Loss and Fractionation of Noble Gas Isotopes and Moderately Volatile Elements from Planetary Embryos and Early Venus, Earth and Mars

Abstract

Here we discuss the current state of knowledge on how atmospheric escape processes can fractionate noble gas isotopes and moderately volatile rock-forming elements that populate primordial atmospheres, magma ocean related environments, and catastrophically outgassed steam atmospheres. Variations of isotopes and volatile elements in different planetary reservoirs keep information about atmospheric escape, composition and even the source of accreting material. We summarize our knowledge on atmospheric isotope ratios and discuss the latest evidence that proto-Venus and Earth captured small H2-dominated primordial atmospheres that were lost by hydrodynamic escape during and after the disk dispersed. All relevant thermal and non-thermal atmospheric escape processes that can fractionate various isotopes and volatile elements are discussed. Erosion of early atmospheres, crust and mantle by large planetary impactors are also addressed. Further, we discuss how moderately volatile elements such as the radioactive heat producing element 40K and other rock-forming elements such as Na can also be outgassed and lost from magma oceans that originate on large planetary embryos and accreting planets. Outgassed elements escape from planetary embryos with masses that are \(\leq M_{\mathrm{Moon}}\) directly, or due to hydrodynamic drag of escaping H atoms originating from primordial- or steam atmospheres at more massive embryos. We discuss how these processes affect the final elemental composition and ratios such as K/U, Fe/Mg of early planets and their building blocks. Finally, we review modeling efforts that constrain the early evolution of Venus, Earth and Mars by reproducing their measured present day atmospheric 36Ar/38Ar, 20Ne/22Ne, noble gas isotope ratios and the role of isotopes on the loss of water and its connection to the redox state on early Mars.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. A.M. Abdrakhimov, A.T. Basilevsky, Geology of the Venera and Vega landing-site regions. Sol. Syst. Res. 36, 136–159 (2002)

    ADS  Article  Google Scholar 

  2. F. Albarède, J. Blichert-Toft, The split fate of the early Earth, Mars, Venus, and Moon. C. R. Géosci. 339, 917–927 (2007)

    Article  Google Scholar 

  3. C.J. Allegre, T. Staudacher, P. Sarda, Rare gas systematics – formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987)

    ADS  Article  Google Scholar 

  4. U.V. Amerstorfer, N.V. Erkaev, D. Langmayr, H.K. Biernat, On Kelvin Helmholtz instability due to the solar wind interaction with unmagnetized planets. Planet. Space Sci. 55, 1811–1816 (2007)

    ADS  Article  Google Scholar 

  5. U.V. Amerstorfer, H. Gröller, H.I.M. Lichtenegger, H. Lammer, F. Tian, L. Noack, M. Scherf, C. Johnstone, L. Tu, M. Güdel, Escape and evolution of Mars’s CO2 atmosphere: influence of suprathermal atoms. J. Geophys. Res., Planets 122, 1321–1337 (2017)

    ADS  Article  Google Scholar 

  6. E. Anders, N. Grevesse, Abundances of the elements - Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    ADS  Article  Google Scholar 

  7. S. Aoki, H. Nakagawa, H. Sagawa, M. Giuranna, G. Sindoni, A. Aronica, Y. Kasaba, Seasonal variation of the HDO/H2O ratio in the atmosphere of Mars at the middle of northern spring and beginning of northern summer. Icarus 260, 7–22 (2015)

    ADS  Article  Google Scholar 

  8. R. Arevalo, W.F. McDonough, M. Luong, The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Icarus 278, 361–369 (2009)

    Google Scholar 

  9. S.K. Atreya, M.G. Trainer, H.B. Franz, M.H. Wong (the SAM Team), Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys. Res. Lett. 40, 5605–5609 (2013)

    ADS  Article  Google Scholar 

  10. G. Avice, B. Marty, Perspectives on atmospheric evolution from Xe and nitrogen isotopes on Earth, Mars & Venus. Space Sci. Rev. (2020, this issue)

  11. G. Avice, D.V. Bekaert, H. Chennaoui Aoudjehane, B. Marty, Noble gases and nitrogen in Tissint reveal the composition of the Mars atmosphere. Geochem. Perspect. Lett. 6, 11–16 (2018a)

    Article  Google Scholar 

  12. G. Avice, B. Marty, R. Burgess, A. Hofmann, P. Philippot, K.J. Zahnle, D. Zakharov, Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232, 82–100 (2018b)

    ADS  Article  Google Scholar 

  13. K.H. Baines, S.K. Atreya, M.A. Bullock, D.H. Grinspoon, P. Mahaffy, C.T. Russell, G. Schubert, K. Zahnle, The atmospheres of the terrestrial planets: Clues to the origins and early evolution of Venus, Earth, and Mars, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (University of Arizona Press, Tucson, 2013), pp. 137–160, 610 pp.

    Google Scholar 

  14. A. Bar-Nun, S. Chang, Photochemical reactions of water and carbon monoxide in Earth’s primitive atmosphere. J. Geophys. Res., Oceans 88(C11), 6662–6672 (1983)

    ADS  Article  Google Scholar 

  15. A. Bar-Nun, H. Hartman, Synthesis of organic compounds from carbon monoxide and water by UV photolysis. Orig. Life 9(2), 93–101 (1978)

    ADS  Article  Google Scholar 

  16. A.T. Basilevsky, J.W. Head, G.G. Schaber, R.G. Strom, The resurfacing history of Venus, in Venus II, ed. by W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), p. 1047

    Google Scholar 

  17. S.J. Bauer, H. Lammer, Planetary Aeronomy: Atmosphere Environments in Planetary Systems (Springer, New York, 2004), p. 207

    Google Scholar 

  18. R.H. Becker, R.N. Clayton, E.M. Galimov, H. Lammer, B. Marty, R.O. Pepin, R. Wieler, Isotopic signatures of volatiles in terrestrial planets. Space Sci. Rev. 106, 377–410 (2003)

    ADS  Article  Google Scholar 

  19. M.R. Benedikt, M. Scherf, H. Lammer, E. Marcq, P. Odert, M. Leitzinger, N.V. Erkaev, Escape of rock-forming volatile elements and noble gases from planetary embryos. Icarus 347, 113772 (2020). https://doi.org/10.1016/j.icarus.2020.113772

    Article  Google Scholar 

  20. J.-L. Bertaux, A.-C. Vandaele, O. Korablev (the SPICAV/SOIR Team), A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646–649 (2007)

    ADS  Article  Google Scholar 

  21. N.Z. Boctor, C.M.O. Alexander, J. Wang, E. Hauri, The sources of water in Martian meteorites: clues from hydrogen isotopes. Geochim. Cosmochim. Acta 67, 3971–3989 (2003)

    ADS  Article  Google Scholar 

  22. J. Bollard, J.N. Connelly, M.J. Whitehouse, E.A. Pringle, L. Bonal, J.K. Jørgensen, Å. Nordlund, F. Moynier, M. Bizzarro, Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, 1–9 (2017)

    Article  Google Scholar 

  23. A.S. Bonomo, L. Zeng, M. Damasso, Z.M. Leinhardt, A.B. Justesen (the Kepler Team), A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. Nat. Astron. 3, 416–423 (2019)

    ADS  Article  Google Scholar 

  24. A. Bonsor, Z.M. Leinhardt, P.J. Carter, T. Elliott, M.J. Walter, S.T. Stewart, A collisional origin to Earth’s non-chondritic composition? Icarus 247, 291–300 (2015)

    ADS  Article  Google Scholar 

  25. A. Bouvier, M. Boyet, Primitive Solar System materials and Earth share a common initial 142Nd abundance. Nature 537, 399–402 (2016)

    ADS  Article  Google Scholar 

  26. L. Bouvier, M. Costa, J. Connelly, N. Jensen, D. Wielandt, M. Storey, A. Nemchin, M. Whitehouse, J. Snape, J. Bellucci, F. Moynier, A. Agranier, B. Gueguen, M. Schönbächler, M. Bizzarro, Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018)

    ADS  Article  Google Scholar 

  27. G. Budde, C. Burkhardt, T. Kleine, Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019). https://doi.org/10.1038/s41550-019-0779-y

