Skip to main content
Log in

Unsupervised Feature Learning with Single Layer ICANet for Face Recognition

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Compared to supervised learning, unsupervised learning allows systems to learn consistent patterns from cheap and abundant unlabeled data, without the need for manual annotation. In this paper, we present a novel unsupervised feature learning method with single layer (SL) network based independent component analysis (ICA) filters called SL-ICANet, with the goal of achieving compact and robust facial feature representation. Our contributions are twofold: (i) We developed a single-layer convolutional network for unsupervised learning wherein the trainable kernels are replaced by ICA filters. (ii) We extended our SL-ICANet to use multi-scale information for better feature learning. Extensive experiments on two popular face recognition benchmarks, namely, labeled faces in the wild and facial recognition technology show that the proposed method might serve as a simple but highly competitive baseline for face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.

    Article  Google Scholar 

  2. Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720.

    Article  Google Scholar 

  3. Chan, T.-H., Jia, K., Gao, S., Jiwen, L., Zeng, Z., & Ma, Y. (2015). Pcanet: A simple deep learning baseline for image classification? IEEE Transactions on Image Processing, 24(12), 5017–5032.

    Article  MathSciNet  Google Scholar 

  4. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005 (Vol. 1, pp. 886–893). IEEE.

  5. Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In Technical report, Technical Report 07-49 Amherst: University of Massachusetts.

  6. Jiwen, L., Tan, Y.-P., & Wang, G. (2013). Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 39–51.

    Article  Google Scholar 

  7. Kannala, J., & Rahtu, E. (2012). Bsif: Binarized statistical image features. In 2012 21st international conference on pattern recognition (ICPR) (pp. 1363–1366). IEEE.

  8. Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.

  9. Liu, C., & Wechsler, H. (2002). Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions on Image processing, 11(4), 467–476.

    Article  Google Scholar 

  10. Lowe, D. G. (1999). Object recognition from local scale-invariant features. In The proceedings of the seventh IEEE international conference on computer vision, 1999 (Vol. 2, pp. 1150–1157). IEEE.

  11. Nguyen, H. V., Bai, L., & Shen, L. (2009). Local gabor binary pattern whitened pca: A novel approach for face recognition from single image per person. In International conference on biometrics (pp. 269–278). Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  12. Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In BMVC (Vol. 1, No. 3, p. 6).

  13. Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview of the face recognition grand challenge. In IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005 (Vol. 1, pp. 947–954). IEEE.

  14. Phillips, P. J., Moon, H., Rizvi, S. A., & Rauss, P. J. (2000). The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10), 1090–1104.

    Article  Google Scholar 

  15. Rodrigo, V., & Correa, M. (2009). Recognition of faces in unconstrained environments: A comparative study. EURASIP Journal on Advances in Signal Processing, 2009(1), 184617.

    Article  Google Scholar 

  16. Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815–823).

  17. Seo, H. J., & Milanfar, P. (2011). Face verification using the lark representation. IEEE Transactions on Information Forensics and Security, 6(4), 1275–1286.

    Article  Google Scholar 

  18. Sharma, G., ul Hussain, S., & Jurie, F. (2012). Local higher-order statistics (LHS) for texture categorization and facial analysis. In European conference on computer vision (pp. 1–12). Springer, Berlin, Heidelberg.

    Google Scholar 

  19. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

  20. Simonyan, K., Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2013). Fisher vector faces in the wild. In BMVC (Vol. 2, p. 4).

  21. Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep learning face representation by joint identification-verification. In Advances in neural information processing systems (pp. 1988–1996).

  22. Sun, Y., Liang, D., Wang, X, & Tang, X. (2015). Deepid3: Face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873.

  23. Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 10,000 classes. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1891–1898).

  24. Sun, Y., Wang, X., & Tang, X. (2015). Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2892–2900).

  25. Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.

    Article  MathSciNet  Google Scholar 

  26. Turk, M. A., & Pentland, A. P. (1991). Face recognition using eigenfaces. In IEEE computer society conference on computer vision and pattern recognition, 1991, Proceedings CVPR’91 (pp. 586–591). IEEE.

  27. Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016). A discriminative feature learning approach for deep face recognition. In European conference on computer vision (pp. 499–515). Berlin: Springer.

    Google Scholar 

  28. Xi, M., Chen, L., Polajnar, D., & Tong, W. (2016). Local binary pattern network: A deep learning approach for face recognition. In IEEE international conference on image processing (ICIP), 2016 (pp. 3224–3228). IEEE.

  29. Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. arXiv preprint arXiv:1411.7923

  30. Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. arXiv preprint arXiv:1411.7923.

  31. Ylioinas, J., Kannala, J., Hadid, A., & Pietikäinen, M. (2015). Face recognition using smoothed high-dimensional representation. In Scandinavian conference on image analysis (pp. 516–529). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 61402307, 61702058) National Key Scientific Instrument and Equipment Development Project of China (No. 2013YQ49087903), the Scientific Research Foundation of CUIT (Nos. KYTZ201717, J201706) and the China Postdoctoral Science and Foundation No. 2017M612948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Zhang.

Additional information

This article is part of the Topical Collection on Recent Developments in Sensing and Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, T., Zhang, Y., Cai, Y. et al. Unsupervised Feature Learning with Single Layer ICANet for Face Recognition. Sens Imaging 19, 5 (2018). https://doi.org/10.1007/s11220-018-0188-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-018-0188-9

Keywords

Navigation