From Diffuse Gas to Dense Molecular Cloud Cores

Abstract

Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and their substructure from scales \(\sim1~\mbox{kpc}\) down to the filament and core scale. We first review the mechanisms of cloud formation from the warm diffuse interstellar medium down to the cold and dense molecular clouds, the process of molecule formation and the role of the thermal and gravitational instabilities. We also discuss the main physical mechanisms through which clouds gather their mass, and note that all of them may have a role at various stages of the process. In order to understand the dynamics of clouds we then give a critical review of the widely used virial theorem, and its relation to the measurable properties of molecular clouds. Since these properties are the tools we have for understanding the dynamical state of clouds, we critically analyse them. We finally discuss the ubiquitous filamentary structure of molecular clouds and its connection to prestellar cores and star formation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    It should be noticed that the Eulerian virial theorem involves two additional terms, related to the distribution of mass inside the fixed volume, and the flux of momentum between the volume and its environment (see Parker 1979; McKee and Zweibel 1992).

  2. 2.

    It should be noticed that this result assumes that each line of sight is independent. This may not be the case in the case of strong magnetic fields, large scale gravitating structures, or a large correlation length of the turbulence.

  3. 3.

    We call the Larson ratio the square root of the so-called velocity scaling, \(C\equiv \sigma _{v}^{2}/R\), in the extragalactic literature.

  4. 4.

    We thank the anonymous referee for pointing out this issue.

References

  1. A. Adamo, J.M.D. Kruijssen, N. Bastian et al., Probing the role of the galactic environment in the formation of stellar clusters, using M83 as a test bench. Mon. Not. R. Astron. Soc. 452, 246–260 (2015)

    ADS  Article  Google Scholar 

  2. O. Agertz, A.V. Kravtsov, S.N. Leitner et al., Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770(1), 25 (2013)

    ADS  Article  Google Scholar 

  3. C. Alves de Oliveira, N. Schneider, B. Merín et al., Herschel view of the large-scale structure in the Chamaeleon dark clouds. Astron. Astrophys. 568, A98 (2014)

    Article  Google Scholar 

  4. J. Alves, M. Lombardi, C.J. Lada, The mass function of dense molecular cores and the origin of the IMF. Astron. Astrophys. 462(1), L17–L21 (2007)

    ADS  Article  Google Scholar 

  5. J. Alves, M. Lombardi, C.J. Lada, The shapes of column density PDFs. The importance of the last closed contour. Astron. Astrophys. 606, L2 (2017)

    ADS  Article  Google Scholar 

  6. P. André, A. Men’shchikov, S. Bontemps et al., From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt Survey. Astron. Astrophys. 518, L102 (2010)

    ADS  Article  Google Scholar 

  7. P. André, J. Di Francesco, D. Ward-Thompson et al., From filamentary networks to dense cores in molecular clouds: toward a new paradigm for star formation, in Protostars and Planets VI, ed. by H. Beuther et al. (2014), pp. 27–51

    Google Scholar 

  8. P. André, V. Revéret, V. Könyves et al., Characterizing filaments in regions of high-mass star formation: high-resolution submillimeter imaging of the massive star-forming complex NGC 6334 with ArTéMiS. Astron. Astrophys. 592, A54 (2016)

    Article  Google Scholar 

  9. P. André, D. Arzoumanian, V. Könyves et al., The role of molecular filaments in the origin of the prestellar core mass function and stellar initial mass function. Astron. Astrophys. 629, L4 (2019)

    ADS  Article  Google Scholar 

  10. D. Arzoumanian, P. André, P. Didelon et al., Characterizing interstellar filaments with Herschel in IC 5146. Astron. Astrophys. 529, L6 (2011)

    ADS  Article  Google Scholar 

  11. D. Arzoumanian, P. André, N. Peretto et al., Formation and evolution of interstellar filaments. Hints from velocity dispersion measurements. Astron. Astrophys. 553, A119 (2013)

    ADS  Article  Google Scholar 

  12. D. Arzoumanian, P. André, V. Könyves et al., Characterizing the properties of nearby molecular filaments observed with Herschel. Astron. Astrophys. 621, A42 (2019)

    Article  Google Scholar 

  13. S. Auddy, S. Basu, T. Kudoh, A magnetic ribbon model for star-forming filaments. Astrophys. J. 831, 46 (2016)

    ADS  Article  Google Scholar 

  14. E. Audit, P. Hennebelle, Thermal condensation in a turbulent atomic hydrogen flow. Astron. Astrophys. 433, 1–13 (2005)

    ADS  Article  Google Scholar 

  15. E. Audit, P. Hennebelle, On the structure of the turbulent interstellar clouds. Influence of the equation of state on the dynamics of 3D compressible flows. Astron. Astrophys. 511, A76 (2010)

    ADS  Article  Google Scholar 

  16. J. Ballesteros-Paredes, Six myths on the virial theorem for interstellar clouds. Mon. Not. R. Astron. Soc. 372(1), 443–449 (2006)

    ADS  Article  Google Scholar 

  17. J. Ballesteros-Paredes, L. Hartmann, Remarks on rapid vs. slow star formation. Rev. Mex. Astron. Astrofís. 43, 123–136 (2007)

    ADS  Google Scholar 

  18. J. Ballesteros-Paredes, M.M. Mac Low, Physical versus observational properties of clouds in turbulent molecular cloud models. Astrophys. J. 570, 734–748 (2002)

    ADS  Article  Google Scholar 

  19. J. Ballesteros-Paredes, E. Vázquez-Semadeni, Virial balance in turbulent MHD two dimensional numerical simulations of the ISM, in American Institute of Physics Conference Series, ed. by S.S. Holt, L.G. Mundy. American Institute of Physics Conference Series, vol. 393 (1997), pp. 81–84

    Google Scholar 

  20. J. Ballesteros-Paredes, L. Hartmann, E. Vázquez-Semadeni, Turbulent flow-driven molecular cloud formation: a solution to the post-T Tauri problem? Astrophys. J. 527(1), 285–297 (1999a)

    ADS  Article  Google Scholar 

  21. J. Ballesteros-Paredes, E. Vázquez-Semadeni, J. Scalo, Clouds as turbulent density fluctuations: implications for pressure confinement and spectral line data interpretation. Astrophys. J. 515(1), 286–303 (1999b)

    ADS  Article  Google Scholar 

  22. J. Ballesteros-Paredes, A. Gazol, J. Kim et al., The mass spectra of cores in turbulent molecular clouds and implications for the initial mass function. Astrophys. J. 637(1), 384–391 (2006)

    ADS  Article  Google Scholar 

  23. J. Ballesteros-Paredes, G.C. Gómez, L. Loinard et al., Tidal forces as a regulator of star formation in Taurus. Mon. Not. R. Astron. Soc. 395(1), L81–L84 (2009a)

    ADS  Article  Google Scholar 

  24. J. Ballesteros-Paredes, G.C. Gómez, B. Pichardo et al., On the gravitational content of molecular clouds and their cores. Mon. Not. R. Astron. Soc. 393(4), 1563–1572 (2009b)

    ADS  Article  Google Scholar 

  25. J. Ballesteros-Paredes, L.W. Hartmann, E. Vázquez-Semadeni et al., Gravity or turbulence? Velocity dispersion-size relation. Mon. Not. R. Astron. Soc. 411(1), 65–70 (2011a)

    ADS  Article  Google Scholar 

  26. J. Ballesteros-Paredes, E. Vázquez-Semadeni, A. Gazol et al., Gravity or turbulence?—II. Evolving column density probability distribution functions in molecular clouds. Mon. Not. R. Astron. Soc. 416(2), 1436–1442 (2011b)

    ADS  Article  Google Scholar 

  27. J. Ballesteros-Paredes, P. D’Alessio, L. Hartmann, On the structure of molecular clouds. Mon. Not. R. Astron. Soc. 427, 2562–2571 (2012)

    ADS  Article  Google Scholar 

  28. J. Ballesteros-Paredes, L.W. Hartmann, N. Pérez-Goytia et al., Bondi-Hoyle-Littleton accretion and the upper-mass stellar initial mass function. Mon. Not. R. Astron. Soc. 452(1), 566–574 (2015)

    ADS  Article  Google Scholar 

  29. J. Ballesteros-Paredes, E. Vázquez-Semadeni, A. Palau et al., Gravity or turbulence?—IV. Collapsing cores in out-of-virial disguise. Mon. Not. R. Astron. Soc. 479(2), 2112–2125 (2018)

    ADS  Google Scholar 

  30. J. Ballesteros-Paredes, C. Román-Zúñiga, Q. Salomé et al., What is the physics behind the Larson mass-size relation? Mon. Not. R. Astron. Soc. 490(2), 2648–2655 (2019)

    ADS  Article  Google Scholar 

  31. J. Bally, W.D. Langer, A.A. Stark et al., Filamentary structure in the Orion molecular cloud. Astrophys. J. Lett. 312, L45–L49 (1987)

    ADS  Article  Google Scholar 

  32. R. Banerjee, E. Vázquez-Semadeni, P. Hennebelle et al., Clump morphology and evolution in MHD simulations of molecular cloud formation. Mon. Not. R. Astron. Soc. 398, 1082–1092 (2009)

    ADS  Article  Google Scholar 

  33. P.J. Barnes, A.K. Hernandez, S.N. O’Dougherty et al., The galactic census of high- and medium-mass protostars. III. 12CO maps and physical properties of dense clump envelopes and their embedding GMCs. Astrophys. J. 831(1), 67 (2016)

    ADS  Article  Google Scholar 

  34. A.T. Barnes, S.N. Longmore, C. Battersby et al., Star formation rates and efficiencies in the Galactic Centre. Mon. Not. R. Astron. Soc. 469, 2263–2285 (2017)