    ADS  Article  Google Scholar 

  28. C. Burger, C.M. Schäfer, Applicability and limits of simple hydrodynamic scaling for collisions of water-rich bodies in different mass regimes, in Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems (2014), pp. 63–81. arXiv:1704.06075

    Google Scholar 

  29. C. Burger, T.I. Maindl, C. Schäfer, Transfer, loss and physical processing of water in hit-and run collisions of planetary embryos. Celest. Mech. Dyn. Astron. 130, 2 (2018)

    ADS  Article  Google Scholar 

  30. C. Burkhardt, N. Dauphas, U. Hans, B. Bourdon, T. Kleine, Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochim. Cosmochim. Acta 261, 145–170 (2019)

    ADS  Article  Google Scholar 

  31. A.G.W. Cameron, Origin of the atmospheres of the terrestrial planets. Icarus 56, 195–201 (1983)

    ADS  Article  Google Scholar 

  32. G. Caro, B. Bourdon, J.-L. Birck, S. Moorbath, High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006)

    ADS  Article  Google Scholar 

  33. M.H. Carr, J.W. Head Jr., Martian surface/near – surface water inventory: Sources, sinks, and changes with time. Geophys. Res. Lett. 42, 726–732 (2015)

    ADS  Article  Google Scholar 

  34. P.J. Carter, Z.M. Leinhardt, T. Elliott, M.J. Walter, S.T. Stewart, Compositional evolution during rocky protoplanet accretion. Astrophys. J. 460, 276–286 (2015)

    Google Scholar 

  35. P.J. Carter, Z.M. Leinhardt, T. Elliot, S.T. Stewart, M.J. Walter, Collisional stripping of planetary crusts. Earth Planet. Sci. Lett. 484, 276–286 (2018)

    ADS  Article  Google Scholar 

  36. P. Cartigny, B. Marty, Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013)

    Article  Google Scholar 

  37. W.S. Cassata, Meteorite constraints on Martian atmospheric loss and paleoclimate. Earth Planet. Sci. Lett. 479, 322–329 (2017)

    ADS  Article  Google Scholar 

  38. W.S. Cassata, D.L. Shuster, P.R. Renne, B.P. Weiss, Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites. Geochim. Cosmochim. Acta 74, 6900–6920 (2010)

    ADS  Article  Google Scholar 

  39. J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11, 901–996 (1963)

    ADS  Article  Google Scholar 

  40. E. Chassefière, Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101, 26039–26056 (1996a)

    ADS  Article  Google Scholar 

  41. E. Chassefière, Hydrodynamic escape of oxygen from primitive atmospheres: applications to the cases of Venus and Mars. Icarus 124, 537–552 (1996b)

    ADS  Article  Google Scholar 

  42. E. Chassefière, Note: loss of water on the young Venus: the effect of a strong primitive solar wind. Icarus 126, 229–232 (1997)

    ADS  Article  Google Scholar 

  43. A. Chau, C. Reinhardt, R. Helled, J. Stadel, Forming mercury by giant impacts. Astrophys. J. 865, 35 (2018)

    ADS  Article  Google Scholar 

  44. R.N. Clayton, Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)

    ADS  Article  Google Scholar 

  45. M.S. Clement, N.A. Kaib, J.E. Chambers, Dynamical constraints in Mercury’s collisional origin. Astrophys. J. 157, 208 (2019)

    ADS  Google Scholar 

  46. P.G. Conrad, C.A. Malespin, H.B. Franz, R.O. Pepin, M.G. Trainer, S.P. Schwenzer, S.K. Atreya, C. Freissinet, J.H. Jones, H. Manning, T. Owen, A.A. Pavlova, R.C. Wiens, M.H. Wong, P.R. Mahaffy, In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet. Sci. Lett. 454, 1–9 (2016)

    ADS  Article  Google Scholar 

  47. A. Coustenis, F.W. Taylor, Titan: exploring an Earth-like world, in Series on Atmospheric, Oceanic and Planetary Physics, vol. 4, ed. by A. Coustenis, F.W. Taylor 2nd edn. (World Scientific Publishing, Singapore, 2008), pp. 154–155

    Google Scholar 

  48. P.E. Cubillos, N.V. Erkaev, I. Juvan, L. Fossati, C.P. Johnstone, H. Lammer, M. Lendl, P. Odert, K.G. Kislyakova, An overabundance of low-density Neptune-like planets. Mon. Not. R. Astron. Soc. 466, 1868–1879 (2017a)

    ADS  Article  Google Scholar 

  49. P.E. Cubillos, L. Fossati, N.V. Erkaev, M. Malik, T. Tokano, M. Lendl, C.P. Johnstone, H. Lammer, A. Wyttenbach, Aerosol constraints on the atmosphere of the hot Saturn-mass planet WASP-49b. Astrophys. J. 849, 145–154 (2017b)

    ADS  Article  Google Scholar 

  50. I. Dandouras, M. Blanc, L. fossati, M. Gerasimov, E.W. Guenther, K.G. Kislyakova, H. Lammer, Y. Lin, B. Marty, S. Rugheimer, C. Sotin, S. Tachibana, P. Wurz, M. Yamauchi, Future missions related to isotope and element measurements. Space Sci. Rev. (2020, this issue)

  51. N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017)

    ADS  Article  Google Scholar 

  52. D. de Niem, E. Kührt, A. Morbidelli, U. Motschmann, Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment. Icarus 221, 495–507 (2012)

    ADS  Article  Google Scholar 

  53. I. de Pater, J.J. Lissauer, Planetary Sciences (Cambridge University Press, Cambridge, 2015), ISBN: 9781316165270. https://doi.org/10.1017/CBO9781316165270

    Google Scholar 

  54. G. di Achille, B.M. Hynek, Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010)

    ADS  Article  Google Scholar 

  55. T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226–235 (1999)

    ADS  Article  Google Scholar 

  56. T.M. Donahue, R. Hartle, Solar cycle variations in H+ and D+ densities in the Venus ionosphere - implications for escape. Geophys. Res. Lett. 19, 2449–2452 (1992)

    ADS  Article  Google Scholar 

  57. T.M. Donahue, J.H. Hoffman, R.R. Hodges Jr., A.J. Watson, Venus was wet: A measurement of the ratio of D/H. Science 216, 630–633 (1982)

    ADS  Article  Google Scholar 

  58. G. Dreibus, H. Wänke, Volatiles on Earth and Mars: A comparison. Icarus 71, 225–240 (1987)

    ADS  Article  Google Scholar 

  59. J.M. Eiler, N. Kitchen, T.A. Rahn, Experimental constraints on the stable-isotope systematics of CO2 ice/vapor systems and relevance to the study of Mars. Geochim. Cosmochim. Acta 64(4), 733–746 (2000)

    ADS  Article  Google Scholar 

  60. J.M. Eiler, J.W. Valley, C.M. Graham, J. Fournelle, Two populations of carbonate in ALH84001: Geochemical evidence for discrimination and genesis. Geochim. Cosmochim. Acta 66(7), 1285–1303 (2002)

    ADS  Article  Google Scholar 

  61. L.T. Elkins-Tanton, Linked magma ocean solidication and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008)

    ADS  Article  Google Scholar 

  62. L.T. Elkins-Tanton, Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012)

    ADS  Article  Google Scholar 

  63. N.V. Erkaev, H. Lammer, L.T. Elkins-Tanton, A. Stökl, P. Odert, E. Marcq, E.A. Dorfi, K.G. Kislyakova, Yu.N. Kulikov, M. Leitzinger, M. Güdel, Escape of the Martian protoatmosphere and initial water inventory. Planet. Space Sci. 98, 106–119 (2014)

    ADS  Article  Google Scholar 

  64. N.V. Erkaev, H. Lammer, P. Odert, Yu.N. Kulikov, K.G. Kislyakova, Extreme hydrodynamic atmospheric loss near the critical thermal escape regime. Mon. Not. R. Astron. Soc. 448, 1916–1921 (2015)

    ADS  Article  Google Scholar 

  65. N.V. Erkaev, H. Lammer, P. Odert, K.G. Kislyakova, C.P. Johnstone, M. Güdel, M.L. Khodachenko, EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Mon. Not. R. Astron. Soc. 460, 1300–1309 (2016)

    ADS  Article  Google Scholar 

  66. B. Fegley Jr., N.S. Jacobson, K.B. Williams, J.M.C. Plane, L. Schaefer, K. Lodders, Solubility of rock in steam atmospheres of planets. Astrophys. J. 824, 103 (2016)

