Statistics and Computing

, Volume 27, Issue 5, pp 1383–1399

Multiscale local polynomial decompositions using bandwidths as scales

Article

Abstract

The multiscale local polynomial transform, developped in this paper, combines the benefits from local polynomial smoothing with sparse multiscale decompositions. The contribution of the paper is twofold. First, it focusses on the bandwidths used throughout the transform. These bandwidths operate as user controlled scales in a multiscale analysis, which is explained to be of particular interest in the case of nonequispaced data. The paper presents both a likelihood based optimal bandwidth selection and a fast, heuristic approach. The second contribution of the paper is the combination of local polynomial smoothing with orthogonal prefilters, similar to Daubechies’ wavelet filters, but defined on irregularly spaced covariate values.

Keywords

Local polynomial Wavelet Multiscale Sparsity 

References

  1. Anderson, L., et al.: The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon. Notic. R. Astron. Soc. 427(4), 3435–3467 (2012)CrossRefGoogle Scholar
  2. Anderson, L., et al.: The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 10 and 11 galaxy samples. Mon. Notic. R. Astron. Soc. 441(1), 24–62 (2014)CrossRefGoogle Scholar
  3. Burt, P.J., Adelson, E.H.: Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)CrossRefGoogle Scholar
  4. Daubechies, I.: Ten Lectures on wavelets. CBMS-NSF regional conference series in applied mathematics, vol. 61. SIAM, Philadelphia (1992)Google Scholar
  5. Do, M.N., Vetterli, M.: Framing pyramids. IEEE Trans. Signal Process. 51(9), 2329–2342 (2003)MathSciNetCrossRefGoogle Scholar
  6. Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Chapman and Hall, London (1996)MATHGoogle Scholar
  7. Jansen, M.: Multiscale local polynomial smoothing in a lifted pyramid for non-equispaced data. IEEE Trans. Signal Process. 61(3), 545–555 (2013)MathSciNetCrossRefGoogle Scholar
  8. Jansen, M.: Multiscale local polynomial models for estimation and testing. In: Akritas, M., Lahiri, S.N., Politis, D., (eds.), Topics in NonParametric statistics of the Springer proceedings in mathematics & statistics, chapter 14, vol. 74 , pp. 155–166. Springer, New York, Proceedings of the first conference of the international society for nonparametric statistics (2014)Google Scholar
  9. Percival, W.J., et al.: Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Notic. R. Astron. Soc. 401(4), 2148–2168 (2010)CrossRefGoogle Scholar
  10. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1996)MATHGoogle Scholar
  11. Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comp. Harmon. Anal. 3(2), 186–200 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. Vieu, P.: Nonparametric regression: optimal local bandwidth choice. J. R. Stat. Soc. Ser. B 53(2), 453–464 (1991)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations