Skip to main content

Pygmalion in the genes? On the potentially negative impacts of polygenic scores for educational attainment

Abstract

Polygenic scores for educational attainment and related variables, such as IQ and “mathematical ability” are now readily available via direct-to-consumer genetic testing companies. Some researchers are even proposing the use of genetic tests in educational settings via “precision education,” in which individualized student education plans would be tailored to polygenic scores. The potential psychosocial impacts of polygenic scores for traits and outcomes relevant to education, however, have not been assessed. In online experiments, we asked participants to imagine hypothetical situations in which they or their classmates had recently received polygenic scores for educational attainment. Participants prompted to answer multi-choice questions as though they had received their own low-percentile score, compared to a control condition, scored significantly lower on measures of self-esteem and of self-perceived competence, academic efficacy, and educational potential. Similarly, those asked to evaluate a hypothetical classmate as though the classmate had received a low-percentile score attributed significantly lower academic efficacy and educational potential, compared to a control condition. Through possible mechanisms of stigma and self-fulfilling prophecies, our results highlight the potential psychosocial harms of exposure to low-percentile polygenic scores for educational attainment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Data will be made available to qualified researchers upon request.

Code availability

SPSS syntax will be made available to qualified researchers upon request.

References

  1. Allyse, M. A., Robinson, D. H., Ferber, M. J., & Sharp, R. R. (2018). Direct-to-consumer testing 2.0: Emerging models of direct-to-consumer genetic testing. Mayo Clinic Proceedings, 93(1), 113–120. https://doi.org/10.1016/j.mayocp.2017.11.001.

    Article  Google Scholar 

  2. Asbury, K., & Plomin, R. (2014). G is for genes: The impact of genetics on education and achievement. . New York: Wiley.

    Google Scholar 

  3. Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of General Psychology, 5(4), 323–370. https://doi.org/10.1037/1089-2680.5.4.323.

    Article  Google Scholar 

  4. Belsky, D. W., Domingue, B. W., Wedow, R., Arseneault, L., Boardman, J. D., Caspi, A., Conley, D., Fletcher, J. M., Freese, J., Herd, P., Moffitt, T. E., Poulton, R., Sicinski, K., Wertz, J., & Harris, K. M. (2018). Genetic analysis of social-class mobility in five longitudinal studies. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1801238115.

    Article  Google Scholar 

  5. Berg, J. J., Harpak, A., Sinnott-Armstrong, N., Joergensen, A. M., Mostafavi, H., Field, Y., Boyle, E. A., Zhang, X., Racimo, F., Pritchard, J. K., & Coop, G. (2019). Reduced signal for polygenic adaptation of height in UK Biobank. eLife, 8, e39725. https://doi.org/10.7554/eLife.39725.

    Article  Google Scholar 

  6. Briley, D. A., & Tucker-Drob, E. (2019). What do the genetics of education tell us about learning? BOLD. https://bold.expert/what-do-the-genetics-of-education-tell-us-about-learning/.

  7. Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Schizophrenia, P. N., Daly, M. J., Price, A. L., & Neale, B. M. (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47(3), 291–295. https://doi.org/10.1038/ng.3211.

    Article  Google Scholar 

  8. Chan, Y., Holmen, O. L., Dauber, A., Vatten, L., Havulinna, A. S., Skorpen, F., et al. (2011). Common variants show predicted polygenic effects on height in the tails of the distribution, except in extremely short individuals. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1002439.

    Article  Google Scholar 

  9. Chen, H., Gu, X., Zhou, Y., Ge, Z., Wang, B., Siok, W. T., Wang, G., Huen, M., Jiang, Y., Tan, L.-H., & Sun, Y. (2017). A genome-wide association study identifies genetic variants associated with mathematics ability. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/srep40365.

    Article  Google Scholar 

  10. Coop, G. (2019). Reading tea leaves? Polygenic scores and differences in traits among groups. 1909.00892[q-Bio]; http://arxiv.org/abs/1909.00892.

  11. Cust, A. E., Drummond, M., Kanetsky, P. A., Mann, G. J., Cust, A. E., Schmid, H., Hopper, J. L., Aitken, J. F., Armstrong, B. K., Giles, G. G., Holland, E., Kefford, R. F., Jenkins, M. A., Newton Bishop, J. A., Affleck, P., Barrett, J. H., Bishop, D. T., Harrison, J., Iles, M. M., & Bishop, D. T. (2018). Assessing the incremental contribution of common genomic variants to melanoma risk prediction in two population-based studies. Journal of Investigative Dermatology, 138(12), 2617–2624. https://doi.org/10.1016/j.jid.2018.05.023.

    Article  Google Scholar 

  12. Dai, Z., Long, N., & Huang, W. (2019). Influence of genetic interactions on polygenic prediction. BioRxiv. https://doi.org/10.1101/667162.

    Article  Google Scholar 

  13. Dar-Nimrod, I., Cheung, B. Y., Ruby, M. B., & Heine, S. J. (2014). Can merely learning about obesity genes affect eating behavior? Appetite, 81, 269–276. https://doi.org/10.1016/j.appet.2014.06.109.

    Article  Google Scholar 

  14. Dar-Nimrod, I., & Heine, S. J. (2011). Genetic essentialism: On the deceptive determinism of DNA. Psychological Bulletin, 137(5), 800–818. https://doi.org/10.1037/a0021860.

    Article  Google Scholar 

  15. Dar-Nimrod, I., Zuckerman, M., & Duberstein, P. R. (2013). The effects of learning about one’s own genetic susceptibility to alcoholism: A randomized experiment. Genetics in Medicine, 15(2), 132–138. https://doi.org/10.1038/gim.2012.111.

    Article  Google Scholar 

  16. Davidson, J. E., & Downing, C. L. (2000). Contemporary models of intelligence. In Handbook of intelligence (pp. 34–50). Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9780511807947.004.

  17. Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21. https://doi.org/10.1016/j.intell.2006.02.001.

    Article  Google Scholar 

  18. Duncan, L., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feldman, M., Peterson, R., & Domingue, B. (2019). Analysis of polygenic risk score usage and performance in diverse human populations. Nature Communications, 10(1), 3328. https://doi.org/10.1038/s41467-019-11112-0.

    Article  Google Scholar 

  19. Dweck, C. S. (1999). Self-theories: Their role in motivation, personality, and development. . London: Psychology Press.

    Google Scholar 

  20. Dweck, C. S. (2006). Mindset: The new psychology of success. . New York: Random House.

    Google Scholar 

  21. Erbeli, F. (2019). Translating research findings in genetics of learning disabilities to special education instruction. Mind, Brain, and Education, 13(2), 74–79. https://doi.org/10.1111/mbe.12196.

    Article  Google Scholar 

  22. Fiske, S. T., Cuddy, A. J. C., & Glick, P. (2007). Universal dimensions of social cognition: Warmth and competence. Trends in Cognitive Sciences, 11(2), 77–83. https://doi.org/10.1016/j.tics.2006.11.005.

    Article  Google Scholar 

  23. Folkersen, L., Pain, O., Ingason, A., Werge, T., Lewis, C. M., & Austin, J. (2020). Impute.me: An open-source, non-profit tool for using data from direct-to-consumer genetic testing to calculate and interpret polygenic risk scores. Frontiers in Genetics. https://doi.org/10.3389/fgene.2020.00578.

    Article  Google Scholar 

  24. Furnham, A., Moutafi, J., & Chamorro-Premuzic, T. (2005). Personality and intelligence: Gender, the big five, self-estimated and psychometric intelligence. International Journal of Selection and Assessment, 13(1), 11–24. https://doi.org/10.1111/j.0965-075X.2005.00296.x.

