Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements

Abstract

The nature and structure of the observed east-west flows on Jupiter and Saturn have been a long-standing mystery in planetary science. This mystery has been recently unraveled by the accurate gravity measurements provided by the Juno mission to Jupiter and the Grand Finale of the Cassini mission to Saturn. These two experiments, which coincidentally happened around the same time, allowed the determination of the overall vertical and meridional profiles of the zonal flows on both planets. This paper reviews the topic of zonal jets on the gas giants in light of the new data from these two experiments. The gravity measurements not only allow the depth of the jets to be constrained, yielding the inference that the jets extend to roughly 3000 and 9000 km below the observed clouds on Jupiter and Saturn, respectively, but also provide insights into the mechanisms controlling these zonal flows. Specifically, for both planets this depth corresponds to the depth where electrical conductivity is within an order of magnitude of 1 S m−1, implying that the magnetic field likely plays a key role in damping the zonal flows. An intrinsic characteristic of any gravity inversion, as discussed here, is that the solutions might not be unique. We analyze the robustness of the solutions and present several independent lines of evidence supporting the results presented here.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Note that \(2\boldsymbol{\Omega }\cdot \nabla =2\boldsymbol{\Omega } \frac{\partial }{\partial z}\), where \(z\) is the direction parallel to the spin vector \(\left (\boldsymbol{\Omega }\right )\).

  2. 2.

    Note that the barotropic limit is not simply when the rhs of Eq. (3) vanishes, but rather when the lhs changes as well, resulting in \(2\boldsymbol{\Omega }\cdot \nabla \mathbf{u}-2\boldsymbol{\Omega }\nabla \cdot \mathbf{u}=0\). See full derivation in Kaspi et al. (2016).

References

  1. J.D. Anderson, G. Schubert, Saturn’s gravitational field, internal rotation, and interior structure. Science 317, 1384–1387 (2007)

    ADS  Google Scholar 

  2. D.H. Atkinson, J.B. Pollack, A. Seiff, Galileo Doppler measurements of the deep zonal winds at Jupiter. Science 272, 842–843 (1996)

    ADS  Google Scholar 

  3. J.M. Aurnou, P.L. Olson, Strong zonal winds from thermal convectionin a rotating spherical shell. Geophys. Res. Lett. 28(13), 2557–2559 (2001)

    ADS  Google Scholar 

  4. J. Aurnou, M. Heimpel, L. Allen, E. King, J. Wicht, Convective heat transfer and the pattern of thermal emission on the gas giants. Geophys. J. Int. 173, 793–801 (2008)

    ADS  Google Scholar 

  5. S.J. Bolton, Juno Final Concept Study Report. Technical Report AO-03-OSS-03 New Frontiers, NASA (2005)

  6. S.J. Bolton, A. Adriani, V. Adumitroaie, M. Allison, J. Anderson, S. Atreya, J. Bloxham, S. Brown, J.E.P. Connerney, E. DeJong, W. Folkner, D. Gautier, D. Grassi, S. Gulkis, T. Guillot, C. Hansen, W.B. Hubbard, L. Iess, A. Ingersoll, M. Janssen, J. Jorgensen, Y. Kaspi, S.M. Levin, C. Li, J. Lunine, Y. Miguel, A. Mura, G. Orton, T. Owen, M. Ravine, E. Smith, P. Steffes, E. Stone, D. Stevenson, R. Thorne, J. Waite, D. Durante, R.W. Ebert, T.K. Greathouse, V. Hue, M. Parisi, J.R. Szalay, R. Wilson, Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science 356, 821–825 (2017)

    ADS  Google Scholar 

  7. F.H. Busse, Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441–460 (1970)

    ADS  MATH  Google Scholar 

  8. F.H. Busse, A simple model of convection in the Jovian atmosphere. Icarus 29, 255–260 (1976)

    ADS  Google Scholar 

  9. F.H. Busse, Convection driven zonal flows and vortices in the major planets. Chaos 4(2), 123–134 (1994)

    ADS  Google Scholar 

  10. J.K. Campbell, J.D. Anderson, Gravity field of the Saturnian system from Pioneer and Voyager tracking data. Astrophys. J. 97, 1485 (1989)

    ADS  Google Scholar 

  11. J.K. Campbell, S.P. Synnott, Gravity field of the Jovian system from pioneer and Voyager tracking data. Astrophys. J. 90, 364–372 (1985)

    ADS  Google Scholar 

  12. H. Cao, D.J. Stevenson, Gravity and zonal flows of giant planets: from the Euler equation to the thermal wind equation. J. Geophys. Res., Planets 122, 686–700 (2017a)

    ADS  Google Scholar 

  13. H. Cao, D.J. Stevenson, Zonal flow magnetic field interaction in the semi-conducting region of giant planets. Icarus 296, 59–72 (2017b)

    ADS  Google Scholar 

  14. G. Chabrier, S. Mazevet, F. Soubiran, A new equation of state for dense hydrogen-helium mixtures. Astrophys. J. 872, 51 (2019)

    ADS  Google Scholar 

  15. Y. Chachan, D.J. Stevenson, A linear approximation for the effect of cylindrical differential rotation on gravitational moments: application to the non-unique interpretation of Saturn’s gravity. Icarus 323, 87–98 (2019)

    ADS  Google Scholar 

  16. R. Chemke, Y. Kaspi, The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci. 72, 3891–3907 (2015)

    ADS  Google Scholar 

  17. J. Cho, L.M. Polvani, The formation of jets and vortices from freely-evolving shallow water turbulence on the surface of a sphere. Phys. Fluids 8, 1531–1552 (1996)

    ADS  MATH  Google Scholar 

  18. D.S. Choi, A.P. Showman, R.H. Brown, Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. J. Geophys. Res., Planets 114(E4), 04007 (2009)

    ADS  Google Scholar 

  19. U.R. Christensen, Zonal flow driven by deep convection in the major planets. Geophys. Res. Lett. 28, 2553–2556 (2001)

    ADS  Google Scholar 

  20. U.R. Christensen, J. Wicht, W. Dietrich, Mechanisms for limiting the depth of zonal winds in the gas giant planets. Astrophys. J. 890(1), 61 (2020)

    ADS  Google Scholar 

  21. J.E.P. Connerney, S. Kotsiaros, R.J. Oliversen, J.R. Espley, J.L. Joergensen, P.S. Joergensen, J.M.G. Merayo, M. Herceg, J. Bloxham, K.M. Moore, A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophys. Res. Lett. 45(6), 2590–2596 (2018)

    ADS  Google Scholar 

  22. F. Debras, G. Chabrier, New models of Jupiter in the context of Juno and Galileo. Astrophys. J. 872, 100 (2019)

    ADS  Google Scholar 

  23. A.D. Del Genio, J.M. Barbara, J. Ferrier, A.P. Ingersoll, R.A. West, A.R. Vasavada, J. Spitale, C.C. Porco, Saturn eddy momentum fluxes and convection: first estimates from Cassini images. Icarus 189(2), 479–492 (2007)

    ADS  Google Scholar 

  24. K. Duer, E. Galanti, Y. Kaspi, Analysis of Jupiter’s deep jets combining Juno gravity and time-varying magnetic field measurements. Astrophys. J. Lett. 879(2), 22 (2019)

    ADS  Google Scholar 

  25. K. Duer, E. Galanti, Y. Kaspi, The range of Jupiter’s flow structures fitting the Juno asymmetric gravity measurements. J. Geophys. Res., Planets (2020, in press). https://doi.org/10.1029/2019JE006292

    Article  Google Scholar 

  26. D. Durante, T. Guillot, L. Iess, The effect of Jupiter oscillations on Juno gravity measurements. Icarus 282, 174–182 (2017)

    ADS  Google Scholar 

  27. D. Durante, M. Parisi, D. Serra, M. Zannoni, V. Notaro, P. Racioppa, D.R. Buccino, G. Lari, L. Gomez Casajus, L. Iess, W.M. Folkner, G. Tommei, P. Tortora, S.J. Bolton, Jupiter’s gravity field halfway through the Juno mission. Geophys. Res. Lett. 47(4), e2019GL086572 (2020)

    ADS  Google Scholar 

  28. S.G. Edgington, L.J. Spilker, Cassini’s grand finale. Nat. Geosci. 9, 472–473 (2016)

    ADS  Google Scholar 

  29. L.N. Fletcher, P.G.J. Irwin, N.A. Teanby, G.S. Orton, P.D. Parrish, R. de Kok, C. Howett, S.B. Calcutt, N. Bowles, F.W. Taylor, Characterising Saturn’s vertical temperature structure from Cassini/CIRS. Icarus 189(2), 457–478 (2007)

    ADS  Google Scholar 

  30. L.N. Fletcher, Y. Kaspi, T. Guillot, A.P. Showman, How well do we understand the belt/zone circulation of giant planet atmospheres? Space Sci. Rev. 216(2), 30 (2020a)

    ADS  Google Scholar 

  31. L.N. Fletcher, N. André, D. Andrews, M. Bannister, E. Bunce, T. Cavalié, S. Charnoz, F. Ferri, J. Fortney, D. Grassi, L. Griton, P. Hartogh, R. Helled, R. Hueso, G. Jones, Y. Kaspi, L. Lamy, A. Masters, H. Melin, J. Moses, O. Mousis, N. Nettleman, C. Plainaki, E. Roussos, J. Schmidt, A. Simon, G. Tobie, P. Tortora, F. Tosi, D. Turrini, Ice giant systems: the scientific potential of missions to Uranus and Neptune. Planet. Space Sci. (2020b, in press)

  32. W. Folkner, L. Iess, P. Tortora more, Jupiter gravity field from first two orbits by Juno. Geophys. Res. Lett. 44, 4694–4700 (2017)

    ADS  Google Scholar 

  33. M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. 202(1), 5 (2012)

    ADS  Google Scholar 

  34. E. Galanti, Y. Kaspi, An adjoint based method for the inversion of the Juno and Cassini gravity measurements into wind fields. Astrophys. J. 820, 91 (2016)

    ADS  Google Scholar 

  35. E. Galanti, Y. Kaspi, Prediction for the flow-induced gravity field of Saturn: implications for Cassini’s Grande Finale. Astrophys. J. Lett. 843, 25 (2017)

    ADS  Google Scholar 

  36. E. Galanti, Y. Kaspi, E. Tziperman, A full, self-consistent, treatment of thermal wind balance on fluid planets. J. Fluid Mech. 810, 175–195 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  37. E. Galanti, Y. Kaspi, Y. Miguel, T. Guillot, D. Durante, P. Racioppa, L. Iess, Saturn’s deep atmospheric flows revealed by the Cassini grand finale gravity measurements. Geophys. Res. Lett. 46(2), 616–624 (2019)

    ADS  Google Scholar 

  38. E. García-Melendo, S. Pérez-Hoyos, A. Sánchez-Lavega, R. Hueso, Saturn’s zonal wind profile in 2004-2009 from Cassini ISS images and its long-term variability. Icarus 215(1), 62–74 (2011)

    ADS  Google Scholar 

  39. T. Gastine, J. Wicht, J.M. Aurnou, Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225, 156–172 (2013)

    ADS  Google Scholar 

  40. T. Guillot, Y. Miguel, B. Militzer, W.B. Hubbard, Y. Kaspi, E. Galanti, H. Cao, R. Helled, S.M. Wahl, L. Iess, W.M. Folkner, D.J. Stevenson, J.I. Lunine, D.R. Reese, A. Biekman, M. Parisi, D. Durante, J.E.P. Connerney, S.M. Levin, S.J. Bolton, A suppression of differential rotation in Jupiter’s deep interior. Nature 555, 227–230 (2018)

    ADS  Google Scholar 

  41. M. Heimpel, J. Aurnou, J. Wicht, Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193–196 (2005)

    ADS  Google Scholar 

  42. M. Heimpel, T. Gastine, J. Wicht, Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat. Geosci. 9, 19–23 (2016)

    ADS  Google Scholar 

  43. I.M. Held, V.D. Larichev, A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci. 53(7), 946–952 (1996)

    ADS  Google Scholar 

  44. R. Helled, J.D. Anderson, G. Schubert, Uranus and Neptune: shape and rotation. Icarus 210, 446–454 (2010)

    ADS  Google Scholar 

  45. R. Helled, J.D. Anderson, M. Podolak, G. Schubert, Interior models of Uranus and Neptune. Astrophys. J. 726, 15 (2011)

    ADS  Google Scholar 

  46. R. Helled, E. Galanti, Y. Kaspi, Saturn’s fast spin determined from its gravitational field and oblateness. Nature 520, 202–204 (2015)

    ADS  Google Scholar 

  47. H.P. Huang, W.A. Robinson, Two-dimentional turbulence and persistent jets in a global barotropic model. J. Atmos. Sci. 55, 611–632 (1998)

    ADS  Google Scholar 

  48. W.B. Hubbard, Gravitational field of a rotating planet with a polytropic index of unity. Sov. Astron. 18, 621–624 (1975)

    ADS  Google Scholar 

  49. W.B. Hubbard, Planetary Interiors (Van Nostrand-Reinhold, New York, 1984), p. 343

    Google Scholar 

  50. W.B. Hubbard, Note: gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1999)

    ADS  Google Scholar 

  51. W.B. Hubbard, High-precision Maclaurin-based models of rotating liquid planets. Astrophys. J. Lett. 756, 15 (2012)

    ADS  Google Scholar 

  52. W.B. Hubbard, M.S. Marley, Optimized Jupiter, Saturn, and Uranus interior models. Icarus 78, 102–118 (1989)

    ADS  Google Scholar 

  53. W.B. Hubbard, B. Militzer, A preliminary Jupiter model. Astrophys. J. 820, 80 (2016)

    ADS  Google Scholar 

  54. W.B. Hubbard, W.J. Nellis, A.C. Mitchell, N.C. Holmes, P.C. McCandless, S.S. Limaye, Interior structure of Neptune - comparison with Uranus. Science 253, 648–651 (1991)

    ADS  Google Scholar 

  55. L. Iess, W.M. Folkner, D. Durante, M. Parisi, Y. Kaspi, E. Galanti, T. Guillot, W.B. Hubbard, D.J. Stevenson, J.D. Anderson, D.R. Buccino, L.G. Casajus, A. Milani, R. Park, P. Racioppa, D. Serra, P. Tortora, M. Zannoni, H. Cao, R. Helled, J.I. Lunine, Y. Miguel, B. Militzer, S. Wahl, J.E.P. Connerney, S.M. Levin, S.J. Bolton, Measurement of Jupiter’s asymmetric gravity field. Nature 555, 220–222 (2018)

    ADS  Google Scholar 

  56. L. Iess, B. Militzer, Y. Kaspi, P. Nicholson, D. Durante, P. Racioppa, A. Anabtawi, E. Galanti, W.B. Hubbard, M.J. Mariani, P. Tortora, S. Wahl, M. Zannoni, Measurement and implications of Saturn’s gravity field and ring mass. Science 364, 1052 (2019)

    Google Scholar 

  57. R.A. Jacobson, JUP230 orbit solutions (2003). http://ssd.jpl.nasa.gov/

  58. R.A. Jacobson, The gravity field of the Uranian system and the orbits of the Uranian satellites and rings, in AAS/Division for Planetary Sciences Meeting Abstracts #39. Bull. Am. Astro. Soc., vol. 38 (2007), p. 453

    Google Scholar 

  59. R.A. Jacobson, The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astrophys. J. 137, 4322–4329 (2009)

    ADS  Google Scholar 

  60. R.A. Jacobson, P.G. Antreasian, J.J. Bordi, K.E. Criddle, R. Ionasescu, J.B. Jones, R.A. Mackenzie, M.C. Meek, D. Parcher, F.J. Pelletier, W.M. Owen Jr., D.C. Roth, I.M. Roundhill, J.R. Stauch, The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astrophys. J. 132, 2520–2526 (2006)

    ADS  Google Scholar 

  61. C.A. Jones, K.M. Kuzanyan, Compressible convection in the deep atmospheres of giant planets. Icarus 204, 227–238 (2009)

    ADS  Google Scholar 

  62. Y. Kaspi, Turbulent Convection in Rotating Anelastic Spheres: a Model for the Circulation on the Giant Planets. PhD thesis, Massachusetts Institute of Technology (2008)

  63. Y. Kaspi, Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 40, 676–680 (2013)

    ADS  Google Scholar 

  64. Y. Kaspi, G.R. Flierl, Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci. 64, 3177–3194 (2007)

    ADS  Google Scholar 

  65. Y. Kaspi, G.R. Flierl, A.P. Showman, The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202, 525–542 (2009)

    ADS  Google Scholar 

  66. Y. Kaspi, W.B. Hubbard, A.P. Showman, G.R. Flierl, Gravitational signature of Jupiter’s internal dynamics. Geophys. Res. Lett. 37, 01204 (2010)

    ADS  Google Scholar 

  67. Y. Kaspi, A.P. Showman, W.B. Hubbard, O. Aharonson, R. Helled, Atmospheric confinement of jet-streams on Uranus and Neptune. Nature 497, 344–347 (2013)

    ADS  Google Scholar 

  68. Y. Kaspi, J.E. Davighi, E. Galanti, W.B. Hubbard, The gravitational signature of internal flows in giant planets: comparing the thermal wind approach with barotropic potential-surface methods. Icarus 276, 170–181 (2016)

    ADS  Google Scholar 

  69. Y. Kaspi, E. Galanti, R. Helled, Y. Miguel, W.B. Hubbard, B. Militzer, S. Wahl, S. Levin, J. Connerney, S. Bolton, The effect of differential rotation on Jupiter’s low-degree even gravity moments. Geophys. Res. Lett. 44, 5960–5968 (2017)

    ADS  Google Scholar 

  70. Y. Kaspi, E. Galanti, W.B. Hubbard, D.J. Stevenson, S.J. Bolton, L. Iess, T. Guillot, J. Bloxham, J.E.P. Connerney, H. Cao, D. Durante, W.M. Folkner, R. Helled, A.P. Ingersoll, S.M. Levin, J.I. Lunine, Y. Miguel, B. Militzer, M. Parisi, S.M. Wahl, Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature 555, 223–226 (2018)

    ADS  Google Scholar 

  71. D. Kong, K. Zhang, G. Schubert, A fully self-consistent multi-layered model of Jupiter. Astrophys. J. 826, 127 (2016a)

    ADS  Google Scholar 

  72. D. Kong, K. Zhang, G. Schubert, Odd gravitational harmonics of Jupiter: effects of spherical versus nonspherical geometry and mathematical smoothing of the equatorially antisymmetric zonal winds across the equatorial plane. Icarus 277, 416–423 (2016b)

    ADS  Google Scholar 

  73. D. Kong, K. Zhang, G. Schubert, J.D. Anderson, Origin of Jupiter’s cloud-level zonal winds remains a puzzle even after Juno. Proc. Natl. Acad. Sci. USA 115(34), 8499–8504 (2018)

    MathSciNet  MATH  Google Scholar 

  74. L. Kulowski, H. Cao, J. Bloxham, Contributions to Jupiter’s gravity field from dynamics in the dynamo region. J. Geophys. Res., Planets 125, 2019–006165 (2020)

    Google Scholar 

  75. S. Lee, Baroclinic multiple jets on a sphere. J. Atmos. Sci. 62, 2484–2498 (2004)

    ADS  MathSciNet  Google Scholar 

  76. C. Li, A. Ingersoll, S. Bolton, S. Levin, M. Janssen, S. Atreya, J. Lunine, P. Steffes, S. Brown, T. Guillot, M. Allison, J. Arballo, A. Bellotti, V. Adumitroaie, S. Gulkis, A. Hodges, L. Li, S. Misra, G. Orton, F. Oyafuso, D. Santos-Costa, H. Waite, Z. Zhang, The water abundance in Jupiter’s equatorial zone. Nat. Astron. 4, 609–616 (2020)

    Google Scholar 

  77. Y. Lian, A.P. Showman, Deep jets on gas-giant planets. Icarus 194, 597–615 (2008)

    ADS  Google Scholar 

  78. Y. Lian, A.P. Showman, Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207, 373–393 (2010)

    ADS  Google Scholar 

  79. J. Liu, Interaction of magnetic field and flow in the outer shells of giant planets. PhD thesis, California Institute of Technology (2006)

  80. J. Liu, T. Schneider, Mechanisms of jet formation on the giant planets. J. Atmos. Sci. 67, 3652–3672 (2010)

    ADS  Google Scholar 

  81. J. Liu, P.M. Goldreich, D.J. Stevenson, Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 653–664 (2008)

    ADS  Google Scholar 

  82. J. Liu, T. Schneider, Y. Kaspi, Predictions of thermal and gravitational signals of Jupiter’s deep zonal winds. Icarus 224, 114–125 (2013)

    ADS  Google Scholar 

  83. J. Liu, T. Schneider, L.N. Fletcher, Constraining the depth of Saturn’s zonal winds by measuring thermal and gravitational signals. Icarus 239, 260–272 (2014)

    ADS  Google Scholar 

  84. C. Mankovich, M.S. Marley, J.J. Fortney, N. Movshovitz, Cassini ring seismology as a probe of Saturn’s interior. I. rigid rotation. Astrophys. J. 871, 1 (2019)

    ADS  Google Scholar 

  85. J. May, T.D. Carr, M.D. Desch, Decametric radio measurement of Jupiter’s rotation period. Icarus 40, 87–93 (1979)

    ADS  Google Scholar 

  86. Y. Miguel, T. Guillot, L. Fayon, Jupiter internal structure: the effect of different equations of state. Astron. Astrophys. 596, 114 (2016)

    ADS  Google Scholar 

  87. B. Militzer, W.B. Hubbard, Ab initio equation of state for hydrogen-helium mixtures with recalibration of the giant-planet mass-radius relation. Astrophys. J. 774, 148 (2013)

    ADS  Google Scholar 

  88. B. Militzer, S. Wahl, W.B. Hubbard, Models of Saturn’s interior constructed with accelerated concentric Maclaurin spheroid method. Astrophys. J. 879, 78 (2019)

    ADS  Google Scholar 

  89. K. Moore, R. Yadav, L. Kulowski, H. Cao, J. Bloxham, J.E.P. Connerney, S. Kotsiaros, J. Jorgensen, J. Merayo, D. Stevenson, S.J. Bolton, S.M. Levin, A complex Jovian dynamo from the hemispheric dichotomy of Jupiter’s field. Nature 561, 76–78 (2018)

    ADS  Google Scholar 

  90. K.M. Moore, H. Cao, J. Bloxham, D.J. Stevenson, J.E.P. Connerney, S.J. Bolton, Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection. Nat. Astron. 3, 730–735 (2019)

    ADS  Google Scholar 

  91. W.J. Nellis, A.C. Mitchell, P.C. McCandless, D.J. Erskine, S.T. Weir, Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures. Phys. Rev. Lett. 68(19), 2937–2940 (1992)

    ADS  Google Scholar 

  92. N. Nettelmann, A. Becker, B. Holst, R. Redmer, Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys. J. 750, 52 (2012)

    ADS  Google Scholar 

  93. N. Nettelmann, R. Helled, J.J. Fortney, R. Redmer, New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77, 143–151 (2013)

    ADS  Google Scholar 

  94. R.L. Panetta, Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50(14), 2073–2106 (1993)

    ADS  Google Scholar 

  95. J.C. Pearl, B.J. Conrath, The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. J. Geophys. Res. 96(15), 18921–18930 (1991)

    ADS  Google Scholar 

  96. J.C. Pearl, B.J. Conrath, R.A. Hanel, J.A. Pirraglia, The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager iris data. Icarus 84, 12–28 (1990)

    ADS  Google Scholar 

  97. J. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin, 1987), p. 710

    Google Scholar 

  98. P.L. Read, T.E. Dowling, G. Schubert, Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature 460, 608–610 (2009)

    ADS  Google Scholar 

  99. P.B. Rhines, Waves and turbulence on a beta plane. J. Fluid Mech. 69, 417–443 (1975)

    ADS  MATH  Google Scholar 

  100. A.C. Riddle, J.W. Warwick, Redefinition of System III longitude. Icarus 27, 457–459 (1976)

    ADS  Google Scholar 

  101. C. Salyk, A.P. Ingersoll, J. Lorre, A. Vasavada, A.D. Del Genio, Interaction between eddies and mean flow in Jupiter’s atmosphere: analysis of Cassini imaging data. Icarus 185, 430–442 (2006)

    ADS  Google Scholar 

  102. A. Sánchez-Lavega, T. del Río-Gaztelurrutia, R. Hueso, J.M. Gómez-Forrellad, J.F. Sanz-Requena, J. Legarreta, E. García-Melendo, F. Colas, J. Lecacheux, L.N. Fletcher, D. Barrado y Navascués, D. Parker, T. Akutsu, T. Barry, J. Beltran, S. Buda, B. Combs, F. Carvalho, P. Casquinha, M. Delcroix, S. Ghomizadeh, C. Go, J. Hotershall, T. Ikemura, G. Jolly, A. Kazemoto, T. Kumamori, M. Lecompte, P. Maxson, F.J. Melillo, D.P. Milika, E. Morales, D. Peach, J. Phillips, J.J. Poupeau, J. Sussenbach, G. Walker, S. Walker, T. Tranter, A. Wesley, T. Wilson, K. Yunoki (International Outer Planet Watch Team), Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475(7354), 71–74 (2011)

    ADS  Google Scholar 

  103. A. Sánchez-Lavega, L.A. Sromovsky, A.P. Showman, A.D. Del Genio, R.M. Young, R. Hueso, E. Garcia-Melenso, Y. Kaspi, G.S. Orton, N. Barrado-Izagirre, D.S. Choi, J.M. Barbara, in Zonal Jets: Phenomenology, Genesis, and Physics, 1st edn., ed. by G. Galperin P. Read (Cambridge University Press, Cambridge, 2019), pp. 72–103. Chap. 4

    Google Scholar 

  104. K.M. Sayanagi, A.P. Showman, T.E. Dowling, The emergence of multiple robust zonal jets from freely evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. J. Atmos. Sci. 65, 3947 (2008)

    ADS  Google Scholar 

  105. T. Schneider, J. Liu, Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 66, 579–601 (2009)

    ADS  Google Scholar 

  106. R.K. Scott, L.M. Polvani, Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 3158–3176 (2007)

    ADS  Google Scholar 

  107. R.K. Scott, L.M. Polvani, Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett. 35, 24202 (2008)

    ADS  Google Scholar 

  108. A.P. Showman, Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 64, 3132–3157 (2007)

    ADS  Google Scholar 

  109. A.P. Showman, P.J. Gierasch, Y. Lian, Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus 182, 513–526 (2006)

    ADS  Google Scholar 

  110. A.P. Showman, R. Achterberg, A.P. Ingersoll, Y. Kaspi, Saturn in the 21st century, in The Global Atmospheric Circulation of Saturn, ed. by K. Baines, M. Flasar (Cambridge University Press, Cambridge, 2018)

    Google Scholar 

  111. A.P. Showman, X. Tan, X. Zhang, Atmospheric circulation of brown dwarfs and Jupiter- and Saturn-like planets: zonal jets, long-term variability, and QBO-type oscillations. Astrophys. J. 883(1), 4 (2019)

    ADS  Google Scholar 

  112. A.A. Simon-Miller, B.J. Conrath, P.J. Gierasch, G.S. Orton, R.K. Achterberg, F.M. Flasar, B.M. Fisher, Jupiter’s atmospheric temperatures: from Voyager IRIS to Cassini CIRS. Icarus 180(1), 98–112 (2006)

    ADS  Google Scholar 

  113. K.S. Smith, A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci. 61, 1420–1433 (2004)

    ADS  MathSciNet  Google Scholar 

  114. B.A. Smith, L.A. Soderblom, R. Beebe, D. Bliss, R.H. Brown, S.A. Collins, J.M. Boyce, G.A. Briggs, A. Brahic, J.N. Cuzzi, D. Morrison, Voyager 2 in the Uranian system - imaging science results. Science 233, 43–64 (1986)

    ADS  Google Scholar 

  115. B.A. Smith, L.A. Soderblom, D. Banfield, C. Barnet, R.F. Beebe, A.T. Bazilevskii, K. Bollinger, J.M. Boyce, G.A. Briggs, A. Brahic, Voyager 2 at Neptune - imaging science results. Science 246, 1422–1449 (1989)

    ADS  Google Scholar 

  116. A. Spiga, S. Guerlet, E. Millour, M. Indurain, Y. Meurdesoif, S. Cabanes, T. Dubos, J. Leconte, A. Boissinot, S. Lebonnois, M. Sylvestre, T. Fouchet, Global climate modeling of Saturn’s atmosphere. Part II: Multi-annual high-resolution dynamical simulations. Icarus 335, 113377 (2020)

    Google Scholar 

  117. D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208(1–2), 1–11 (2003)

    ADS  Google Scholar 

  118. D.J. Stevenson, Jupiter’s interior as revealed by Juno. Annu. Rev. Earth Planet. Sci. 48, 465–489 (2020)

    ADS  Google Scholar 

  119. D.J. Stevenson, E.E. Salpeter, The phase diagram and transport properties for hydrogen-helium fluid planets. Astrophys. J. Suppl. 35, 221–237 (1977)

    ADS  Google Scholar 

  120. A. Studwell, L. Li, X. Jiang, K.H. Baines, P.M. Fry, T.W. Momary, U.A. Dyudina, Saturn’s global zonal winds explored by Cassini/VIMS 5-μm images. Geophys. Res. Lett. 45, 6823–6831 (2018)

    ADS  Google Scholar 

  121. Z.-P. Sun, G. Schubert, G.A. Glatzmaier, Banded surface flow maintained by convection in a model of the rapidly rotating giant planets. Science 260, 661–664 (1993)

    ADS  Google Scholar 

  122. J. Tollefson, M.H. Wong, I. de Pater, A.A. Simon, G.S. Orton, J.H. Rogers, S.K. Atreya, R.G. Cosentino, W. Januszewski, R. Morales-Juberías, P.S. Marcusi, Changes in Jupiter’s zonal wind profile preceding and during the Juno mission. Icarus 296, 163–178 (2017)

    ADS  Google Scholar 

  123. G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd edn. (Cambridge University Press, Cambridge, 2017), p. 946

    Google Scholar 

  124. G.K. Vallis, M.E. Maltrud, Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 1346–1362 (1993)

    ADS  Google Scholar 

  125. A.R. Vasavada, A.P. Showman, Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005)

    ADS  MathSciNet  Google Scholar 

  126. S. Wahl, W.B. Hubbard, B. Militzer, N.M.Y. Movshovitz, Y. Kaspi, R. Helled, D. Reese, E. Galanti, S. Levin, J. Connerney, S. Bolton, Comparing Jupiter interior structure models to Juno gravity measurements and the role of an expanded core. Geophys. Res. Lett. 44, 4649–4659 (2017)

    ADS  Google Scholar 

  127. E.S. Warneford, P.J. Dellar, Thermal shallow water models of geostrophic turbulence in Jovian atmospheres. Phys. Fluids 26(1), 016603 (2014)

    ADS  MATH  Google Scholar 

  128. J. Wicht, C.A. Jones, K. Zhang, Instability of zonal flows in rotating spherical shells: an application to Jupiter. Icarus 155, 425–435 (2002)

    ADS  Google Scholar 

  129. J. Wicht, T. Gastine, L.D.V. Duarte, Dynamo action in the steeply decaying conductivity region of Jupiter-like dynamo models. J. Geophys. Res., Planets 124(3), 837–863 (2019)

    ADS  Google Scholar 

  130. J. Wicht, W. Dietrich, P. Wulff, U.R. Christensen, Linking zonal winds and gravity: the relative importance of dynamic self gravity. Mon. Not. R. Astron. Soc. 492, 3364–3374 (2020)

    ADS  Google Scholar 

  131. G.P. Williams, Planetary circulations: Part I: Barotropic representation of the Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399–1426 (1978)

    ADS  Google Scholar 

  132. G.P. Williams, Planetary circulations. Part II: The Jovian quasi-geostrophic regime. J. Atmos. Sci. 36, 932–968 (1979)

    ADS  Google Scholar 

  133. R.M.B. Young, P.L. Read, Y. Wang, Simulating Jupiter’s weather layer. Part I: Jet spin-up in a dry atmosphere. Icarus 326, 225–252 (2019)

    ADS  Google Scholar 

  134. K. Zhang, D. Kong, G. Schubert, Thermal-gravitational wind equation for the wind-induced gravitational signature of giant gaseous planets: mathematical derivation, numerical method and illustrative solutions. Astrophys. J. 806, 270–279 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

Kaspi and Galanti acknowledge support by the Israeli Space Agency and the Helen Kimmel Center for Planetary Science at the Weizmann Institute of Science. All authors acknowledge support by the Juno project. We are extremely grateful to Kunio Sayanagi and an anonymous reviewer for their helpful comments. We acknowledge support from the Understanding the Diversity of Planetary Atmospheres workshop at the International Space Science Institute (ISSI) in November 2018 for inspiring this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yohai Kaspi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Understanding the Diversity of Planetary Atmospheres

Edited by François Forget, Oleg Korablev, Julia Venturini, Takeshi Imamura, Helmut Lammer and Michel Blanc

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 186 kB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaspi, Y., Galanti, E., Showman, A.P. et al. Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements. Space Sci Rev 216, 84 (2020). https://doi.org/10.1007/s11214-020-00705-7

Download citation

Keywords

  • Jupiter
  • Saturn
  • Juno
  • Cassini
  • Planetary atmospheres
  • Gravity science