    ADS  Article  Google Scholar 

  35. A.T. Barnes, J.D. Henshaw, P. Caselli et al., Similar complex kinematics within two massive, filamentary infrared dark clouds. Mon. Not. R. Astron. Soc. 475(4), 5268–5289 (2018)

    ADS  Article  Google Scholar 

  36. J.A. Barranco, A.A. Goodman, Coherent dense cores. I. NH3 observations. Astrophys. J. 504(1), 207–222 (1998)

    ADS  Article  Google Scholar 

  37. C.N. Beaumont, A.A. Goodman, J.F. Alves et al., A simple perspective on the mass-area relationship in molecular clouds. Mon. Not. R. Astron. Soc. 423(3), 2579–2586 (2012)

    ADS  Article  Google Scholar 

  38. E.A. Bergin, L.W. Hartmann, J.C. Raymond et al., Molecular cloud formation behind shock waves. Astrophys. J. 612(2), 921–939 (2004)

    ADS  Article  Google Scholar 

  39. O. Berné, N. Marcelino, J. Cernicharo, IRAM 30 m large scale survey of 12CO(2-1) and 13CO(2-1) emission in the orion molecular cloud. Astrophys. J. 795(1), 13 (2014)

    ADS  Article  Google Scholar 

  40. F. Bertoldi, C.F. McKee, Pressure-confined clumps in magnetized molecular clouds. Astrophys. J. 395, 140 (1992)

    ADS  Article  Google Scholar 

  41. H. Beuther, P. Schilke, Fragmentation in massive star formation. Science 303(5661), 1167–1169 (2004)

    ADS  Article  Google Scholar 

  42. F. Bigiel, A. Leroy, F. Walter et al., The star formation law in nearby galaxies on sub-kpc scales. Astron. J. 136(6), 2846–2871 (2008)

    ADS  Article  Google Scholar 

  43. L. Blitz, Giant molecular clouds, in Protostars and Planets III, ed. by E. Levy, J. Lunine (1993), pp. 125–161

    Google Scholar 

  44. L. Blitz, F.H. Shu, The origin and lifetime of giant molecular cloud complexes. Astrophys. J. 238, 148–157 (1980)

    ADS  Article  Google Scholar 

  45. L. Blitz, Y. Fukui, A. Kawamura et al., Giant molecular clouds in local group galaxies, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (University of Arizona Press, Tucson, 2007), p. 81

    Google Scholar 

  46. A.D. Bolatto, A.K. Leroy, E. Rosolowsky et al., The resolved properties of extragalactic giant molecular clouds. Astrophys. J. 686(2), 948–965 (2008)

    ADS  Article  Google Scholar 

  47. I.A. Bonnell, M.R. Bate, Star formation through gravitational collapse and competitive accretion. Mon. Not. R. Astron. Soc. 370(1), 488–494 (2006)

    ADS  Article  Google Scholar 

  48. W. Bonnor, Boyle’s Law and gravitational instability. Mon. Not. R. Astron. Soc. 116, 351 (1956)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. A. Bracco, P. Palmeirim, P. André et al., Probing changes of dust properties along a chain of solar-type prestellar and protostellar cores in Taurus with NIKA. Astron. Astrophys. 604, A52 (2017)

    Article  Google Scholar 

  50. D. Bresnahan, D. Ward-Thompson, J.M. Kirk et al., The dense cores and filamentary structure of the molecular cloud in Corona Australis: Herschel SPIRE and PACS observations from the Herschel Gould Belt Survey. Astron. Astrophys. 615, A125 (2018)

    Article  Google Scholar 

  51. C. Briceno, L.W. Hartmann, J.R. Stauffer et al., X-rays surveys and the post-T Tauri problem. Astron. J. 113, 740–752 (1997)

    ADS  Article  Google Scholar 

  52. V. Camacho, E. Vázquez-Semadeni, J. Ballesteros-Paredes et al., Energy budget of forming clumps in numerical simulations of collapsing clouds. Astrophys. J. 833, 113 (2016)

    ADS  Article  Google Scholar 

  53. J.S. Carr, A study of clumping in the Cepheus OB 3 molecular cloud. Astrophys. J. 323, 170 (1987)

    ADS  Article  Google Scholar 

  54. P. Caselli, P.C. Myers, The line width–size relation in massive cloud cores. Astrophys. J. 446, 665 (1995)

    ADS  Article  Google Scholar 

  55. P. Caselli, P.J. Benson, P.C. Myers et al., Dense cores in dark clouds. XIV. N2H+ (1-0) maps of dense cloud cores. Astrophys. J. 572(1), 238–263 (2002)

    ADS  Article  Google Scholar 

  56. R. Cesaroni, H. Beuther, A. Ahmadi et al., IRAS 23385+6053: an embedded massive cluster in the making. Astron. Astrophys. 627, A68 (2019)

    Article  Google Scholar 

  57. G. Chabrier, The initial mass function: from Salpeter 1955 to 2005, in The Initial Mass Function 50 Years Later, ed. by E. Corbelli, F. Palla, H. Zinnecker. Astrophysics and Space Science Library, vol. 327 (2005), p. 41

    Google Scholar 

  58. S. Chandrasekhar, E. Fermi, Magnetic fields in spiral arms. Astrophys. J. 118, 113 (1953)

    ADS  Article  Google Scholar 

  59. N.L. Chapman, P.F. Goldsmith, J.L. Pineda et al., The magnetic field in Taurus probed by infrared polarization. Astrophys. J. 741, 21 (2011)

    ADS  Article  Google Scholar 

  60. C.Y. Chen, Z.Y. Li, P.K. King et al., Fantastic striations and where to find them: the origin of magnetically aligned striations in interstellar clouds. Astrophys. J. 847, 140 (2017)

    ADS  Article  Google Scholar 

  61. H.H.H. Chen, J.E. Pineda, A.A. Goodman et al., Droplets. I. Pressure-dominated coherent structures in L1688 and B18. Astrophys. J. 877(2), 93 (2019)

    ADS  Article  Google Scholar 

  62. Y. Cheng, J.C. Tan, M. Liu et al., The core mass function in the massive protocluster G286.21+0.17 revealed by ALMA. Astrophys. J. 853(2), 160 (2018)

    ADS  Article  Google Scholar 

  63. M. Chevance, S.C. Madden, V. Lebouteiller et al., A milestone toward understanding PDR properties in the extreme environment of LMC-30 Doradus. Astron. Astrophys. 590, A36 (2016)

    Article  Google Scholar 

  64. M. Chevance, J.M.D. Kruijssen, A.P.S. Hygate et al., The lifecycle of molecular clouds in nearby star-forming disc galaxies. Mon. Not. R. Astron. Soc. 493(2), 2872–2909 (2020a)

    ADS  Article  Google Scholar 

  65. M. Chevance, J.M.D. Kruijssen, E. Vazquez-Semadeni et al., The molecular cloud lifecycle. Space Sci. Rev. 216(4), 50 (2020b)

    ADS  Article  Google Scholar 

  66. P.C. Clark, S.C.O. Glover, R.S. Klessen et al., How long does it take to form a molecular cloud? Mon. Not. R. Astron. Soc. 424, 2599–2613 (2012)

    ADS  Article  Google Scholar 

  67. S.D. Clarke, A.P. Whitworth, Investigating the global collapse of filaments using smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 449(2), 1819–1825 (2015)

    ADS  Article  Google Scholar 

  68. S.D. Clarke, A.P. Whitworth, D.A. Hubber, Perturbation growth in accreting filaments. Mon. Not. R. Astron. Soc. 458, 319–324 (2016)

    ADS  Article  Google Scholar 

  69. S.D. Clarke, A.P. Whitworth, A. Duarte-Cabral et al., Filamentary fragmentation in a turbulent medium. Mon. Not. R. Astron. Soc. 468, 2489–2505 (2017)

    ADS  Article  Google Scholar 

  70. S.D. Clarke, A.P. Whitworth, R.L. Spowage et al., Synthetic C18O observations of fibrous filaments: the problems of mapping from PPV to PPP. Mon. Not. R. Astron. Soc. 479(2), 1722–1746 (2018)

    ADS  Article  Google Scholar 

  71. D. Colombo, E. Rosolowsky, A. Duarte-Cabral et al., The integrated properties of the molecular clouds from the JCMT CO(3-2) high-resolution survey. Mon. Not. R. Astron. Soc. 483(4), 4291–4340 (2019)

    ADS  Article  Google Scholar 

  72. E. Corbelli, J. Braine, R. Bandiera et al., From molecules to young stellar clusters: the star formation cycle across the disk of M 33. Astron. Astrophys. 601, A146 (2017)

    Article  Google Scholar 

  73. M. Cottaar, M.R. Meyer, M. Andersen et al., Is the massive young cluster Westerlund I bound? Astron. Astrophys. 539, A5 (2012)

    ADS  Article  Google Scholar 

  74. N.L.J. Cox, D. Arzoumanian, P. André et al., Filamentary structure and magnetic field orientation in Musca. Astron. Astrophys. 590, A110 (2016)

    Article  Google Scholar 

  75. R.M. Crutcher, Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012)

    ADS  Article  Google Scholar 

  76. R.M. Crutcher, A.J. Kemball, Review of Zeeman effect observations of regions of star formation K Zeeman effect, magnetic fields, star formation, masers, molecular clouds. Front. Astron. Space Sci. 6, 66 (2019)

    ADS  Article  Google Scholar 

  77. R.M. Crutcher, B. Wandelt, C. Heiles et al., Magnetic fields in interstellar clouds from Zeeman observations: inference of total field strengths by Bayesian analysis. Astrophys. J. 725(1), 466–479 (2010)