    ADS  Article  Google Scholar 

  67. E.D. Feigelson, G.P. Garmire, S.H. Pravdo, Magnetic flaring in the pre-main-sequence Sun and implications for the early solar system. Astrophys. J. 572, 335–349 (2002)

    ADS  Article  Google Scholar 

  68. C.N. Foley, M. Wadhwa, L.E. Borg, P.E. Janney, R. Hines, T.L. Grove, The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005)

    ADS  Article  Google Scholar 

  69. L. Fossati, N.V. Erkaev, H. Lammer, P.E. Cubillos, P. Odert, I. Juvan, K.G. Kislyakova, M. Lendl, D. Kubyshkina, S.J. Bauer, Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, A90–A99 (2017)

    ADS  Article  Google Scholar 

  70. J.L. Fox, On the escape of oxygen and hydrogen from Mars. Geophys. Res. Lett. 20, 1847–1850 (1993a)

    Article  Google Scholar 

  71. J.L. Fox, The production and escape of nitrogen atoms on Mars. J. Geophys. Res. 98, 3297–3310 (1993b)

    ADS  Article  Google Scholar 

  72. J.L. Fox, S.W. Bougher, Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 55, 357 (1991)

    ADS  Article  Google Scholar 

  73. J.L. Fox, A. Dalgarno, Nitrogen escape from Mars. J. Geophys. Res. 88, 9027–9032 (1983)

    ADS  Article  Google Scholar 

  74. J.L. Fox, A. Hać, The 15N/14N isotope fractionation in dissociative recombination of \(\mbox{N}_{2}^{+}\). J. Geophys. Res., Planets 102, 9191–9204 (1997)

    ADS  Article  Google Scholar 

  75. J.L. Fox, A. Hać, Velocity distribution of C atoms in CO+ dissociative recombination: implications for photochemical escape of C from Mars. J. Geophys. Res. 104, 24729–24737 (1999)

    ADS  Article  Google Scholar 

  76. E. Füri, B. Marty, Nitrogen isotope variations in the Solar System. Nat. Geosci. 8, 515–522 (2015)

    ADS  Article  Google Scholar 

  77. F. Gaillard, B. Scaillet, A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014)

    ADS  Article  Google Scholar 

  78. E.M. Galimov, The Biological Fractionation of Isotopes (Academ. Press, Toronto, 1985), p. 262

    Google Scholar 

  79. E.M. Galimov, On the phenomenon of enrichment of Mars in 13C: a suggestion on the reduced initial atmosphere. Icarus 147(2), 472–476 (2000)

    ADS  Article  Google Scholar 

  80. E.M. Galimov, Isotopic criteria for identification of organic carbon on Earth and meteorites. Space Sci. Rev. 106, 249–262 (2003)

    ADS  Article  Google Scholar 

  81. S.B. Ganguli, The polar wind. Rev. Geophys. 34, 311 (1996)

    ADS  Article  Google Scholar 

  82. H. Genda, Y. Abe, Survival of a proto-atmosphere through the stage of giant impacts: The mechanical aspects. Icarus 164, 149–162 (2003)

    ADS  Article  Google Scholar 

  83. H. Genda, Y. Abe, Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005)

    ADS  Article  Google Scholar 

  84. H. Genda, I. Masahiro, Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194, 42–52 (2008)

    ADS  Article  Google Scholar 

  85. C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009)

    ADS  Article  Google Scholar 

  86. M.M. Grady, I.P. Wright, C.T. Pillinger, A nitrogen and argon stable isotope study of Allan Hills 84001: implications for the evolution of the Martian atmosphere. Meteorit. Planet. Sci. 33, 795–802 (1998)

    ADS  Article  Google Scholar 

  87. J.P. Greenwood, S. Itoh, N. Sakamoto, E.P. Vicenzi, H. Yurimoto, Hydrogen isotope evidence for loss of water from Mars through time. Geophys. Res. Lett. 35, L05203 (2008)

    ADS  Article  Google Scholar 

  88. R.E. Grimm, K.P. Harrison, D.E. Stillman, M.R. Kirchoff, On the secular retention of ground water and ice on Mars. J. Geophys. Res., Planets 122, 94–109 (2017)

    ADS  Article  Google Scholar 

  89. D.H. Grinspoon, Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993)

    ADS  Article  Google Scholar 

  90. M. Güdel, The young Sun and relevance for planet evolution. Space Sci. Rev. (2020, this issue)

  91. J.H. Guo, The effect of photoionization on the loss of water of the planet. Astrophys. J. 872, 1 (2019)

    Article  Google Scholar 

  92. N. Haghighipour, T.I. Maindl, C.M. Schaefer, O.J. Wandel, Triggering the activation of main belt comets: the effect of porosity. Astrophys. J. 855, 60 (2018). arXiv:1801.08247

    ADS  Article  Google Scholar 

  93. I. Halevy, W.W. Fischer, J.M. Eiler, Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4 C in a near-surface aqueous environment. Proc. Natl. Acad. Sci. 108(41), 16895–16899 (2011)

    ADS  Article  Google Scholar 

  94. L.J. Hallis, G.J. Taylor, K. Nagashima, G.R. Huss, Hydrogen isotope analyses of alteration phases in the nakhlite Martian meteorites. Geochim. Cosmochim. Acta 97, 105–119 (2012)

    ADS  Article  Google Scholar 

  95. C.L. Harper, S.B. Jacobsen, Noble gases and Earth’s accretion. Science 273, 1814–1818 (1996)

    ADS  Article  Google Scholar 

  96. T.M. Harrison, The Hadean crust: Evidence from \(> 4\) Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009)

    ADS  Article  Google Scholar 

  97. E. Hartle, J.M. Grebowsky, Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. 98, 7437–7445 (1993)

    ADS  Article  Google Scholar 

  98. C.D. Herd, L.E. Borg, J.H. Jones, J.J. Papike, Oxygen fugacity and geochemical variations in the martian basalts: Implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 66(11), 2025–2036 (2002)

    ADS  Article  Google Scholar 

  99. R.C. Hin, C.D. Coath, P.J. Carter, F. Nimmo, Y.J. Lai, P.A.E. Pogge von Strandmann, M. Willbold, Z.M. Leinhardt, M.J. Walter, T. Elliott, Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–515 (2017)

    ADS  Article  Google Scholar 

  100. J.H. Hoffman, R.R. Hodges Jr., T.M. Donahue, M.B. McElroy, Composition of the Venus lower atmosphere from the Pioneer Venus spectrometer. J. Geophys. Res. 85, 7882–7890 (1980)

    ADS  Article  Google Scholar 

  101. R. Hu, D.M. Kass, B.L. Ehlmann, Y.L. Yung, Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015)

    ADS  Article  Google Scholar 

  102. E.M. Hunten, The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481–1494 (1973)

    ADS  Article  Google Scholar 

  103. E.M. Hunten, R.O. Pepin, J.C.G. Walker, Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987)

    ADS  Article  Google Scholar 

  104. K.S. Hutchins, B.M. Jakosky, Evolution of Martian atmospheric argon: implications for sources of volatiles. J. Geophys. Res. 101, 14933–14950 (1996)

    ADS  Article  Google Scholar 

  105. M. Ikoma, H. Genda, Constraints on the mass of a habitable planet with water of nebular origin. Astrophys. J. 648, 696–706 (2006)

    ADS  Article  Google Scholar 

  106. M. Ikoma, L.T. Elkins-Tanton, K. Hamano, J. Suckale, Water portioning in planetary embryos and protoplanets with magma oceans. Space Sci. Rev. 214(4), 76 (2018). https://doi.org/10.1007/s11214-018-0508-3

    ADS  Article  Google Scholar 

  107. N.K. Inamdar, H.E. Schlichting, Stealing the gas: Giant impacts and the large diversity in exoplanet densities. Astrophys. J. 817, L13 (2016)

    ADS  Article  Google Scholar 

  108. V.G. Istomin, K.V. Grechnev, C.A. Kochnev, Mass spectrometry of the lower atmosphere of Venus: Krypton isotopes and other recent results of the Venera-11 and -12 data processing, in 23rd COSPAR Meeting, Budapest, Hungary (1980a)

    Google Scholar 

  109. V.G. Istomin, K.V. Grechnev, C.A. Kochnev, Mass spectrometer measurements of the lower atmosphere of Venus. Space Res. 20, 215–218 (1980b)

    Google Scholar 

  110. A. Izidoro, S.N. Raymond, Formation of terrestrial planets, in Handbook of Exoplanets, ed. by H. Deeg, J. Belmonte (Springer, Heidelberg, 2018), pp. 2365–2423

    Google Scholar 

  111. B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994)

    ADS  Article  Google Scholar 

  112. B.M. Jakosky, M. Slipski, M. Benna (the MAVEN Team), Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355, 1408–1410 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  113. B.M. Jakosky, D. Brain, M. Chaffin, S. Curry, J. Deighan (the MAVEN Team), Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018)

    ADS  Article  Google Scholar 

  114. M. Javoy, E. Kaminski, F. Guyot, D. Ansrault, C. Sanloup, M. Moreira, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille, C. Jaupart, The chemical composition of the Earth: Enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010)

    ADS  Article  Google Scholar 

  115. A.M. Jellinek, M.G. Jackson, Connections between the bulk composition, geodynamics and habitability of Earth. Nat. Geosci. 8, 587–593 (2015)

    ADS  Article  Google Scholar 

  116. S. Jin, C. Mordasini, Compositional imprints in density-distance-time: A rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. Astrophys. J. 853, 163–186 (2018)

    ADS  Article  Google Scholar 

  117. A. Johansen, M. Lambrechts, Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017)

    ADS  Article  Google Scholar 

  118. R.E. Johnson, Energetic Charged Particle Interactions with Atmospheres and Surfaces (Springer, Berlin, 1990)

    Google Scholar 

  119. N.M. Johnson, Venus atmospheric composition in situ data: a compilation. Earth Space Sci. 6, 1299–1318 (2019)

    ADS  Article  Google Scholar 

  120. C.P. Johnstone, M. Güdel, A. Stökl, H. Lammer, L. Tu, K.G. Kislyakova, T. Lüftinger, P. Odert, N.V. Erkaev, A.E. Dorfi, The evolution of stellar rotation and the hydrogen atmospheres of habitable-one terrestrial planets. Astrophys. J. 815, L12 (2015)

    ADS  Article  Google Scholar 

  121. C.P. Johnstone, M. Güdel, H. Lammer, K.G. Kislyakova, Upper atmospheres of terrestrial planets: Carbon dioxide cooling and the Earth’s thermospheric evolution. Astron. Astrophys. 617, A107 (2018)

    ADS  Article  Google Scholar 

  122. C.P. Johnstone, M.L. Khodachenko, T. Lüftinger, K.G. Kislyakova, H. Lammer, M. Güdel, Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars. Astron. Astrophys. 624, L10 (2019)

    ADS  Article  Google Scholar 

  123. J.F. Kasting, J.B. Pollack, Loss of water from Venus. I - hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983)

    ADS  Article  Google Scholar 

  124. E.S. Kite, Geologic constraints on early Mars climate. Space Sci. Rev. 215, 10 (2019)

    ADS  Article  Google Scholar 

  125. T.T. Koskinen, M.J. Harris, R.V. Yelle, P. Lavvas, The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical dynamical model of the thermosphere. Icarus 226, 1678–1694 (2013)

    ADS  Article  Google Scholar 

  126. V.A. Krasnopolsky, Variations of the HDO/H2O ratio in the martian atmosphere and loss of water from Mars. Icarus 257, 377–386 (2015)

    ADS  Article  Google Scholar 

  127. V.A. Krasnopolsky, P.D. Feldman, Detection of molecular hydrogen in the atmosphere of Mars. Science 294, 1914–1917 (2001)

    ADS  Article  Google Scholar 

  128. M.A. Kreslavsky, M.A. Ivanov, J.W. Head, The resurfacing history of Venus: Constraints from buffered crater densities. Icarus 250, 438–450 (2015)

    ADS  Article  Google Scholar 

  129. T.S. Kruijer, C. Burkhardt, G. Budde, T. Kleine, Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. 114, 6712–6716 (2017)

    ADS  Google Scholar 

  130. T.S. Kruijer, L.E. Borg, J. Wimpenny, S. Sio, K. Corliss, Onset of magma ocean solidification on Mars inferred from Mn-Cr chronometry. Earth Planet. Sci. Lett. 542, 116315 (2020)

    Article  Google Scholar 

  131. D. Kubyshkina, L. Fossati, N.V. Erkaev, P.E. Cubillos, C.P. Johnstone, K.G. Kislyakova, H. Lammer, M. Lendl, P. Odert, Overcoming the limitations of the energy-limited approximation for planet atmospheric escape. Astrophys. J. Lett. 866, L18 (2018a)

    ADS  Article  Google Scholar 

  132. D. Kubyshkina, L. Fossati, N.V. Erkaev, C.P. Johnstone, P.E. Cubillos, K.G. Kislyakova, H. Lammer, M. Lendl, P. Odert, Grid of upper atmosphere models for 1-40M planets: application to CoRoT-7 b and HD 219134 b,c. Astron. Astrophys. 619, A151, 21 pp. (2018b)

    ADS  Article  Google Scholar 

  133. D. Kubyshkina, M. Lendl, L. Fossati, P. Cubillos, H. Lammer, N.V. Erkaev, C.P. Johnstone, Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet k2-33b. Astron. Astrophys. 612, A25, 10 pp. (2018c)

    ADS  Article  Google Scholar 

  134. Y.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Penz, D. Breuer, T. Spohn, R. Lundin, H.K. Biernat, A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus, and Mars. Space Sci. Rev. 129(1–3), 207–243 (2007)

    ADS  Article  Google Scholar 

  135. T. Kurahashi-Nakamura, E. Tajika, Atmospheric collapse and transport of carbon dioxide into the subsurface on early Mars. Geophys. Res. Lett. 33, L18205 (2006)

    ADS  Article  Google Scholar 

  136. H. Kurokawa, M. Sato, M. Ushioda, T. Matsuyama, R. Moriwaki, J.M. Dohm, T. Usui, Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in martian meteorites. Earth Planet. Sci. Lett. 394, 179–185 (2014)

    ADS  Article  Google Scholar 

  137. H. Kurokawa, T. Usui, M. Sato, Interactive evolution of multiple water-ice reservoirs on Mars: insights from hydrogen isotope compositions. Geochem. J. 50, 67–79 (2016)

    ADS  Article  Google Scholar 

  138. H. Kurokawa, K. Kurisawa, T. Usil, A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 299, 443–459 (2018)

    ADS  Article  Google Scholar 

  139. H. Lammer, C. Kolb, T. Penz, U.V. Amerstorfer, H.K. Biernat, B. Bodiselitsch, Estimation of the past and present Martian water-ice reservoirs by isotopic constraints on exchange between the atmosphere and the surface. Int. J. Astrobiol. 2, 195–202 (2003a)

    ADS  Article  Google Scholar 

  140. H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, S.J. Bauer, Loss of water from Mars: Implications for the oxidation of the soil. Icarus 165, 9–25 (2003b)

    ADS  Article  Google Scholar 

  141. H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmström, S. Barabash, T.L. Zhang, W. Baumjohann, Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006)

    ADS  Article  Google Scholar 

  142. H. Lammer, E. Chassefière, Ö. Karatekin, A. Morschhauser, P.B. Niles, O. Mousis, P. Odert, U.V. Möstl, D. Breuer, V. Dehant, M. Grott, H. Gröller, E. Hauber, L.B. Pham, Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013)

    ADS  Article  Google Scholar 

  143. H. Lammer, A. Stökl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Güdel, K.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439, 3225–3238 (2014)

    ADS  Article  Google Scholar 

  144. H. Lammer, N.V. Erkaev, L. Fossati, I. Juvan, P. Odert, P.E. Cubillos, E. Guenther, K.G. Kislyakova, C.P. Johnstone, T. Lüftinger, M. Güdel, Identifying the ‘true’ radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Mon. Not. R. Astron. Soc. 461, L62–L66 (2016)

    ADS  Article  Google Scholar 

  145. H. Lammer, A.L. Zerkle, S. Gebauer, N. Tosi, L. Noack, M. Scherf, E. Pilat-Lohinger, M. Güdel, J.L. Grenfell, M. Godolt, A. Nikolaou, Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron. Astrophys. Rev. 26(2), 72 (2018)

    Google Scholar 

  146. H. Lammer, M. Leitzinger, M. Scherf, P. Odert, C. Burger, D. Kubyshkina, C.P. Johnstone, T. Maindl, C.M. Schäfer, M. Güdel, N. Tosi, A. Nikolaou, E. Marcq, N.V. Erkaev, L. Noak, K.G. Kisylakova, L. Fossati, E. Pilat-Lohinger, F. Ragossnig, E.A. Dorfi, Constraining the early evolution of Venus and Earth through atmospheric Ar, Ne isotope and bulk K/U ratios. Icarus 339, 1–25 (2020b)

    Article  Google Scholar 

  147. H. Lammer, R. Brasser, A. Johansen, M. Scherf, M. Leitzinger, Formation of Venus, Earth and Mars: Constrained by isotopes. Space Sci. Rev. (2020a, this issue)

  148. T.J. Lapen, M. Righter, A.D. Brandon, V. Debaille, B.L. Beard, J.T. Shafer, A.H. Peslier, A younger age for ALH 84001 and its geochemical link to Shergottite sources in Mars. Science 328, 347–351 (2010)

    ADS  Article  Google Scholar 

  149. F. Leblanc, E. Chassefière, C. Gillmann, D. Breuer, Mars’ atmospheric 40Ar: a tracer for past crustal erosion. Icarus 218, 561–570 (2012)

    ADS  Article  Google Scholar 

  150. T. Lebrun, H. Massol, E. Chassefière, A. Davaille, E. Marcq, P. Sarda, F. Leblanc, G. Brandeis, Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res., Planets 118, 1155–1176 (2013)

    ADS  Article  Google Scholar 

  151. C. Lécuyer, P. Gillet, F. Robert, The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol. 145, 249–261 (1998)

    ADS  Article  Google Scholar 

  152. J.-Y. Lee, M. Kurt, J.P. Severenghaus, K. Kawamura, H.-S. Yoo, J.B. Lee, J.S. Kim, A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507–4512 (2006)

    ADS  Article  Google Scholar 

  153. T. Lichtenberg, G.J. Golabek, T.V. Gerya, M.R. Meyer, The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350–365 (2016)

    ADS  Article  Google Scholar 

  154. T. Lichtenberg, G.J. Golabek, C.P. Dullemond, M. Schönbächler, T.V. Gerya, M.R. Meyer, Impact splash chondrule formation during planetesimal recycling. Icarus 302, 27–43 (2017)

    ADS  Article  Google Scholar 

  155. Ø. Lie-Svendsen, M.H. Rees, Helium escape from the terrestrial atmosphere: The ion outflow mechanism. J. Geophys. Res. 101, 2435–2443 (1996)

    ADS  Article  Google Scholar 

  156. R.J. Lillis, S. Robbins, M. Manga, J.S. Halekas, H.V. Frey, Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res., Planets 118(7), 1488–1511 (2013)

    ADS  Article  Google Scholar 

  157. S.-F. Liu, Y. Hori, D.N.C. Lin, E. Asphaug, Giant impact: An efficient mechanism for the devolatilization of super-Earths. Astrophys. J. 812, 164, 9 pp. (2015)

    ADS  Article  Google Scholar 

  158. K. Lodders, An oxygen isotope mixing model for the accretion and composition of rocky planets. Space Sci. Rev. 92, 341–354 (2000)

    ADS  Article  Google Scholar 

  159. K. Lodders, H. Palme, H.-P. Gail, Abundances of the Elements in the Solar System. Solar System, Landolt-Börnstein - Group VI. Astron. Astrophys., vol. 4B (Springer, Berlin, 2009), p. 712

    Google Scholar 

  160. J. Longhi, Phase equilibrium in the system CO2-H2O: application to Mars. J. Geophys. Res. 111, E06011 (2006)

    ADS  Article  Google Scholar 

  161. R. Lundin, Ion acceleration and outflow from Mars and Venus: An overview. Space Sci. Rev. 162, 309–334 (2011)

    ADS  Article  Google Scholar 

  162. J.I. Lunine, Y.L. Yung, R.D. Lorenz, On the volatile inventory of Titan from isotopic abundances in nitrogen and methane. Planet. Space Sci. 47, 1291–1303 (1999)

    ADS  Article  Google Scholar 

  163. J.I. Lunine, J. Chambers, A. Morbidelli, L.A. Leshin, The origin of water on Mars. Icarus 165, 1–8 (2003)

    ADS  Article  Google Scholar 

  164. P.R. Mahaffy, R.C. Webster, M. Cabane (the SAM Team), The Sample Analysis at Mars investigation and instrument suite. Space Sci. Rev. 70, 401–478 (2012)

    ADS  Article  Google Scholar 

  165. P.R. Mahaffy, M. Cabane, C.R. Webster (the SAM Team), Sample Analysis at Mars (SAM) investigation: Overview of results from the first 120 sols on Mars (abstract), in Lunar Planet. Sci. Conf. 44th, Abstract #1395 (Lunar and Planetary Institute, Houston, 2013a)

    Google Scholar 

  166. P.R. Mahaffy, C.R. Webster, S.K. Atreya, H. Franz, M. Wong (the MSL Science Team), Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341, 263–266 (2013b)

    ADS  Article  Google Scholar 

  167. P.R. Mahaffy, C.R. Webster, J.C. Stern, A.E. Brunner, S.K. Atreya (the MSL Science Team), The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2015)

    ADS  Article  Google Scholar 

  168. T.I. Maindl, R. Dvorak, H. Lammer, M. Güdel, C. Schäfer, R. Speith, P. Odert, N.V. Erkaev, K.G. Kislyakova, E. Pilat-Lohinger, Impact induced surface heating by planetesimals on early Mars. Astron. Astrophys. 574, A22 (2015)

    ADS  Article  Google Scholar 

  169. K. Mandt, J.H. Waite, W. Lewis, B. Magee, J. Bell, J. Lunine, O. Mousis, D. Cordier, Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data. Planet. Space Sci. 57, 1917–1930 (2009)

    ADS  Article  Google Scholar 

  170. K. Mandt, O. Mousis, J. Lunine, D. Gautier, Protosolar ammonia as the unique source of Titan’s nitrogen. Astrophys. J. Lett. 788, L24 (2014)

    ADS  Article  Google Scholar 

  171. K. Mandt, O. Mousis, E. Chassefière, Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data. Icarus 254, 259–261 (2015)

    ADS  Article  Google Scholar 

  172. C.V. Manning, C.P. McKay, K.J. Zahnle, The nitrogen cycle on Mars: impact decomposition of near-surface nitrates as a source for a nitrogen steady state. Icarus 197, 60–64 (2008)

    ADS  Article  Google Scholar 

  173. E. Marcq, A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J. Geophys. Res., Planets 117, 1–9 (2012)

    Article  Google Scholar 

  174. E. Marcq, A. Salvador, H. Massol, A. Davaille, Thermal radiation of magma ocean planets using a 1-D radiative-convective model of H2O-CO2 atmospheres. J. Geophys. Res., Planets 122, 1539–1553 (2017)

    ADS  Article  Google Scholar 

  175. A. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012)

    ADS  Article  Google Scholar 

  176. B. Marty, P. Allé, Neon and Argon isotopic constraints on Earth-atmosphere evolution, in Noble Gas Geochem. Cosmochem., ed. by J. Matsuda (Terra Sci. Pub., Tokyo, 1994), pp. 191–204

    Google Scholar 

  177. H. Massol, K. Hamano, F. Tian, M. Ikoma, Y. Abe, E. Chassefíere, A. Davaille, H. Genda, M. Güdel, Y. Hori, F. Leblanc, E. Marcq, P. Sarda, V.I. Shematovich, A. Stökl, H. Lammer, Formation and evolution of protoatmospheres. Space Sci. Rev. 205, 153–211 (2016)

    ADS  Article  Google Scholar 

  178. K.J. Mathew, K. Marti, Early evolution of Martian volatiles: nitrogen and noble gas components in ALH84001 and Chassigny. J. Geophys. Res. 106, 1401–1422 (2001)

    ADS  Article  Google Scholar 

  179. M.B. McElroy, Y.L. Yung, Isotopic composition of nitrogen: implications for the past history of Mars’ atmosphere. Science 194, 70–72 (1976)

    ADS  Article  Google Scholar 

  180. H.Y. McSween, G.J. Taylor, M.B. Wyatt, Elemental composition of the Martian crust. Science 324(5928), 736–739 (2009)

    ADS  Article  Google Scholar 

  181. P.J. Michael, The concentration, behavior and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochim. Cosmochim. Acta 52, 555–566 (1988)

    ADS  Article  Google Scholar 

  182. K.E. Miller, C.R. Glein, J.H. Waite Jr., Contributions form accreted organics to Titan’s atmosphere: New insights from cometary and chondritic data. Astrophys. J. 871(59), 1–13 (2019)

    ADS  Google Scholar 

  183. H. Mizuno, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet. Sci. Lett. 50, 202–210 (1980)

    ADS  Article  Google Scholar 

  184. T. Montmerle, J.-C. Augereau, M. Chaussidon, M. Gounelle, B. Marty, A. Morbidelli, Solar System formation and early evolution: the first 100 million years. Earth Moon Planets 98, 39–95 (2006)

    ADS  Article  Google Scholar 

  185. M. Moreira, S. Charnoz, The origin of the neon isotopes in chondrites and on Earth. Earth Planet. Sci. Lett. 433, 249–256 (2016)

    ADS  Article  Google Scholar 

  186. S. Mukhopadhyay, Early differentiation and volatile accretion recorded in neon and xenon. Nature 486, 101–106 (2012)

    ADS  Article  Google Scholar 

  187. F. Mullally, J.L. Coughlin, S.E. Thompson, J. Rowe, C. Burke (the Kepler team), Planetary candidates observed by Kepler. VI. Planet sample from Q1-Q16 (47 months). Astrophys. J. Suppl. Ser. 217, 31–47 (2015)

    ADS  Article  Google Scholar 

  188. V.R. Murthy, W. van Westrenen, Y. Fei, Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423, 163–165 (2003)

    ADS  Article  Google Scholar 

  189. S.V.S. Murty, R.K. Mohapatra, Nitrogen and heavy noble gases in ALH 84001: signatures of ancient Martian atmosphere. Geochim. Cosmochim. Acta 61, 5417–5428 (1997)

    ADS  Article  Google Scholar 

  190. A. Nikolaou, N. Katyal, N. Tosi, M. Godolt, J.L. Grenfell, H. Rauer, What factors affect the duration and outgassing of the terrestrial magma ocean? Astrophys. J. 875, 1, 24 pp. (2019)

    ADS  Article  Google Scholar 

  191. F. Nimmo, Thermal and compositional evolution of the core. Treatise Geophys. 9, 201–209 (2007)

    Google Scholar 

  192. P. Odert, H. Lammer, N.V. Erkaev, A. Nikolaou, H.I.M. Lichtenegger, C.P. Johnstone, K.G. Kislyakova, M. Leitzinger, N. Tosi, Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus 307, 327–346 (2018)

    ADS  Article  Google Scholar 

  193. H.S.C. O’Neill, H. Palme, Collisional erosion and the non-chondritic composition of the terrestrial planets. Philos. Trans. R. Soc. A 366, 4205–4238 (2008)

    ADS  Article  Google Scholar 

  194. C. O’Neill, A.M. Jellinek, H.S.C. O’Neill, On the distribution of radioactive heat producing elements within meteorites, the Earth, and planets. Space Sci. Rev. (2020, this issue)

  195. R. Orosei, S.E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini, B. Cosciotti, F. Di Paolo, E. Flamini, E. Mattei, M. Pajola, F. Soldovieri, M. Cartacci, F. Cassenti, A. Frigeri, S. Giuppi, R. Martufi, A. Masdea, G. Mitri, C. Nenna, R. Noschese, M. Restano, R. Seu, Radar evidence of subglacial liquid water on Mars. Science 361, 490–493 (2018)

    ADS  Google Scholar 

  196. J.E. Owen, Y. Wu, Atmospheres of low-mass planets: the “boil-off”. Astrophys. J. 817, 107, 14 pp. (2016)

    ADS  Article  Google Scholar 

  197. M. Ozima, F.A. Podosek, Noble Gas Geochemistry, 2nd edn. (Cambridge Univ., New York, 2002), 300 pp.

    Google Scholar 

  198. K. Pahlevan, L. Schaefer, M.M. Hirschmann, Magma ocean outgassing and hydrogen isotopic constraints on the Hadean Earth. Earth Planet. Sci. Lett. 526, 115770 (2019)

    Article  Google Scholar 

  199. H. Palme, H.St.C. O’Neill, Cosmochemical estimates of mantle composition, in Treatise on Geochemistry, vol. 2 (2003), pp. 664–676

    Google Scholar 

  200. A.M. Palumbo, J.W. Head, L. Wilson, Rainfall on Noachian Mars: nature, timing, and influence on geologic processes and climate history. Icarus 347, 664–676 (2020)

    Article  Google Scholar 

  201. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    ADS  Article  Google Scholar 

  202. R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991)

    ADS  Article  Google Scholar 

  203. R.O. Pepin, Evolution of the Martian atmosphere. Icarus 111, 289–304 (1994)

    ADS  Article  Google Scholar 

  204. R.O. Pepin, Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997)

    ADS  Article  Google Scholar 

  205. R.O. Pepin, On the isotopic composition of primordial xenon in terrestrial planet atmospheres. Space Sci. Rev. 92, 371–395 (2000)

    ADS  Article  Google Scholar 

  206. R.O. Pepin, D. Porcelli, Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002)

    Article  Google Scholar 

  207. R.O. Pepin, D. Schulter, R. Becker, D. Reisenfeld, Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012)

    ADS  Article  Google Scholar 

  208. S. Péron, M. Moreira, A. Colin, L. Arbaret, B. Putlitz, M.D. Kurz, Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449, 145–154 (2016)

    ADS  Article  Google Scholar 

  209. S. Péron, M. Moreira, B. Putlitz, M.D. Kurz, Solar wind implantation supplied light volatiles during the first stage of Earth accretion. Geochem. Perspect. Lett. 3, 151–159 (2017)

    Article  Google Scholar 

  210. M. Persson, Y. Futaana, A. Fedorov, H. Nilsson, M. Hamrin, S. Barabash, H+/O+ escape rate ratio in the Venus magnetotail and its dependence on the solar cycle. Geophys. Res. Lett. 45, 10805–10811 (2018)

    ADS  Article  Google Scholar 

  211. J.P. Pinto, G.R. Gladstone, Y.L. Yung, Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210, 183–185 (1980)

    ADS  Article  Google Scholar 

  212. W. Pluriel, E. Marcq, M. Turbet, Modeling the albedo of Earth-like magma ocean planets with H2O-CO2 atmospheres. Icarus 317, 583–590 (2019)

    ADS  Article  Google Scholar 

  213. F.A. Podosek, Noble gases, in Treatise on Geochemistry, vol. 1, ed. by A.M. Davis, H.D. Holland, K.K. Turekian (Elsevier, Amsterdam, 2003), pp. 381–405, 711 pp.

    Google Scholar 

  214. D. Porcelli, R.O. Pepin, Rare gas constraints on early Earth history, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 435–458

    Google Scholar 

  215. D. Porcelli, P. Cassen, W.D. Deep, Earth rare gases: initial inventories, capture from the solar nebula and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001)

    ADS  Article  Google Scholar 

  216. D. Porcelli, C.J. Ballentine, R. Wieler, An overview of noble gas geochemistry and cosmochemistry. Rev. Mineral. Geochem. 47(1), 1–19 (2002)

    Article  Google Scholar 

  217. E.V. Quintana, T. Barclay, W.J. Borucki, J.F. Rowe, J.E. Chambers, The frequency of giant impacts on Earth-like worlds. Astrophys. J. 821, 126 (2016)

    ADS  Article  Google Scholar 

  218. A. Raquin, M. Moreira, Atmospheric 38Ar/36Ar in the mantle: Implications for the nature of the terrestrial parent bodies. Earth Planet. Sci. Lett. 287, 551–558 (2009)

    ADS  Article  Google Scholar 

  219. S.N. Raymond, E. Kokubo, A. Morbidelli, R. Morishima, K.J. Walsh, Terrestrial planet formation at home and abroad, in Protostars and Planets VI (2014), pp. 595–618

    Google Scholar 

  220. K. Righter, N.L. Chabot, Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit. Planet. Sci. 46, 157–176 (2011)

    ADS  Article  Google Scholar 

  221. K. Righter, H. Yang, G. Costin, R.T. Downs, Oxygen fugacity in the Martian mantle controlled by carbon: New constraints from the nakhlite MIL 03346. Meteorit. Planet. Sci. 43(10), 1709–1723 (2008)

    ADS  Article  Google Scholar 

  222. A.E. Ringwood, Origin of the Earth and Moon (Springer, New York, 1979)

    Google Scholar 

  223. F. Robert, D. Gautier, B. Dubrulle, The Solar System D/H ratio: observations and theories. Space Sci. Rev. 92, 201–224 (2000)

    ADS  Article  Google Scholar 

  224. V.S. Safronov, E.V. Zvjagina, Relative sizes of the largest bodies during the accumulation of planets. Icarus 10, 109–115 (1969)

    ADS  Article  Google Scholar 

  225. H. Saito, K. Kuramoto, Formation of hybrid-type proto-atmosphere on Mars accreting in the solar nebula. Mon. Not. R. Astron. Soc. 475, 1274–1287 (2018)

    ADS  Article  Google Scholar 

  226. H. Sakuraba, H. Kurokawa, H. Genda, Impact degassing and atmospheric erosion on Venus, Earth, and Mars during the late accretion. Icarus 317, 48–58 (2019)

    ADS  Article  Google Scholar 

  227. A. Salvador, H. Massol, A. Davaille, E. Marcq, P. Sarda, E. Chassefière, The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res., Planets 122, 1458–1486 (2017)

    ADS  Article  Google Scholar 

  228. S. Sasaki, K. Nakazawa, Did a primary solar-type atmosphere exist around the proto-Earth? Icarus 85, 21–42 (1989)

    ADS  Article  Google Scholar 

  229. L. Schaefer, B. Fegley, Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186, 462–483 (2007)

    ADS  Article  Google Scholar 

  230. L. Schaefer, B. Fegley, Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208, 438–448 (2010)

    ADS  Article  Google Scholar 

  231. C.M. Schäfer, S. Riecker, T.I. Maindl, R. Speith, W. Kley, A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects. Astrophys. J. 590, A19 (2016)

    Google Scholar 

  232. C.M. Schäfer, S. Scherrer, R. Buchwald, T.I. Maindl, R. Speith, W. Kley, Numerical simulations of regolith sampling processes. Planet. Space Sci. 141, 35–44 (2017)

    ADS  Article  Google Scholar 

  233. M. Scherf, H. Lammer, N.V. Erkaev, K.E. Mandt, S. Thaller, B. Marty, Nitrogen atmospheres of the icy bodies in the solar system. Space Sci. Rev. (2020, this issue)

  234. M. Schiller, M. Bizzarro, V.A. Fernandes, Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507–510 (2018)

    ADS  Article  Google Scholar 

  235. H.E. Schlichting, S. Mukhopadhyay, Atmosphere impact losses. Space Sci. Rev. 214(34), 1–31 (2018)

    Google Scholar 

  236. H.E. Schlichting, R. Sari, A. Yalinewich, Atmospheric mass loss during planet formation: The importance of planetesimal impacts. Icarus 247, 81–94 (2015)

    ADS  Article  Google Scholar 

  237. J.A. Schmidt, M.S. Johnson, R. Schinke, Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects. Proc. Natl. Acad. Sci. USA 110(44), 17691–17696 (2013)

    ADS  Article  Google Scholar 

  238. M. Sekiya, K. Nakazawa, C. Hayashi, Dissipation of the rare gases contained in the primordial Earth’s atmosphere. Earth Planet. Sci. Lett. 50, 197–201 (1980a)

    ADS  Article  Google Scholar 

  239. M. Sekiya, K. Nakazawa, C. Hayashi, Dissipation of the primordial terrestrial atmosphere due to irradiation of the solar EUV. Prog. Theor. Phys. 64, 1968–1985 (1980b)

    ADS  Article  Google Scholar 

  240. V.I. Shematovich, D.E. Ionov, H. Lammer, Heating efficiency in hydrogen-dominated upper atmospheres. Astron. Astrophys. 571, A94 (2014)

    ADS  Article  Google Scholar 

  241. S.F. Sholes, M.L. Smith, M.W. Claire, K.J. Zahnle, D.C. Catling, Anoxic atmospheres on Mars driven by volcanism: Implications for past environments and life. Icarus 290, 46–62 (2017)

    ADS  Article  Google Scholar 

  242. V. Shuvalov, Atmospheric erosion induced by oblique impacts. Meteorit. Planet. Sci. 44, 1095–1105 (2009)

    ADS  Article  Google Scholar 

  243. M. Slipski, B.M. Jakosky, M. Benna, M. Elrod, P. Mahaffy, D. Kass, S. Stone, R. Yelle, Variability of Martian turbopause altitudes. J. Geophys. Res. 123, 2939–2957 (2018)

    Article  Google Scholar 

  244. P.A. Sossi, B. Fegley Jr., Thermodynamics of element volatility and its application to planetaryprocesses. Rev. Mineral. Geochem. 84, 393–459 (2018)

    Article  Google Scholar 

  245. P.A. Sossi, S. Klemme, H.St.C. O’Neill, J. Berndt, F. Moynier, Evaporation of moderately volatile elements from silicate melts: experiments and theory. Geochim. Cosmochim. Acta 260, 204–231 (2019)

    ADS  Article  Google Scholar 

  246. A. Stökl, E.A. Dorfi, C.P. Johnstone, H. Lammer, Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron. Astrophys. 576, 87–97 (2015)

    Article  Google Scholar 

  247. A. Stökl, E.A. Dorfi, C.P. Johnstone, H. Lammer, Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 M in the habitable zone. Astrophys. J. 825, 86 (2016)

    ADS  Article  Google Scholar 

  248. D.F. Strobel, D.E. Shemansky, EUV emission from Titan’s upper atmosphere: Voyager 1 encounter. J. Geophys. Res. 87, 1361–1368 (1982)

    ADS  Article  Google Scholar 

  249. R.G. Strom, G.G. Schaber, D.D. Dawson, The global resurfacing of Venus. J. Geophys. Res. 99(E5), 10899–10926 (1994)

    ADS  Article  Google Scholar 

  250. I.A. Surkov, F.F. Kirnozov, V.N. Glazov, A.G. Dunchenko, L.P. Tatsii, Content of natural radioactive elements in Venusian soils from Venera 9 and 10 data. Kosm. Issled. 14, 704–709 (1976)

    ADS  Google Scholar 

  251. T.D. Swindle, Martian noble gases. Rev. Mineral. Geochem. 47, 171–187 (2002)

    Article  Google Scholar 

  252. S.R. Taylor, Chondritic Earth model. Nature 202, 281–282 (1964)

    ADS  Article  Google Scholar 

  253. N. Terada, S. Machida, H. Shinagawa, Global hybrid simulation of the Kelvin-Helmholtz instability at the Venus ionopause. J. Geophys. Res. Space Phys. 107, 1471 (2002)

    ADS  Article  Google Scholar 

  254. H. Terasaki, D.C. Rubie, U. Mann, D.J. Frost, F. Langenhorst, The effects of oxygen, sulfur, and silicon on the dihedral angles between Fe-rich liquid metal and olivine, ringwoodite, and silicate perovskite: implications for planetary core formation, in Proc. Lunar Planet. Sci. Conf., 36th, League City, Tex., March 14–18, Abst. 1129 (Lunar Planet. Inst., Houston, 2005)

    Google Scholar 

  255. F. Tian, O.B. Toon, A.A. Pavlov, H. de Sterck, A hydrogen-rich early Earth atmosphere. Science 13, 308(5724), 1014–1017 (2005)

    Article  Google Scholar 

  256. F. Tian, J.F. Kasting, C.S. Solomon, Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, L02205 (2009)

    ADS  Article  Google Scholar 

  257. W.B. Tonks, H.J. Melosh, Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993)

    ADS  Article  Google Scholar 

  258. M. Trieloff, J. Kunz, D.A. Clague, D. Harrison, C.J. Allègre, The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000)

    ADS  Article  Google Scholar 

  259. L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in Time: High-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015)

    ADS  Article  Google Scholar 

  260. D.L. Turcotte, G. Schubert, Geodynamics (Cambridge University Press, Cambridge, 2002), p. 456

    Google Scholar 

  261. T. Usui, C.M.O.’D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Origin of water and mantle–crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth Planet. Sci. Lett. 357, 119–129 (2012)

    ADS  Article  Google Scholar 

  262. T. Usui, C.M.O.’D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet. Sci. Lett. 410, 140–151 (2015)

    ADS  Article  Google Scholar 

  263. T. Usui, H. Kurokawa, J. Wang, C.M.O.’D. Alexander, J.I. Simon, J.H. Jones, Hydrogen isotopic constraints on the evolution of surface and subsurface water on Mars, in Lunar Planet. Science XLVIII (2017), p. 1278

    Google Scholar 

  264. G.L. Villanueva, M.J. Mumma, R.E. Novak, H.U. Käufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, M.D. Smith, Strong water isotopic anomalies in the Martian atmosphere: Probing current and ancient reservoirs. Science 348, 218–221 (2015)

    ADS  Article  Google Scholar 

  265. A.N. Volkov, R.E. Johnson, O.J. Tucker, J.T. Erwin, Thermally driven atmospheric escape: transition from hydrodynamic to jeans escape. Astrophys. J. 729, L24 (2011)

    ADS  Article  Google Scholar 

  266. U. von Zahn, S. Komer, H. Wieman, R. Prinn, Composition of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 297–430

    Google Scholar 

  267. J. Wade, B.J. Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    ADS  Article  Google Scholar 

  268. M. Wadhwa, Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291, 1527–1530 (2001)

    ADS  Article  Google Scholar 

  269. H. Wakita, R.A. Schmitt, Lunar anorthosites: rare-Earth and other elemental abundances. Science 170, 969–974 (1970)

    ADS  Article  Google Scholar 

  270. J.C.G. Walker, Carbon dioxide on the early Earth. Orig. Life 16, 117–127 (1985)

    ADS  Article  Google Scholar 

  271. M.K. Wallis, C, N, O isotope fractionation on Mars: implications for crustal H2O and SNC meteorites. Earth Planet. Sci. Lett. 93, 321–324 (1989)

    ADS  Article  Google Scholar 

  272. H. Wang, B.P. Weiss, X.N. Bai, B.G. Downey, J. Wang, C. Suavet, R.R. Fu, M.E. Zucolotto, Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017)

    ADS  Article  Google Scholar 

  273. H. Wänke, G. Dreibus, Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. A 325, 545–557 (1988)

    ADS  Google Scholar 

  274. A.B. Watson, J.B. Thomas, D.J. Cherniak, 40Ar retention in the terrestrial planets. Nature 449, 299–304 (2007)

    ADS  Article  Google Scholar 

  275. B.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones (the MSL Science Team), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341, 260–263 (2013a)

    ADS  Article  Google Scholar 

  276. C.R. Webster, P.R. Mahaffy, L.A. Leshin (the SAM Team), Mars atmospheric escape recorded by H, C and O isotope ratios in carbon dioxide and water measured by the SAM Tunable Laser Spectrometer on the Curiosity Rover (abstract), in Lunar Planet. Sci. Conf. 44th, Abstract #1365 (Lunar and Planetary Institute, Houston, 2013b)

    Google Scholar 

  277. F.W. Wetherill, Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys. 18, 77–113 (1980)

    ADS  Article  Google Scholar 

  278. D.C.D. Williams, S. Mukhopadhyay, Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019)

    ADS  Article  Google Scholar 

  279. M.H. Wong, S.K. Atreya, P.N. Mahaffy, H.B. Franz, C. Malespin, M.G. Trainer, J.C. Stern, P.G. Conrad, H.L.K. Manning, R.O. Pepin, R.H. Becker, C.P. McKay, T.C. Owen, R. Navarro-González, J.H. Jones, B.M. Jakosky, A. Steele, Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity’s mass spectrometer. Geophys. Res. Lett. 40, 6033–6037 (2013)

    ADS  Article  Google Scholar 

  280. J.J. Wray, S.L. Murchie, J.L. Bishop, B.L. Ehlmann, R.E. Milliken, M.B. Wilhelm, K.D. Seelos, M. Chojnacki, Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res., Planets 121, 652–677 (2016)

    ADS  Article  Google Scholar 

  281. I.P. Wright, M.M. Grady, C.T. Pillinger, Chassigny and the Nakhlites: carbon-bearing components and their relationship to Martian environmental conditions. Geochim. Cosmochim. Acta 56, 817–826 (1992)

    ADS  Article  Google Scholar 

  282. R. Yokochi, B. Marty, A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004)

    ADS  Article  Google Scholar 

  283. E.D. Young, A. Shahar, F. Nimmo, H.E. Schlichting, E.A. Schauble, H. Tang, J. Labidi, Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019)

    ADS  Article  Google Scholar 

  284. Y.L. Yung, W.B. DeMore, Photochemistry of Planetary Atmospheres (Oxford University Press, London, 1998)

    Google Scholar 

  285. H. Yurimoto, K. Kuramoto, A.N. Krot, E.R.D. Scott, J.N. Cuzzi, M.H. Thiemans, J.R. Lyons, Origin and evolution of oxygen isotopic compositions of the solar system, in Protostars and Planets, ed. by V.B. Reipurth et al. (Univ. of Arizona, Tucson, 2006), pp. 849–862

    Google Scholar 

  286. K.J. Zahnle, D.C. Catling, The cosmic shoreline: The evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri B. Astrophys. J. 843, 122, 23 pp. (2017)

    ADS  Article  Google Scholar 

  287. K.J. Zahnle, J.F. Kasting, Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986)

    ADS  Article  Google Scholar 

  288. K.J. Zahnle, J.B. Pollack, J.F. Kasting, Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84, 502–527 (1990)

    ADS  Article  Google Scholar 

  289. K.J. Zahnle, R.M. Haberle, D.C. Catling, J.F. Kasting, Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res. 113, E11004 (2008)

    ADS  Article  Google Scholar 

  290. K.J. Zahnle, M. Gacesa, D.C. Catling, Strange messenger: A new history of hydrogen on Earth, as told by Xenon. Geochim. Cosmochim. Acta 244, 56–85 (2019)

    ADS  Article  Google Scholar 

  291. L. Zeng, D.D. Sasselov, S.B. Jacobsen, Mass-radius relation for rocky planets based on PREM. Astrophys. J. 819, 127–132 (2016)

    ADS  Article  Google Scholar 

  292. M.Y. Zolotov, Martian volcanic gases: are they terrestrial-like? in Lunar and Planetary Science Conference, vol. 34 (2003), abs. 1795

    Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung, Nationales Forschungs Netzwerk (FWF NFN) project S116-N16 and the subprojects S11603-N16, S11604-N16, S11606-N16, S11607-N16 and S11608-N16. H. Lammer, M. Leitzinger and P. Odert acknowledge support of the FWF projects P27256-N27 and P30949-N36. M. Benedikt and H. Lammer acknowledge support from the Austrian Forschungsförderungsgesellschaft (FFG) project RASEN. L. Fossati acknowledge also the FFG project “TAPAS4CHEOPS” P853993. H. Kurokawa acknowledges support from JSPS KAKENHI Grant 17H01175, 17H06457, 18K13602, 19H01960, and 19H05072. Finally, we thank an anonymous referee for very valuable and important suggestions that helped to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Helmut Lammer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reading Terrestrial Planet Evolution in Isotopes and Element Measurements

Edited by Helmut Lammer, Bernard Marty, Aubrey L. Zerkle, Michel Blanc, Hugh O’Neill and Thorsten Kleine

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lammer, H., Scherf, M., Kurokawa, H. et al. Loss and Fractionation of Noble Gas Isotopes and Moderately Volatile Elements from Planetary Embryos and Early Venus, Earth and Mars. Space Sci Rev 216, 74 (2020). https://doi.org/10.1007/s11214-020-00701-x

Download citation

Keywords

  • Protoplanetary disk
  • Primordial atmospheres
  • Steam atmospheres
  • Atmospheric escape
  • Noble gases
  • Isotopes
  • Magma oceans
  • Rock-forming elements
  • Planetary evolution