    Article  Google Scholar 

  25. Ganna, A., Verweij, K. J. H., Nivard, M. G., Maier, R., Wedow, R., Busch, A. S., et al. (2019). Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior. Science. https://doi.org/10.1126/science.aat7693.

    Article  Google Scholar 

  26. Gason, A. A., Aitken, M. A., Metcalfe, S. A., Allen, K. J., & Delatycki, M. B. (2005). Genetic susceptibility screening in schools: Attitudes of the school community towards hereditary haemochromatosis. Clinical Genetics, 67(2), 166–174. https://doi.org/10.1111/j.1399-0004.2004.00389.x.

    Article  Google Scholar 

  27. Genes, Education, and Equity: It’s complicated. (2020). BOLD Blog. https://www.youtube.com/watch?v=SDoMZfZ-fNk.

  28. Grigorenko, E. L. (2007). How can genomics inform education? Mind, Brain, and Education, 1(1), 20–27. https://doi.org/10.1111/j.1751-228X.2007.00001.x.

    Article  Google Scholar 

  29. Harden, K. P. (2018a). Opinion|Why progressives should embrace the genetics of education (Published 2018). The New York Times. https://www.nytimes.com/2018/07/24/opinion/dna-nature-genetics-education.html.

  30. Harden, K. P. (2018b). Predicting education from DNA? BOLD. https://bold.expert/predicting-education-from-dna/.

  31. Harden, K. P., Domingue, B. W., Belsky, D. W., Boardman, J. D., Crosnoe, R., Malanchini, M., Nivard, M., Tucker-Drob, E. M., & Harris, K. M. (2019). Genetic associations with mathematics tracking and persistence in secondary school. BioRxiv. https://doi.org/10.1101/598532.

    Article  Google Scholar 

  32. Harden, P. (2020). Brief FAQ on “Genetic Associations with Mathematics Tracking and Persistence.” Medium. https://medium.com/@kph3k/brief-faq-on-genetic-associations-with-mathematics-tracking-and-persistence-20dddc39442d.

  33. Hart, S. A. (2016). Precision education enitiative: Moving towards personalized education. Mind, Brain and Education : The Official Journal of the International Mind, Brain, and Education Society, 10(4), 209–211. https://doi.org/10.1111/mbe.12109.

    Article  Google Scholar 

  34. Haworth, C. M. A., & Plomin, R. (2012). Genetics and education: Toward a genetically sensitive classroom. In APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues (pp. 529–559). American Psychological Association. https://doi.org/https://doi.org/10.1037/13273-018.

  35. Hill, W. D., Davies, N. M., Ritchie, S. J., Skene, N. G., Bryois, J., Bell, S., Angelantonio, E. D., Roberts, D. J., Xueyi, S., Davies, G., Liewald, D. C. M., Porteous, D. J., Hayward, C., Butterworth, A. S., McIntosh, A. M., Gale, C. R., & Deary, I. J. (2019). Genetic analysis identifies molecular systems and biological pathways associated with household income. BioRxiv, 573691,. https://doi.org/10.1101/573691.

    Article  Google Scholar 

  36. Janssens, A. C. J. W. (2019). Validity of polygenic risk scores: Are we measuring what we think we are? Human Molecular Genetics, 00(00), 1–8. https://doi.org/10.1093/hmg/ddz205.

    Article  Google Scholar 

  37. Keller, J. (2005). In genes we trust: The biological component of psychological essentialism and its relationship to mechanisms of motivated social cognition. Journal of Personality and Social Psychology, 88(4), 686–702. https://doi.org/10.1037/0022-3514.88.4.686.

    Article  Google Scholar 

  38. Khera, A. V., Chaffin, M., Wade, K. H., Zahid, S., Brancale, J., Xia, R., Distefano, M., Senol-Cosar, O., Haas, M. E., Bick, A., Aragam, K. G., Lander, E. S., Smith, G. D., Mason-Suares, H., Fornage, M., Lebo, M., Timpson, N. J., Kaplan, L. M., & Kathiresan, S. (2019). Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell, 177(3), 587-596.e9. https://doi.org/10.1016/j.cell.2019.03.028.