    ADS  Article  Google Scholar 

  78. J.E. Dale, J. Ngoumou, B. Ercolano et al., Before the first supernova: combined effects of H II regions and winds on molecular clouds. Mon. Not. R. Astron. Soc. 442(1), 694–712 (2014)

    ADS  Article  Google Scholar 

  79. D. Dall’Olio, W.H.T. Vlemmings, M.V. Persson et al., ALMA reveals the magnetic field evolution in the high-mass star forming complex G9.62+0.19. Astron. Astrophys. 626, A36 (2019)

    Article  Google Scholar 

  80. M.A. de Avillez, D. Breitschwerdt, Global dynamical evolution of the ISM in star forming galaxies. I. High resolution 3D simulations: effect of the magnetic field. Astron. Astrophys. 436(2), 585–600 (2005)

    ADS  Article  Google Scholar 

  81. A. Dhabal, L.G. Mundy, M.J. Rizzo et al., Morphology and kinematics of filaments in the Serpens and Perseus molecular clouds. Astrophys. J. 853(2), 169 (2018)

    ADS  Article  Google Scholar 

  82. P. Didelon, F. Motte, P. Tremblin et al., From forced collapse to H ii region expansion in Mon R2: envelope density structure and age determination with Herschel. Astron. Astrophys. 584, A4 (2015)

    Article  Google Scholar 

  83. C.L. Dobbs, GMC formation by agglomeration and self gravity. Mon. Not. R. Astron. Soc. 391(2), 844–858 (2008)

    ADS  Article  Google Scholar 

  84. C.L. Dobbs, A. Burkert, J.E. Pringle, The properties of the interstellar medium in disc galaxies with stellar feedback. Mon. Not. R. Astron. Soc. 417(2), 1318–1334 (2011a)

    ADS  Article  Google Scholar 

  85. C.L. Dobbs, A. Burkert, J.E. Pringle, Why are most molecular clouds not gravitationally bound? Mon. Not. R. Astron. Soc. 413(4), 2935–2942 (2011b)

    ADS  Article  Google Scholar 

  86. C.L. Dobbs, M.R. Krumholz, J. Ballesteros-Paredes et al., Formation of molecular clouds and global conditions for star formation, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 3

    Google Scholar 

  87. C.L. Dobbs, J.E. Pringle, A. Duarte-Cabral, The frequency and nature of ‘cloud-cloud collisions’ in galaxies. Mon. Not. R. Astron. Soc. 446(4), 3608–3620 (2015)

    ADS  Article  Google Scholar 

  88. B.T. Draine, Physics of the Interstellar and Intergalactic Medium (Princeton University Press, Princeton, 2011)

    Google Scholar 

  89. B.T. Draine, F. Bertoldi, Structure of stationary photodissociation fronts. Astrophys. J. 468, 269 (1996)

    ADS  Article  Google Scholar 

  90. B.G. Elmegreen, Supercloud formation by nonaxisymmetric gravitational instabilities in sheared magnetic galaxy disks. Astrophys. J. 312, 626–639 (1987)

    ADS  Article  Google Scholar 

  91. B.G. Elmegreen, Disk instabilities and star formation, in Star Formation, Galaxies and the Interstellar Medium, ed. by J. Franco, F. Ferrini, G. Tenorio-Tagle (1993), p. 337

    Google Scholar 

  92. B.G. Elmegreen, Theory of starbursts in nuclear rings, in Revista Mexicana de Astronomia y Astrofisica Conference Series. Revista Mexicana de Astronomia y Astrofisica, vol. 6, ed. by J. Franco, R. Terlevich, A. Serrano (1997), p. 165

    Google Scholar 

  93. B.G. Elmegreen, Star formation in a crossing time. Astrophys. J. 530(1), 277–281 (2000)

    ADS  Article  Google Scholar 

  94. B.G. Elmegreen, Variations in stellar clustering with environment: dispersed star formation and the origin of faint fuzzies. Astrophys. J. 672, 1006–1012 (2008)

    ADS  Article  Google Scholar 

  95. B.G. Elmegreen, J. Scalo, Interstellar turbulence I: observations and processes. Annu. Rev. Astron. Astrophys. 42(1), 211–273 (2004)

    ADS  Article  Google Scholar 

  96. G. Engargiola, R. Plambeck, E. Rosolowsky et al., Giant molecular clouds in M33—I. BIMA all disk survey. Astrophys. J. Suppl. Ser. 149(2), 343–363 (2003)

    ADS  Article  Google Scholar 

  97. N.J. Evans II, A. Heiderman, N. Vutisalchavakul, Star formation relations in nearby molecular clouds. Astrophys. J. 782, 114 (2014)

    ADS  Article  Google Scholar 

  98. E. Falgarone, T.G. Phillips, C.K. Walker, The edges of molecular clouds: fractal boundaries and density structure. Astrophys. J. 378, 186 (1991)

    ADS  Article  Google Scholar 

  99. E. Falgarone, T.H. Troland, R.M. Crutcher et al., CN Zeeman measurements in star formation regions. Astron. Astrophys. 487(1), 247–252 (2008)

    ADS  Article  Google Scholar 

  100. E. Falgarone, J. Pety, P. Hily-Blant, Intermittency of interstellar turbulence: extreme velocity-shears and CO emission on milliparsec scale. Astron. Astrophys. 507(1), 355–368 (2009)

    ADS  Article  Google Scholar 

  101. C. Federrath, Inefficient star formation through turbulence, magnetic fields and feedback. Mon. Not. R. Astron. Soc. 450, 4035–4042 (2015)

    ADS  Article  Google Scholar 

  102. C. Federrath, On the universality of interstellar filaments: theory meets simulations and observations. Mon. Not. R. Astron. Soc. 457, 375–388 (2016)

    ADS  Article  Google Scholar 

  103. C. Federrath, R.S. Klessen, The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys. J. 761, 156 (2012)

    ADS  Article  Google Scholar 

  104. C. Federrath, R.S. Klessen, W. Schmidt, The density probability distribution in compressible isothermal turbulence: solenoidal versus compressive forcing. Astrophys. J. Lett. 688(2), L79 (2008)

    ADS  Article  Google Scholar 

  105. C. Federrath, J. Roman-Duval, R.S. Klessen et al., Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81 (2010)

    ADS  Article  Google Scholar 

  106. R. Feldmann, N.Y. Gnedin, A.V. Kravtsov, How universal is the \(\varSigma _{\text{SFR}} - \varSigma _{\text{H}_{2}}\) relation? Astrophys. J. 732, 115 (2011)

    ADS  Article  Google Scholar 

  107. M. Fernández-López, H.G. Arce, L. Looney et al., CARMA large area star formation survey: observational analysis of filaments in the Serpens south molecular cloud. Astrophys. J. Lett. 790, L19 (2014)

    ADS  Article  Google Scholar 

  108. K.M. Ferriére, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001)

    ADS  Article  Google Scholar 

  109. J.D. Fiege, R.E. Pudritz, Polarized submillimeter emission from filamentary molecular clouds. Astrophys. J. 544, 830–837 (2000)

    ADS  Article  Google Scholar 

  110. G.B. Field, Thermal instability. Astrophys. J. 142, 531 (1965)

    ADS  Article  Google Scholar 

  111. G.B. Field, W.C. Saslaw, A statistical model of the formation of stars and interstellar clouds. Astrophys. J. 142, 568 (1965)

    ADS  Article  Google Scholar 

  112. G.B. Field, D.W. Goldsmith, H.J. Habing, Cosmic-ray heating of the interstellar gas. Astrophys. J. Lett. 155, L149 (1969)

    ADS  Article  Google Scholar 

  113. G.B. Field, E.G. Blackman, E.R. Keto, Does external pressure explain recent results for molecular clouds? Mon. Not. R. Astron. Soc. 416(1), 710–714 (2011)

    ADS  Google Scholar 

  114. J. Fischera, P.G. Martin, Physical properties of interstellar filaments. Astron. Astrophys. 542, A77 (2012)

    ADS  Article  Google Scholar 

  115. J. Franco, D.P. Cox, Molecular clouds in galaxies with different Z: fragmentation of diffuse clouds driven by opacity. Publ. Astron. Soc. Pac. 98, 1076–1079 (1986)

    ADS  Article  Google Scholar 

  116. A. Gazol, E. Vázquez-Semadeni, F.J. Sánchez-Salcedo et al., The temperature distribution in turbulent interstellar gas. Astrophys. J. Lett. 557(2), L121–L124 (2001)

    ADS  Article  Google Scholar 

  117. A. Giannetti, F. Wyrowski, J. Brand et al., ATLASGAL-selected massive clumps in the inner galaxy. I. CO depletion and isotopic ratios. Astron. Astrophys. 570, A65 (2014)

    Article  Google Scholar 

  118. P. Girichidis et al., Physical processes in star formation. Space Sci. Rev. 216, 68 (2020)

    ADS  Article  Google Scholar 

  119. S.C.O. Glover, P.C. Clark, Approximations for modelling CO chemistry in giant molecular clouds: a comparison of approaches. Mon. Not. R. Astron. Soc. 421(1), 116–131 (2012a)

    ADS  Google Scholar 

  120. S.C.O. Glover, P.C. Clark, Is molecular gas necessary for star formation? Mon. Not. R. Astron. Soc. 421(1), 9–19 (2012b)

    ADS  Article  Google Scholar 

  121. S.C.O. Glover, M.M. Mac Low, Simulating the formation of molecular clouds. II. Rapid formation from turbulent initial conditions. Astrophys. J. 659(2), 1317–1337 (2007)

