigma ^2}\mathbf {H}_t^\prime \mathbf {y}_t + \mathbf {G}^\prime \varSigma _\eta ^{-1} \mathbf {z}_{t+1} + \varSigma _\eta ^{-1}\mathbf {G} \mathbf {z}_{t-1} \end{aligned}$$
  • \(t=T\)

    $$\begin{aligned}&V^{-1} = \frac{1}{\sigma ^2}\mathbf {H}_t^\prime \mathbf {H}_t + \varSigma _\eta ^{-1} \\&D = \frac{1}{\sigma ^2}\mathbf {H}_t^\prime \mathbf {y}_t + \varSigma _\eta ^{-1}\mathbf {G} \mathbf {z}_{t-1}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paci, L., Finazzi, F. Dynamic model-based clustering for spatio-temporal data. Stat Comput 28, 359–374 (2018). https://doi.org/10.1007/s11222-017-9735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9735-9

Keywords

Navigation