    Article  Google Scholar 

  39. Krapohl, E., Rimfeld, K., Shakeshaft, N. G., Trzaskowski, M., McMillan, A., Pingault, J.-B., Asbury, K., Harlaar, N., Kovas, Y., Dale, P. S., & Plomin, R. (2014). The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences of the United States of America, 111(42), 15273–15278. https://doi.org/10.1073/pnas.1408777111.

    Article  Google Scholar 

  40. Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134.

    Article  Google Scholar 

  41. Lebowitz, M. S., & Ahn, W. (2014). Effects of biological explanations for mental disorders on clinicians’ empathy. Proceedings of the National Academy of Sciences, 111(50), 17786–17790. https://doi.org/10.1073/pnas.1414058111.

    Article  Google Scholar 

  42. Lebowitz, M. S., & Ahn, W.-K. (2017). Testing positive for a genetic predisposition to depression magnifies retrospective memory for depressive symptoms. Journal of Consulting and Clinical Psychology, 85(11), 1052–1063. https://doi.org/10.1037/ccp0000254.

    Article  Google Scholar 

  43. Lebowitz, M. S., & Ahn, W. (2018). Blue genes? Understanding and mitigating negative consequences of personalized information about genetic risk for depression. Journal of Genetic Counseling, 27(1), 204–216. https://doi.org/10.1007/s10897-017-0140-5.

    Article  Google Scholar 

  44. Lebowitz, M. S., Ahn, W., & Nolen-Hoeksema, S. (2013). Fixable or fate? Perceptions of the biology of depression. Journal of Consulting and Clinical Psychology, 81(3), 518–527. https://doi.org/10.1037/a0031730.

    Article  Google Scholar 

  45. Lebowitz, M. S., Ahn, W., & Oltman, K. (2015). Sometimes more competent, but always less warm: Perceptions of biologically oriented mental-health clinicians. International Journal of Social Psychiatry, 61(7), 668–676. https://doi.org/10.1177/0020764015573086.

    Article  Google Scholar 

  46. Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., et al. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 1112. https://doi.org/10.1038/s41588-018-0147-3.

    Article  Google Scholar 

  47. Lineweaver, T. T., Bondi, M. W., Galasko, D., & Salmon, D. P. (2014). Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults. American Journal of Psychiatry, 171(2), 201–208. https://doi.org/10.1176/appi.ajp.2013.12121590.

    Article  Google Scholar 

  48. Luciano, M., Evans, D. M., Hansell, N. K., Medland, S. E., Montgomery, G. W., Martin, N. G., Wright, M. J., & Bates, T. C. (2013). A genome-wide association study for reading and language abilities in two population cohorts. Genes, Brain, and Behavior, 12(6), 645–652. https://doi.org/10.1111/gbb.12053.

    Article  Google Scholar 

  49. Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., Daly, M. J., Bustamante, C. D., & Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. The American Journal of Human Genetics, 100(4), 635–649. https://doi.org/10.1016/j.ajhg.2017.03.004.

    Article  Google Scholar 

  50. Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 51(4), 584–591. https://doi.org/10.1038/s41588-019-0379-x.

    Article  Google Scholar 

  51. Martschenko, D. (2019). What does genetics mean for educational equity? BOLD. https://bold.expert/what-does-genetics-mean-for-educational-equity/.

  52. Martschenko, D., Trejo, S., & Domingue, B. W. (2019). Genetics and education: Recent developments in the context of an ugly history and an uncertain future. AERA Open, 5(1), 2332858418810516. https://doi.org/10.1177/2332858418810516.

    Article  Google Scholar 

  53. Midgley, C., Maehr, M. L., Hruda, L. Z., Anderman, E., Anderman, L., Freeman, K. E., et al. (2000). Manual for the patterns of adaptive learning scales. . Michigan: The University of Michigan.