    ADS  Article  Google Scholar 

  122. P. Goldreich, D. Lynden-Bell, I. Gravitational stability of uniformly rotating disks. Mon. Not. R. Astron. Soc. 130, 97 (1965)

    ADS  Article  Google Scholar 

  123. P.F. Goldsmith, W.D. Langer, Population diagram analysis of molecular line emission. Astrophys. J. 517(1), 209–225 (1999)

    ADS  Article  Google Scholar 

  124. P.F. Goldsmith, M. Heyer, G. Narayanan et al., Large-scale structure of the molecular gas in Taurus revealed by high linear dynamic range spectral line mapping. Astrophys. J. 680, 428–445 (2008)

    ADS  Article  Google Scholar 

  125. G.C. Gómez, Errors in kinematic distances and our image of the Milky Way galaxy. Astron. J. 132(6), 2376–2382 (2006)

    ADS  Article  Google Scholar 

  126. G.C. Gómez, E. Vázquez-Semadeni, Filaments in simulations of molecular cloud formation. Astrophys. J. 791, 124 (2014)

    ADS  Article  Google Scholar 

  127. G.C. Gómez, E. Vázquez-Semadeni, M. Zamora-Avilés, The magnetic field structure in molecular cloud filaments. Mon. Not. R. Astron. Soc. 480, 2939–2944 (2018)

    ADS  Article  Google Scholar 

  128. M. Gong, E.C. Ostriker, C.G. Kim, The \(X_{\mathrm{CO}}\) conversion factor from galactic multiphase ISM simulations. Astrophys. J. 858(1), 16 (2018)

    ADS  Article  Google Scholar 

  129. A.A. Goodman, J.A. Barranco, D.J. Wilner et al., Coherence in dense cores. II. The transition to coherence. Astrophys. J. 504, 223–246 (1998)

    ADS  Article  Google Scholar 

  130. M. Gritschneder, T. Naab, S. Walch et al., Driving turbulence and triggering star formation by ionizing radiation. Astrophys. J. Lett. 694(1), L26–L30 (2009)

    ADS  Article  Google Scholar 

  131. M. Gritschneder, S. Heigl, A. Burkert, Oscillating filaments. I. Oscillation and geometrical fragmentation. Astrophys. J. 834, 202 (2017)

    ADS  Article  Google Scholar 

  132. M.Y. Grudić, P.F. Hopkins et al., On the nature of variations in the measured star formation efficiency of molecular clouds. Mon. Not. R. Astron. Soc. 488(2), 1501–1518 (2019)

    ADS  Article  Google Scholar 

  133. R.A. Gutermuth, J.L. Pipher, S.T. Megeath et al., A correlation between surface densities of young stellar objects and gas in eight nearby molecular clouds. Astrophys. J. 739, 84 (2011)

    ADS  Article  Google Scholar 

  134. H.J. Habing, The interstellar radiation density between 912 A and 2400 A. Bull. Astron. Inst. s19, 421 (1968)

    ADS  Google Scholar 

  135. A. Hacar, M. Tafalla, Dense core formation by fragmentation of velocity-coherent filaments in L1517. Astron. Astrophys. 533, A34 (2011)

    ADS  Article  Google Scholar 

  136. A. Hacar, M. Tafalla, J. Kauffmann et al., Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region. Astron. Astrophys. 554, A55 (2013)

    ADS  Article  Google Scholar 

  137. A. Hacar, J. Alves, A. Burkert et al., Opacity broadening and interpretation of suprathermal CO linewidths: macroscopic turbulence and tangled molecular clouds. Astron. Astrophys. 591, A104 (2016a)

    ADS  Article  Google Scholar 

  138. A. Hacar, J. Kainulainen, M. Tafalla et al., The Musca cloud: a 6 pc-long velocity-coherent, sonic filament. Astron. Astrophys. 587, A97 (2016b)

    ADS  Article  Google Scholar 

  139. A. Hacar, M. Tafalla, J. Alves, Fibers in the NGC 1333 proto-cluster. Astron. Astrophys. 606, A123 (2017)

    ADS  Article  Google Scholar 

  140. A. Hacar, M. Tafalla, J. Forbrich et al., An ALMA study of the orion integral filament. I. Evidence for narrow fibers in a massive cloud. Astron. Astrophys. 610, A77 (2018)

    Article  Google Scholar 

  141. L. Hartmann, Flows, fragmentation, and star formation. I. Low-mass stars in Taurus. Astrophys. J. 578, 914–924 (2002)

    ADS  Article  Google Scholar 

  142. L. Hartmann, J. Ballesteros-Paredes, E.A. Bergin, Rapid formation of molecular clouds and stars in the solar neighborhood. Astrophys. J. 562(2), 852–868 (2001)

    ADS  Article  Google Scholar 

  143. L. Hartmann, J. Ballesteros-Paredes, F. Heitsch, Rapid star formation and global gravitational collapse. Mon. Not. R. Astron. Soc. 420(2), 1457–1461 (2012)

    ADS  Article  Google Scholar 

  144. M.A. Hausman, Theoretical models of the mass spectrum of interstellar clouds. Astrophys. J. 261, 532–542 (1982)

    ADS  Article  Google Scholar 

  145. A. Heiderman, N.J. Evans II, L.E. Allen et al., The star formation rate and gas surface density relation in the Milky Way: implications for extragalactic studies. Astrophys. J. 723, 1019–1037 (2010)

    ADS  Article  Google Scholar 

  146. C. Heiles, H I shells and supershells. Astrophys. J. 229, 533–537 (1979)

    ADS  Article  Google Scholar 

  147. C. Heiles, HI shells, supershells, shell-like objects, and “worms”. Astrophys. J. Suppl. Ser. 55, 585–595 (1984)

    ADS  Article  Google Scholar 

  148. C. Heiles, T.H. Troland, The millennium Arecibo 21 centimeter absorption-line survey. IV. Statistics of magnetic field, column density, and turbulence. Astrophys. J. 624(2), 773–793 (2005)

    ADS  Article  Google Scholar 

  149. C. Heiles, A.A. Goodman, C.F. McKee et al., Magnetic fields in star-forming regions—observations, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (1993), p. 279

    Google Scholar 

  150. A. Heithausen, F. Bensch, J. Stutzki et al., The IRAM key project: small-scale structure of pre-star forming regions. Combined mass spectra and scaling laws. Astron. Astrophys. 331, L65–L68 (1998)

    ADS  Google Scholar 

  151. F. Heitsch, E.G. Zweibel, M.M. Mac Low et al., Magnetic field diagnostics based on far-infrared polarimetry: tests using numerical simulations. Astrophys. J. 561(2), 800–814 (2001)

    ADS  Article  Google Scholar 

  152. F. Heitsch, A.D. Slyz, J.E.G. Devriendt et al., The birth of molecular clouds: formation of atomic precursors in colliding flows. Astrophys. J. 648, 1052–1065 (2006)

    ADS  Article  Google Scholar 

  153. F. Heitsch, L.W. Hartmann, A. Burkert, Fragmentation of shocked flows: gravity, turbulence, and cooling. Astrophys. J. 683(2), 786–795 (2008)

    ADS  Article  Google Scholar 

  154. F. Heitsch, J. Ballesteros-Paredes, L. Hartmann, Gravitational collapse and filament formation: comparison with the Pipe Nebula. Astrophys. J. 704(2), 1735–1742 (2009a)

    ADS  Article  Google Scholar 

  155. F. Heitsch, J.M. Stone, L.W. Hartmann, Effects of magnetic field strength and orientation on molecular cloud formation. Astrophys. J. 695(1), 248–258 (2009b)

    ADS  Article  Google Scholar 

  156. P. Hennebelle, P. André, Ion-neutral friction and accretion-driven turbulence in self-gravitating filaments. Astron. Astrophys. 560, A68 (2013)

    ADS  Article  Google Scholar 

  157. P. Hennebelle, E. Falgarone, Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012)

    ADS  Article  Google Scholar 

  158. P. Hennebelle, Si. Inutsuka, The role of magnetic field in molecular cloud formation and evolution. Front. Astron. Space Sci. 6, 5 (2019)

    ADS  Article  Google Scholar 

  159. P. Hennebelle, M. Pérault, Dynamical condensation in a thermally bistable flow. Application to interstellar cirrus. Astron. Astrophys. 351, 309–322 (1999)

    ADS  Google Scholar 

  160. P. Hennebelle, R. Banerjee, E. Vázquez-Semadeni et al., From the warm magnetized atomic medium to molecular clouds. Astron. Astrophys. 486, L43–L46 (2008)

    ADS  Article  Google Scholar 

  161. P. Hennebelle, Y.N. Lee, G. Chabrier, How first hydrostatic cores, tidal forces, and gravoturbulent fluctuations set the characteristic mass of stars. Astrophys. J. 883(2), 140 (2019)

    ADS  Article  Google Scholar 

  162. M. Hennemann, F. Motte, N. Schneider et al., The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X. Astron. Astrophys. 543, L3 (2012)

    ADS  Article  Google Scholar 

  163. T. Henning, H. Linz, O. Krause et al., The seeds of star formation in the filamentary infrared-dark cloud G011.11-0.12. Astron. Astrophys. 518, L95 (2010)

    ADS  Article  Google Scholar 

  164. J.D. Henshaw, P. Caselli, F. Fontani et al., The dynamical properties of dense filaments in the infrared dark cloud G035.39-00.33. Mon. Not. R. Astron. Soc. 440, 2860–2881 (2014)

    ADS  Article  Google Scholar 

  165. J.D. Henshaw, S.N. Longmore, J.M.D. Kruijssen et al., Molecular gas kinematics within the central 250 pc of the Milky Way. Mon. Not. R. Astron. Soc. 457, 2675–2702 (2016)

    ADS  Article  Google Scholar 

  166. G.H. Herbig, Can post-T Tauri stars be found? in Problems of Physics and Evolution of the Universe, ed. by L.V. Mirzoyan (Publishing House of the Armenian Academy of Sciences, Yerevan, 1978), p. 171

    Google Scholar 

  167. A.K. Hernandez, J.C. Tan, The giant molecular cloud environments of infrared dark clouds. Astrophys. J. 809(2), 154 (2015)

    ADS  Article  Google Scholar 

  168. M.H. Heyer, C.M. Brunt, The universality of turbulence in galactic molecular clouds. Astrophys. J. Lett. 615(1), L45–L48 (2004)

    ADS  Article  Google Scholar 

  169. M. Heyer, T.M. Dame, Molecular clouds in the Milky Way. Annu. Rev. Astron. Astrophys. 53, 583–629 (2015)

    ADS  Article  Google Scholar 

  170. M.H. Heyer, S. Terebey, The anatomy of the Perseus Spiral Arm: 12CO and IRAS imaging observations of the W3-W4-W5 cloud complex. Astrophys. J. 502(1), 265–277 (1998)

    ADS  Article  Google Scholar 

  171. M.H. Heyer, C. Brunt, R.L. Snell et al., The five college radio astronomy observatory CO survey of the outer galaxy. Astrophys. J. Suppl. Ser. 115, 241 (1998)

    ADS  Article  Google Scholar 

  172. M.H. Heyer, J.M. Carpenter, R.L. Snell, The equilibrium state of molecular regions in the outer galaxy. Astrophys. J. 551(2), 852–866 (2001)

    ADS  Article  Google Scholar 

  173. M. Heyer, C. Krawczyk, J. Duval et al., Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699(2), 1092–1103 (2009)

    ADS  Article  Google Scholar 

  174. M. Heyer, P.F. Goldsmith, U.A. Yıldız et al., Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves? Mon. Not. R. Astron. Soc. 461, 3918–3926 (2016)

    ADS  Article  Google Scholar 

  175. T. Hill, F. Motte, P. Didelon et al., Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites. Astron. Astrophys. 533, A94 (2011)

    Article  Google Scholar 

  176. W.A. Hiltner, Polarization of light from distant stars by interstellar medium. Science 109(2825), 165 (1949)

    ADS  Article  Google Scholar 

  177. P. Hily-Blant, E. Falgarone, J. Pety, Dissipative structures of diffuse molecular gas. III. Small-scale intermittency of intense velocity-shears. Astron. Astrophys. 481(2), 367–380 (2008)

    ADS  Article  Google Scholar 

  178. P.F. Hopkins, A. Wetzel, D. Kereš et al., FIRE-2 simulations: physics versus numerics in galaxy formation. Mon. Not. R. Astron. Soc. 480(1), 800–863 (2018)

    ADS  Article  Google Scholar 

  179. A. Hughes, S.E. Meidt, D. Colombo et al., A comparative study of giant molecular clouds in M51, M33, and the Large Magellanic Cloud. Astrophys. J. 779(1), 46 (2013)

    ADS  Article  Google Scholar 

  180. A.P.S. Hygate, J.M.D. Kruijssen, M. Chevance et al., The cloud-scale physics of star-formation and feedback in M33. Mon. Not. R. Astron. Soc. (2019, submitted)

  181. J.C. Ibáñez-Mejía, M.M. Mac Low, R.S. Klessen et al., Gravitational contraction versus supernova driving and the origin of the velocity dispersion-size relation in molecular clouds. Astrophys. J. 824(1), 41 (2016)

    ADS  Article  Google Scholar 

  182. O. Iffrig, P. Hennebelle, Structure distribution and turbulence in self-consistently supernova-driven ISM of multiphase magnetized galactic discs. Astron. Astrophys. 604, A70 (2017)

    ADS  Article  Google Scholar 

  183. N. Imara, C.M. Faesi, ALMA observations of giant molecular clouds in the starburst dwarf galaxy Henize 2-10. Astrophys. J. 876(2), 141 (2019)

    ADS  Article  Google Scholar 

  184. T. Inoue, Si. Inutsuka, Two-fluid magnetohydrodynamic simulations of converging H I flows in the interstellar medium. I. Methodology and basic results. Astrophys. J. 687, 303–310 (2008)

    ADS  Article  Google Scholar 

  185. T. Inoue, Si. Inutsuka, Two-fluid magnetohydrodynamics simulations of converging H I flows in the interstellar medium. II. Are molecular clouds generated directly from a warm neutral medium? Astrophys. J. 704, 161–169 (2009)

    ADS  Article  Google Scholar 

  186. T. Inoue, Si. Inutsuka, Formation of turbulent and magnetized molecular clouds via accretion flows of H I clouds. Astrophys. J. 759, 35 (2012)

    ADS  Article  Google Scholar 

  187. Si. Inutsuka, The mass function of molecular cloud cores. Astrophys. J. Lett. 559, L149–L152 (2001)

    ADS  Article  Google Scholar 

  188. Si. Inutsuka, S.M. Miyama, Self-similar solutions and the stability of collapsing isothermal filaments. Astrophys. J. 388, 392–399 (1992)

    ADS  Article  Google Scholar 

  189. Si. Inutsuka, S.M. Miyama, A production mechanism for clusters of dense cores. Astrophys. J. 480, 681 (1997)

    ADS  Article  Google Scholar 

  190. Si. Inutsuka, T. Inoue, K. Iwasaki et al., The formation and destruction of molecular clouds and galactic star formation. An origin for the cloud mass function and star formation efficiency. Astron. Astrophys. 580, A49 (2015)

    Article  Google Scholar 

  191. K. Iwasaki, K. Tomida, T. Inoue et al., The early stage of molecular cloud formation by compression of two-phase atomic gases. ArXiv e-prints (2018)

  192. S.M.R. Jeffreson, J.M.D. Kruijssen, A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics. Mon. Not. R. Astron. Soc. 476, 3688–3715 (2018)

    ADS  Article  Google Scholar 

  193. S.M.R. Jeffreson, J.M.D. Kruijssen, M.R. Krumholz et al., On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way. Mon. Not. R. Astron. Soc. 478, 3380–3385 (2018)

    ADS  Article  Google Scholar 

  194. D. Johnstone, C.D. Wilson, G. Moriarty-Schieven et al., Large-area mapping at 850 microns. I. Optimum image reconstruction from chop measurements. Astrophys. J. Suppl. Ser. 131(2), 505–518 (2000)

    ADS  Article  Google Scholar 

  195. D. Johnstone, M. Fich, G.F. Mitchell et al., Large area mapping at 850 microns. III. Analysis of the clump distribution in the Orion B molecular cloud. Astrophys. J. 559(1), 307–317 (2001)

    ADS  Article  Google Scholar 

  196. D. Johnstone, J. Di Francesco, H. Kirk, An extinction threshold for protostellar cores in Ophiuchus. Astrophys. J. Lett. 611, L45–L48 (2004)

    ADS  Article  Google Scholar 

  197. M. Jura, Interstellar clouds containing optically thin H2. Astrophys. J. 197, 575–580 (1975)

    ADS  Article  Google Scholar 

  198. M. Juvela, I. Ristorcelli, L. Pagani et al., Galactic cold cores. III. General cloud properties. Astron. Astrophys. 541, A12 (2012)

    Article  Google Scholar 

  199. J. Kainulainen, H. Beuther, T. Henning et al., Probing the evolution of molecular cloud structure. From quiescence to birth. Astron. Astrophys. 508, L35–L38 (2009)

    ADS  Article  Google Scholar 

  200. J. Kainulainen, H. Beuther, R. Banerjee et al., Probing the evolution of molecular cloud structure. II. From chaos to confinement. Astron. Astrophys. 530, A64 (2011)

    ADS  Article  Google Scholar 

  201. P.M.W. Kalberla, J. Kerp, The Hi distribution of the Milky Way. Annu. Rev. Astron. Astrophys. 47(1), 27–61 (2009)

    ADS  Article  Google Scholar 

  202. J. Kauffmann, T. Pillai, R. Shetty et al., The mass-size relation from clouds to cores. I. A new probe of structure in molecular clouds. Astrophys. J. 712(2), 1137–1146 (2010a)

    ADS  Article  Google Scholar 

  203. J. Kauffmann, T. Pillai, R. Shetty et al., The mass-size relation from clouds to cores. II. Solar neighborhood clouds. Astrophys. J. 716(1), 433–445 (2010b)

    ADS  Article  Google Scholar 

  204. J. Kauffmann, T. Pillai, P.F. Goldsmith, Low virial parameters in molecular clouds: implications for high-mass star formation and magnetic fields. Astrophys. J. 779(2), 185 (2013)

    ADS  Article  Google Scholar 

  205. J. Kauffmann, T. Pillai, Q. Zhang et al., The Galactic Center Molecular Cloud Survey. I. A steep linewidth-size relation and suppression of star formation. Astron. Astrophys. 603, A89 (2017)

    Article  Google Scholar 

  206. A. Kawamura, Y. Mizuno, T. Minamidani et al., The second survey of the molecular clouds in the Large Magellanic Cloud by Nanten. II. Star formation. Astrophys. J. Suppl. Ser. 184(1), 1–17 (2009)

    ADS  Article  Google Scholar 

  207. R.C. Kennicutt Jr., The global Schmidt law in star-forming galaxies. Astrophys. J. 498(2), 541–552 (1998)

    ADS  Article  Google Scholar 

  208. R.C. Kennicutt, N.J. Evans, Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012)

    ADS  Article  Google Scholar 

  209. R. Kerr, H. Kirk, J. Di Francesco et al., The Green Bank Ammonia Survey: a virial analysis of Gould belt clouds in data release 1. Astrophys. J. 874(2), 147 (2019)

    ADS  Article  Google Scholar 

  210. E.R. Keto, P.C. Myers, CO observations of southern high-latitude clouds. Astrophys. J. 304, 466 (1986)

    ADS  Article  Google Scholar 

  211. S.A. Khoperskov, E.O. Vasiliev, D.A. Ladeyschikov et al., Giant molecular cloud scaling relations: the role of the cloud definition. Mon. Not. R. Astron. Soc. 455(2), 1782–1795 (2016)

    ADS  Article  Google Scholar 

  212. W.T. Kim, E.C. Ostriker, Amplification, saturation, and Q thresholds for runaway: growth of self-gravitating structures in models of magnetized galactic gas disks. Astrophys. J. 559(1), 70–95 (2001)

    ADS  Article  Google Scholar 

  213. W.T. Kim, E.C. Ostriker, Formation and fragmentation of gaseous spurs in spiral galaxies. Astrophys. J. 570(1), 132–151 (2002)

    ADS  Article  Google Scholar 

  214. W.T. Kim, E.C. Ostriker, Gravitational runaway and turbulence driving in star-gas galactic disks. Astrophys. J. 660(2), 1232–1245 (2007)

    ADS  Article  Google Scholar 

  215. W.T. Kim, E.C. Ostriker, J.M. Stone, Three-dimensional simulations of Parker, magneto-jeans, and swing instabilities in shearing galactic gas disks. Astrophys. J. 581(2), 1080–1100 (2002)

    ADS  Article  Google Scholar 

  216. W.T. Kim, E.C. Ostriker, J.M. Stone, Magnetorotationally driven galactic turbulence and the formation of giant molecular clouds. Astrophys. J. 599(2), 1157–1172 (2003)

    ADS  Article  Google Scholar 

  217. J.G. Kim, W.T. Kim, E.C. Ostriker, Modeling UV radiation feedback from massive stars. II. Dispersal of star-forming giant molecular clouds by photoionization and radiation pressure. Astrophys. J. 859(1), 68 (2018)

    ADS  Article  Google Scholar 

  218. H. Kirk, D. Johnstone, J. Di Francesco, The large- and small-scale structures of dust in the star-forming Perseus molecular cloud. Astrophys. J. 646, 1009–1023 (2006)

    ADS  Article  Google Scholar 

  219. H. Kirk, P.C. Myers, T.L. Bourke et al., Filamentary accretion flows in the embedded Serpens south protocluster. Astrophys. J. 766, 115 (2013)

    ADS  Article  Google Scholar 

  220. H. Kirk, R.K. Friesen, J.E. Pineda et al., The Green Bank Ammonia Survey: dense cores under pressure in Orion A. Astrophys. J. 846(2), 144 (2017)

    ADS  Article  Google Scholar 

  221. R.S. Klessen, S.C.O. Glover, Physical Processes in the Interstellar Medium. Saas-Fee Advanced Course, vol. 43 (2016), p. 85

    Google Scholar 

  222. R.S. Klessen, P. Hennebelle, Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks. Astron. Astrophys. 520, A17 (2010)

    ADS  Article  Google Scholar 

  223. R.S. Klessen, J. Ballesteros-Paredes, E. Vázquez-Semadeni et al., Quiescent and coherent cores from gravoturbulent fragmentation. Astrophys. J. 620(2), 786–794 (2005)

    ADS  Article  Google Scholar 

  224. E.W. Koch, E.W. Rosolowsky, Filament identification through mathematical morphology. Mon. Not. R. Astron. Soc. 452, 3435–3450 (2015)

    ADS  Article  Google Scholar 

  225. J. Koda, N. Scoville, T. Sawada et al., Dynamically driven evolution of the interstellar medium in M51. Astrophys. J. 700(2), L132–L136 (2009)

    ADS  Article  Google Scholar 

  226. J. Koda, N. Scoville, M. Heyer, Evolution of molecular and atomic gas phases in the Milky Way. Astrophys. J. 823(2), 76 (2016)

    ADS  Article  Google Scholar 

  227. A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akad. Nauk SSSR Dokl. 30, 301–305 (1941)

    ADS  MathSciNet  Google Scholar 

  228. V. Könyves, P. André, A. Men’shchikov et al., A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey. Astron. Astrophys. 584, A91 (2015)

    Article  Google Scholar 

  229. V. Könyves, P. André, D. Arzoumanian et al., Properties of the dense core population in Orion B as seen by the Herschel Gould Belt survey. Astron. Astrophys. 635, A34 (2020)

    Article  Google Scholar 

  230. B. Körtgen, R. Banerjee, Impact of magnetic fields on molecular cloud formation and evolution. Mon. Not. R. Astron. Soc. 451, 3340–3353 (2015)

    ADS  Article  Google Scholar 

  231. H. Koyama, Si. Inutsuka, Molecular cloud formation in shock-compressed layers. Astrophys. J. 532, 980–993 (2000)

    ADS  Article  Google Scholar 

  232. H. Koyama, Si. Inutsuka, An origin of supersonic motions in interstellar clouds. Astrophys. J. Lett. 564, L97–L100 (2002)

    ADS  Article  Google Scholar 

  233. C. Kramer, J. Stutzki, R. Rohrig et al., Clump mass spectra of molecular clouds. Astron. Astrophys. 329, 249–264 (1998)

    ADS  Google Scholar 

  234. K. Kreckel, C. Faesi, J.M.D. Kruijssen et al., A 50 pc scale view of star formation efficiency across NGC 628. Astrophys. J. Lett. 863, L21 (2018)

    ADS  Article  Google Scholar 

  235. K. Kreckel, I.T. Ho, G.A. Blanc et al., Mapping metallicity variations across nearby galaxy disks. Astrophys. J. 887(1), 80 (2019)

    ADS  Article  Google Scholar 

  236. A.G. Kritsuk, M.L. Norman, R. Wagner, On the density distribution in star-forming interstellar clouds. Astrophys. J. 727(1), L20 (2011)

    ADS  Article  Google Scholar 

  237. J.M.D. Kruijssen, On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 426, 3008–3040 (2012)

    ADS  Article  Google Scholar 

  238. J.M.D. Kruijssen, S.N. Longmore, Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue. Mon. Not. R. Astron. Soc. 435, 2598–2603 (2013)

    ADS  Article  Google Scholar 

  239. J.M.D. Kruijssen, S.N. Longmore, An uncertainty principle for star formation—I. Why galactic star formation relations break down below a certain spatial scale. Mon. Not. R. Astron. Soc. 439(4), 3239–3252 (2014)

    ADS  Article  Google Scholar 

  240. J.M.D. Kruijssen, J.E. Dale, S.N. Longmore, The dynamical evolution of molecular clouds near the Galactic Centre—I. Orbital structure and evolutionary timeline. Mon. Not. R. Astron. Soc. 447, 1059–1079 (2015)

    ADS  Article  Google Scholar 

  241. J.M.D. Kruijssen, A. Schruba, A.P.S. Hygate et al., An uncertainty principle for star formation—II. A new method for characterizing the cloud-scale physics of star formation and feedback across cosmic history. Mon. Not. R. Astron. Soc. 479, 1866–1952 (2018)

    ADS  Article  Google Scholar 

  242. J.M.D. Kruijssen, J.E. Dale, S.N. Longmore et al., The dynamical evolution of molecular clouds near the Galactic Centre—II. Spatial structure and kinematics of simulated clouds. Mon. Not. R. Astron. Soc. 484(4), 5734–5754 (2019a)

    ADS  Article  Google Scholar 

  243. J.M.D. Kruijssen, A. Schruba, M. Chevance et al., Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature 569(7757), 519–522 (2019b)

    ADS  Article  Google Scholar 

  244. M.R. Krumholz, C.F. McKee, A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630, 250–268 (2005)

    ADS  Article  Google Scholar 

  245. M.R. Krumholz, C.F. McKee, J. Bland-Hawthorn, Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019)

    ADS  Article  Google Scholar 

  246. A. Kuznetsova, L. Hartmann, J. Ballesteros-Paredes, Signatures of star cluster formation by cold collapse. Astrophys. J. 815(1), 27 (2015)

    ADS  Article  Google Scholar 

  247. A. Kuznetsova, L. Hartmann, J. Ballesteros-Paredes, Kinematics and structure of star-forming regions: insights from cold collapse models. Mon. Not. R. Astron. Soc. 473(2), 2372–2377 (2018)

    ADS  Article  Google Scholar 

  248. J. Kwan, The mass spectrum of interstellar clouds. Astrophys. J. 229, 567–577 (1979)

    ADS  Article  Google Scholar 

  249. J. Kwan, F. Valdes, Spiral gravitational potentials and the mass growth of molecular clouds. Astrophys. J. 271, 604–610 (1983)

    ADS  Article  Google Scholar 

  250. J. Kwan, F. Valdes, The spatial and mass distributions of molecular clouds and spiral structures. Astrophys. J. 315, 92 (1987)

    ADS  Article  Google Scholar 

  251. C.J. Lada, A.A. Muench, J. Rathborne et al., The nature of the dense core population in the Pipe Nebula: thermal cores under pressure. Astrophys. J. 672(1), 410–422 (2008)

    ADS  Article  Google Scholar 

  252. C.J. Lada, M. Lombardi, J.F. Alves, On the star formation rates in molecular clouds. Astrophys. J. 724, 687–693 (2010)

    ADS  Article  Google Scholar 

  253. C.J. Lada, M. Lombardi, C. Roman-Zuniga et al., Schmidt’s conjecture and star formation in molecular clouds. Astrophys. J. 778(2), 133 (2013)

    ADS  Article  Google Scholar 

  254. B. Ladjelate, P. André, V. Könyves et al., The Herschel view of the dense core population in the Ophiuchus molecular cloud. Astron. Astrophys. (2020, in press). ArXiv:2001.11036

  255. R.B. Larson, Numerical calculations of the dynamics of collapsing proto-star. Mon. Not. R. Astron. Soc. 145, 271 (1969)

    ADS  Article  Google Scholar 

  256. R.B. Larson, Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981)

    ADS  Article  Google Scholar 

  257. R.B. Larson, Cloud fragmentation and stellar masses. Mon. Not. R. Astron. Soc. 214, 379–398 (1985)

    ADS  Article  Google Scholar 

  258. R.B. Larson, Thermal physics, cloud geometry and the stellar initial mass function. Mon. Not. R. Astron. Soc. 359, 211–222 (2005)

    ADS  Article  Google Scholar 

  259. Y.N. Lee, P. Hennebelle, Stellar mass spectrum within massive collapsing clumps. II. Thermodynamics and tidal forces of the first Larson core. A robust mechanism for the peak of the IMF. Astron. Astrophys. 611, A89 (2018)

    Article  Google Scholar 

  260. Y.N. Lee, P. Hennebelle, G. Chabrier, Analytical Core Mass Function (CMF) from filaments: under which circumstances can filament fragmentation reproduce the CMF? Astrophys. J. 847(2), 114 (2017)

    ADS  Article  Google Scholar 

  261. D. Leisawitz, F.N. Bash, P. Thaddeus, A CO survey of regions around 34 open clusters. Astrophys. J. Suppl. Ser. 70, 731 (1989)

    ADS  Article  Google Scholar 

  262. A.K. Leroy, F. Walter, K. Sandstrom et al., Molecular gas and star formation in nearby disk galaxies. Astron. J. 146(2), 19 (2013)

    ADS  Article  Google Scholar 

  263. A.K. Leroy, A.D. Bolatto, E.C. Ostriker et al., ALMA reveals the molecular medium fueling the nearest nuclear starburst. Astrophys. J. 801(1), 25 (2015)

    ADS  Article  Google Scholar 

  264. A.K. Leroy, E. Schinnerer, A. Hughes et al., Cloud-scale ISM structure and star formation in M51. Astrophys. J. 846, 71 (2017)

    ADS  Article  Google Scholar 

  265. D.J. Leverett, J.L. Greenstein, The polarization of starlight by aligned dust grains. Astrophys. J. 114, 206 (1951)

    ADS  Article  Google Scholar 

  266. F. Levrier, F. Le Petit, P. Hennebelle et al., UV-driven chemistry in simulations of the interstellar medium. I. Post-processed chemistry with the Meudon PDR code. Astron. Astrophys. 544, A22 (2012)

    Article  Google Scholar 

  267. Y. Li, M.M. Mac Low, R.S. Klessen, Control of star formation in galaxies by gravitational instability. Astrophys. J. Lett. 620(1), L19–L22 (2005)

    ADS  Article  Google Scholar 

  268. S. Li, Q. Zhang, H.B. Liu et al., ALMA observations of NGC 6334S—I: forming massive stars and cluster in subsonic and transonic filamentary clouds. ArXiv e-prints (2020). ArXiv:2003.13534

  269. M. Lombardi, J.F. Alves, C.J. Lada, Larson’s third law and the universality of molecular cloud structure. Astron. Astrophys. 519, L7 (2010)

    ADS  Article  Google Scholar 

  270. S.N. Longmore, J.M.D. Kruijssen, N. Bastian et al., The formation and early evolution of young massive clusters, in Protostars and Planets VI (2014), pp. 291–314

    Google Scholar 

  271. L.A. Lopez, M.R. Krumholz, A.D. Bolatto et al., What drives the expansion of giant H II regions?: A study of stellar feedback in 30 Doradus. Astrophys. J. 731, 91 (2011)

    ADS  Article  Google Scholar 

  272. L.A. Lopez, M.R. Krumholz, A.D. Bolatto et al., The role of stellar feedback in the dynamics of H II regions. Astrophys. J. 795, 121 (2014)

    ADS  Article  Google Scholar 

  273. R.B. Loren, The cobwebs of Ophiuchus. II. 13CO filament kinematics. Astrophys. J. 338, 925 (1989)

    ADS  Article  Google Scholar 

  274. K.A. Marsh, J.M. Kirk, P. André et al., A census of dense cores in the Taurus L1495 cloud from the Herschel. Mon. Not. R. Astron. Soc. 459, 342–356 (2016)

    ADS  Article  Google Scholar 

  275. T. Maschberger, I.A. Bonnell, C.J. Clarke et al., The relation between accretion rates and the initial mass function in hydrodynamical simulations of star formation. Mon. Not. R. Astron. Soc. 439(1), 234–246 (2014)

    ADS  Article  Google Scholar 

  276. C.F. McKee, J.P. Ostriker, A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977)

    ADS  Article  Google Scholar 

  277. C.F. McKee, E.C. Ostriker, Theory of star formation. Annu. Rev. Astron. Astrophys. 45(1), 565–687 (2007)

    ADS  Article  Google Scholar 

  278. C.F. McKee, E.G. Zweibel, On the virial theorem for turbulent molecular clouds. Astrophys. J. 399, 551 (1992)

    ADS  Article  Google Scholar 

  279. A.F. McLeod, J.E. Dale, C.J. Evans et al., Feedback from massive stars at low metallicities: MUSE observations of N44 and N180 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 486(4), 5263–5288 (2019a)

    ADS  Article  Google Scholar 

  280. A.F. McLeod, J.M.D. Kruijssen, D.R. Weisz et al., Stellar feedback and resolved stellar IFU spectroscopy in the nearby spiral galaxy NGC 300. Astrophys. J. (2019b, in press). ArXiv:1910.11270

  281. S.E. Meidt, E. Schinnerer, S. García-Burillo et al., Gas kinematics on giant molecular cloud scales in M51 with PAWS: cloud stabilization through dynamical pressure. Astrophys. J. 779(1), 45 (2013)

    ADS  Article  Google Scholar 

  282. S.E. Meidt, A. Hughes, C.L. Dobbs et al., Short GMC lifetimes: an observational estimate with the PdBI Arcsecond Whirlpool Survey (PAWS). Astrophys. J. 806(1), 72 (2015)

    ADS  Article  Google Scholar 

  283. S.E. Meidt, A.K. Leroy, E. Rosolowsky et al., A model for the onset of self-gravitation and star formation in molecular gas governed by galactic forces. I. Cloud-scale gas motions. Astrophys. J. 854(2), 100 (2018)

    ADS  Article  Google Scholar 

  284. S.E. Meidt, S. Glover, J.M.D. Kruijssen et al., A model for the onset of self-gravitation and star formation in molecular gas governed by galactic forces: II. A bottleneck set by cloud-environment decoupling. Astrophys. J. (2019, submitted)

  285. A. Men’shchikov, A multi-scale filament extraction method: getfilaments. Astron. Astrophys. 560, A63 (2013)

    ADS  Article  Google Scholar 

  286. A. Men’shchikov, P. André, P. Didelon et al., A multi-scale, multi-wavelength source extraction method: getsources. Astron. Astrophys. 542, A81 (2012)

    Article  Google Scholar 

  287. L. Mestel, J.L. Spitzer, Star formation in magnetic dust clouds. Mon. Not. R. Astron. Soc. 116, 503 (1956)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  288. M.S. Miesch, J.M. Scalo, Exponential tails in the centroid velocity distributions of star-forming regions. Astrophys. J. Lett. 450, L27 (1995)

    ADS  Article  Google Scholar 

  289. M.S. Miesch, J. Scalo, J. Bally, Velocity field statistics in star-forming regions. I. Centroid velocity observations. Astrophys. J. 524(2), 895–922 (1999)

    ADS  Article  Google Scholar 

  290. R.E. Miura, K. Kohno, T. Tosaki et al., Giant molecular cloud evolutions in the nearby spiral galaxy M33. Astrophys. J. 761(1), 37 (2012)

    ADS  Article  Google Scholar 

  291. M.A. Miville-Deschênes, P.G. Martin, A. Abergel et al., Herschel-SPIRE observations of the Polaris flare: structure of the diffuse interstellar medium at the sub-parsec scale. Astron. Astrophys. 518, L104 (2010)

    ADS  Article  Google Scholar 

  292. M.A. Miville-Deschênes, P.A. Duc, F. Marleau et al., Probing interstellar turbulence in cirrus with deep optical imaging: no sign of energy dissipation at 0.01 pc scale. Astron. Astrophys. 593, A4 (2016)

    Article  Google Scholar 

  293. M.A. Miville-Deschênes, N. Murray, E.J. Lee, Physical properties of molecular clouds for the entire Milky Way disk. Astrophys. J. 834(1), 1–31 (2017)

    ADS  Google Scholar 

  294. S.M. Miyama, S. Narita, C. Hayashi, Fragmentation of isothermal sheet-like clouds. II—full nonlinear numerical simulations. Prog. Theor. Phys. 78(6), 1273–1287 (1987)

    ADS  Article  Google Scholar 

  295. S. Molinari, B. Swinyard, J. Bally et al., Clouds, filaments, and protostars: the Herschel Hi-GAL Milky Way. Astron. Astrophys. 518, L100 (2010)