    Google Scholar 

  54. Morris, T. T., Davies, N. M., & Smith, G. D. (2019). Can education be personalised using pupils’ genetic data? BioRxiv. https://doi.org/10.1101/645218.

    Article  Google Scholar 

  55. Mostafavi, H., Harpak, A., Conley, D., Pritchard, J. K., & Przeworski, M. (2019). Variable prediction accuracy of polygenic scores within an ancestry group. BioRxiv. https://doi.org/10.1101/629949.

    Article  Google Scholar 

  56. Need, A. C., & Goldstein, D. B. (2009). Next generation disparities in human genomics: Concerns and remedies. Trends in Genetics, 25(11), 489–494. https://doi.org/10.1016/j.tig.2009.09.012.

    Article  Google Scholar 

  57. Paquette, M., Chong, M., Thériault, S., Dufour, R., Paré, G., & Baass, A. (2017). Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. Journal of Clinical Lipidology, 11(3), 725-732.e5. https://doi.org/10.1016/j.jacl.2017.03.019.

    Article  Google Scholar 

  58. Persky, S., & Eccleston, C. P. (2011). Impact of genetic causal information on medical students’ clinical encounters with an obese virtual patient: Health promotion and social stigma. Annals of Behavioral Medicine, 41(3), 363–372. https://doi.org/10.1007/s12160-010-9242-0.

    Article  Google Scholar 

  59. Plomin, R., Kovas, Y., & Haworth, C. M. A. (2007). Generalist genes: Genetic links between brain, mind, and education. Mind, Brain, and Education, 1(1), 11–19. https://doi.org/10.1111/j.1751-228X.2007.00002.x.

    Article  Google Scholar 

  60. Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19(3), 148–159. https://doi.org/10.1038/nrg.2017.104.

    Article  Google Scholar 

  61. Plomin, R., & Walker, S. O. (2003). Genetics and educational psychology. British Journal of Educational Psychology, 73(1), 3–14. https://doi.org/10.1348/000709903762869888.

    Article  Google Scholar 

  62. Popejoy, A. B., & Fullerton, S. M. (2016). Genomics is failing on diversity. Nature News, 538(7624), 161. https://doi.org/10.1038/538161a.

    Article  Google Scholar 

  63. Regalado, A. (2018). Precision education: DNA test for intelligence could be on the horizon. Genetic Literacy Project. https://geneticliteracyproject.org/2018/04/10/precision-education-dna-test-for-intelligence-could-be-on-the-horizon/.

  64. Regalado, A. (2019). More than 26 million people have taken an at-home ancestry test. MIT Technology Review. https://www.technologyreview.com/2019/02/11/103446/more-than-26-million-people-have-taken-an-at-home-ancestry-test/.

  65. Rosenberg, M. (1965). Society and the Adolescent Self-Image. . Princeton: Princeton University Press.

    Book  Google Scholar 

  66. Rosenberg, N. A., Edge, M. D., Pritchard, J. K., & Feldman, M. W. (2019). Interpreting polygenic scores, polygenic adaptation, and human phenotypic differences. Evolution, Medicine, and Public Health, 2019(1), 26–34. https://doi.org/10.1093/emph/eoy036.

    Article  Google Scholar 

  67. Rosenberg, N. A., Huang, L., Jewett, E. M., Szpiech, Z. A., Jankovic, I., & Boehnke, M. (2010). Genome-wide association studies in diverse populations. Nature Reviews Genetics, 11(5), 356–366. https://doi.org/10.1038/nrg2760.

    Article  Google Scholar 

  68. Rosenthal, R., & Jacobson, L. (1968). Pygmalion in the classroom. The Urban Review, 3(1), 16–20. https://doi.org/10.1007/BF02322211.

    Article  Google Scholar 

  69. Rothstein, L. F. (1998). Genetic information in schools. In Genetic secrets: Protecting privacy and confidentiality in the genetic era (pp. 317–320).

  70. Sabatello, M. (2018). A genomically informed education system? Challenges for behavioral genetics. The Journal of Law, Medicine & Ethics: A Journal of the American Society of Law, Medicine & Ethics, 46(1), 130–144. https://doi.org/10.1177/1073110518766027.

    Article  Google Scholar 

  71. Sabatello, M., & Juengst, E. (2019). Genomic essentialism: Its provenance and trajectory as an anticipatory ethical concern. Hastings Center Report, 49(S1), S10–S18. https://doi.org/10.1002/hast.1012.

    Article  Google Scholar 

  72. Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., Nagel, M., Awasthi, S., Barr, P. B., Coleman, J. R. I., Grasby, K. L., Hammerschlag, A. R., Kaminski, J., Karlsson, R., Krapohl, E., Lam, M., Nygaard, M., Reynolds, C. A., Trampush, J. W., & Posthuma, D. (2017). GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence. BioRxiv. https://doi.org/10.1101/184853.

    Article  Google Scholar 

  73. Schmidt, I. W., Berg, I. J., & Deelman, B. G. (1999). Illusory superiority in self-reported memory of older adults. Aging, Neuropsychology, and Cognition, 6(4), 288–301. https://doi.org/10.1076/1382-5585(199912)06:04;1-B;FT288.

    Article  Google Scholar 

  74. Stéphane. (2018). What is your IQ score? DNA intelligence tests. GenePlaza Blog. https://www.geneplaza.com/blog/en/dna-test-iq-score/.

  75. Su, P. (2013). Direct-to-consumer genetic testing: A comprehensive view. The Yale Journal of Biology and Medicine, 86(3), 359–365.

    Google Scholar 

  76. Turnwald, B. P., Goyer, J. P., Boles, D. Z., Silder, A., Delp, S. L., & Crum, A. J. (2019). Learning one’s genetic risk changes physiology independent of actual genetic risk. Nature Human Behaviour, 3(1), 48–56. https://doi.org/10.1038/s41562-018-0483-4.

    Article  Google Scholar 

  77. von Stumm, S., Smith-Woolley, E., Ayorech, Z., McMillan, A., Rimfeld, K., Dale, P. S., & Plomin, R. (2020). Predicting educational achievement from genomic measures and socioeconomic status. Developmental Science, 23(3), e12925. https://doi.org/10.1111/desc.12925.

    Article  Google Scholar 

  78. Williamson, B. (2018). A biosocial view on precision education. BOLD. https://bold.expert/a-biosocial-view-on-precision-education/.

Download references

Acknowledgements

This research was made possible by funding from The Hastings Center, the Columbia University Center for Research on the Ethical, Legal and Social Implications of Psychiatric, Neurologic and Behavioral Genetics (National Institutes of health grant, RM1HG007257), and a Columbia Precision Medicine and Society Pilot Grant Award. This research was conducted as part of postdoctoral training for Lucas J. Matthews

Funding

This research was conducted with pilot funding from a grant from the National Human Genome Research Institute (RM1HG007257).

Author information

Affiliations

Authors

Contributions

LJM confirms that he had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All of the authors gave final approval of this version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Lucas J. Matthews.

Ethics declarations

Conflict of interest

Authors Lucas J. Matthews, Matthew S. Lebowitz, Ruth Ottman, and Paul S. Appelbaum declare that they have no conflict of interest.

Ethics approval and informed consent

Approval to conduct this human subjects research was obtained from the New York State Psychiatric Institute’s Institutional Review Board. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matthews, L.J., Lebowitz, M.S., Ottman, R. et al. Pygmalion in the genes? On the potentially negative impacts of polygenic scores for educational attainment. Soc Psychol Educ 24, 789–808 (2021). https://doi.org/10.1007/s11218-021-09632-z

Download citation

Keywords

  • Education
  • Polygenic risk score
  • Psychosocial
  • Direct-to-consumer genetic testing (DTC)
  • Predictive genetic testing
  • Stigma