    ADS  Article  Google Scholar 

  296. S. Molinari, J. Bally, A. Noriega-Crespo et al., A 100 pc elliptical and twisted ring of cold and dense molecular clouds revealed by Herschel around the Galactic Center. Astrophys. J. Lett. 735(2), L33 (2011)

    ADS  Article  Google Scholar 

  297. B. Mookerjea, C. Kramer, M. Nielbock et al., The Giant Molecular Cloud associated with RCW 106. A 1.2 mm continuum mapping study. Astron. Astrophys. 426, 119–129 (2004)

    ADS  Article  Google Scholar 

  298. F. Motte, P. Andre, R. Neri, The initial conditions of star formation in the rho Ophiuchi main cloud: wide-field millimeter continuum mapping. Astron. Astrophys. 336, 150–172 (1998)

    ADS  Google Scholar 

  299. F. Motte, P. André, D. Ward-Thompson et al., A SCUBA survey of the NGC 2068/2071 protoclusters. Astron. Astrophys. 372, L41–L44 (2001)

    ADS  Article  Google Scholar 

  300. F. Motte, T. Nony, F. Louvet et al., The unexpectedly large proportion of high-mass star-forming cores in a galactic mini-starburst. Nat. Astron. 2, 478–482 (2018)

    ADS  Article  Google Scholar 

  301. N. Murray, P. Chang, Star formation in self-gravitating turbulent fluids. Astrophys. J. 804(1), 44 (2015)

    ADS  Article  Google Scholar 

  302. P.C. Myers, Dense cores in dark clouds. III. Subsonic turbulence. Astrophys. J. 270, 105–118 (1983)

    ADS  Article  Google Scholar 

  303. P. Myers, Filamentary structure of star-forming complexes. Astrophys. J. 700, 1609–1625 (2009)

    ADS  Article  Google Scholar 

  304. M. Nagasawa, Gravitational instability of the isothermal gas cylinder with an axial magnetic field. Prog. Theor. Phys. 77(3), 635–652 (1987)

    ADS  Article  Google Scholar 

  305. F. Nakamura, Z.Y. Li, Quiescent cores and the efficiency of turbulence-accelerated, magnetically regulated star formation. Astrophys. J. 631(1), 411–428 (2005)

    ADS  Article  Google Scholar 

  306. R. Naranjo-Romero, E. Vázquez-Semadeni, R.M. Loughnane, Hierarchical gravitational fragmentation. I. Collapsing cores within collapsing clouds. Astrophys. J. 814(1), 48 (2015)

    ADS  Article  Google Scholar 

  307. Q. Nguyen-Luong, F. Nakamura, K. Sugitani et al., Large-scale molecular gas distribution in the M17 cloud complex: dense gas conditions of massive star formation? Astrophys. J. 891(1), 66 (2020)

    ADS  Article  Google Scholar 

  308. E. Ntormousi, P. Hennebelle, P. André et al., The effect of ambipolar diffusion on low-density molecular ISM filaments. Astron. Astrophys. 589, A24 (2016)

    ADS  Article  Google Scholar 

  309. S.S.R. Offner, Y. Liu, Turbulent action at a distance due to stellar feedback in magnetized clouds. Nat. Astron. 2, 896–900 (2018)

    ADS  Article  Google Scholar 

  310. S. Ohashi, P. Sanhueza, H.R.V. Chen et al., Dense core properties in the infrared dark cloud G14.225-0.506 revealed by ALMA. Astrophys. J. 833(2), 209 (2016)

    ADS  Article  Google Scholar 

  311. T. Onishi, A. Mizuno, A. Kawamura et al., A C18O survey of dense cloud cores in Taurus: star formation. Astrophys. J. 502, 296–314 (1998)

    ADS  Article  Google Scholar 

  312. J.H. Oort, Outline of a theory on the origin and acceleration of interstellar clouds and O associations. Bull. Astron. Inst. s12, 177 (1954)

    ADS  Google Scholar 

  313. V. Ossenkopf, M.M. Mac Low, Turbulent velocity structure in molecular clouds. Astron. Astrophys. 390, 307–326 (2002)

    ADS  Article  Google Scholar 

  314. J. Ostriker, The equilibrium of polytropic and isothermal cylinders. Astrophys. J. 140, 1056 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  315. P. Padoan, Å. Nordlund, The star formation rate of supersonic magnetohydrodynamic turbulence. Astrophys. J. 730, 40 (2011)

    ADS  Article  Google Scholar 

  316. P. Padoan, L. Pan, T. Haugbølle et al., Supernova driving. I. The origin of molecular cloud turbulence. Astrophys. J. 822(1), 11 (2016)

    ADS  Article  Google Scholar 

  317. P. Padoan, L. Pan, M. Juvela et al., The origin of massive stars: the inertial-inflow model. ArXiv e-prints (2019). ArXiv:1911.04465

  318. A. Palau, R. Estalella, J.M. Girart et al., Fragmentation of massive dense cores down to \(\sim1000~\mbox{AU}\): relation between fragmentation and density structure. Astrophys. J. 785(1), 42 (2014)

    ADS  Article  Google Scholar 

  319. P. Palmeirim, P. André, J. Kirk et al., Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? Astron. Astrophys. 550, A38 (2013)

    Article  Google Scholar 

  320. H.A. Pan, Y. Fujimoto, E.J. Tasker et al., Effects of galactic disc inclination and resolution on observed GMC properties and Larson’s scaling relations. Mon. Not. R. Astron. Soc. 458(3), 2443–2453 (2016)

    ADS  Article  Google Scholar 

  321. L. Pan, P. Padoan, Å. Nordlund, The probability distribution of density fluctuations in supersonic turbulence. Astrophys. J. 881, 155 (2019)

    ADS  Article  Google Scholar 

  322. G.V. Panopoulou, K. Tassis, P.F. Goldsmith et al., 13CO filaments in the Taurus molecular cloud. Mon. Not. R. Astron. Soc. 444, 2507–2524 (2014)

    ADS  Article  Google Scholar 

  323. G.V. Panopoulou, I. Psaradaki, R. Skalidis et al., A closer look at the ‘characteristic’ width of molecular cloud filaments. Mon. Not. R. Astron. Soc. 466, 2529–2541 (2017)

    ADS  Article  Google Scholar 

  324. E.N. Parker, Cosmical Magnetic Fields. Their Origin and Their Activity (Oxford University Press, London, 1979)

    Google Scholar 

  325. T. Passot, E. Vázquez-Semadeni, Density probability distribution in one-dimensional polytropic gas dynamics. Phys. Rev. E 58(4), 4501–4510 (1998)

    ADS  Article  Google Scholar 

  326. T. Passot, A. Pouquet, P. Woodward, The plausibility of Kolmogorov-type spectra in molecular clouds. Astron. Astrophys. 197(1–2), 228–234 (1988)

    ADS  MATH  Google Scholar 

  327. T. Passot, E. Vazquez-Semadeni, A. Pouquet, A turbulent model for the interstellar medium. II. Magnetic fields and rotation. Astrophys. J. 455, 536 (1995)

    ADS  Article  Google Scholar 

  328. N. Peretto, P. André, V. Könyves et al., The Pipe Nebula as seen with Herschel: formation of filamentary structures by large-scale compression? Astron. Astrophys. 541, A63 (2012)

    Article  Google Scholar 

  329. N. Peretto, G.A. Fuller, A. Duarte-Cabral et al., Global collapse of molecular clouds as a formation mechanism for the most massive stars. Astron. Astrophys. 555, A112 (2013)

    Article  Google Scholar 

  330. N. Peretto, G.A. Fuller, P. André et al., SDC13 infrared dark clouds: longitudinally collapsing filaments? Astron. Astrophys. 561, A83 (2014)

    Article  Google Scholar 

  331. T.G. Phillips, P.J. Huggins, P.G. Wannier et al., Observations of \(\mbox{CO}(J = 2-1)\) emission from molecular clouds. Astrophys. J. 231, 720–731 (1979)

    ADS  Article  Google Scholar 

  332. J.E. Pineda, A.A. Goodman, H.G. Arce et al., Direct observation of a sharp transition to coherence in dense cores. Astrophys. J. Lett. 712(1), L116–L121 (2010)

    ADS  Article  Google Scholar 

  333. J.E. Pineda, A.A. Goodman, H.G. Arce et al., Expanded very large array observations of the Barnard 5 star-forming core: embedded filaments revealed. Astrophys. J. Lett. 739, L2 (2011)

    ADS  Article  Google Scholar 

  334. J.L. Pineda, W.D. Langer, T. Velusamy et al., A Herschel [C ii] galactic plane survey. I. The global distribution of ISM gas components. Astron. Astrophys. 554, A103 (2013)

    ADS  Article  Google Scholar 

  335. Planck Collaboration, Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds. Astron. Astrophys. 586, A138 (2016)

    Article  Google Scholar 

  336. R. Plume, D.T. Jaffe, N.J. Evans II et al., Dense gas and star formation: characteristics of cloud cores associated with water masers. Astrophys. J. 476(2), 730–749 (1997)

    ADS  Article  Google Scholar 

  337. R. Pokhrel, R. Gutermuth, B. Ali et al., A Herschel-SPIRE survey of the Mon R2 giant molecular cloud: analysis of the gas column density probability density function. Mon. Not. R. Astron. Soc. 461, 22–35 (2016)

    ADS  Article  Google Scholar 

  338. A. Pon, D. Johnstone, F. Heitsch, Modes of star formation in finite molecular clouds. Astrophys. J. 740(2), 88 (2011)

    ADS  Article  Google Scholar 

  339. A. Pon, J.A. Toalá, D. Johnstone et al., Aspect ratio dependence of the free-fall time for non-spherical symmetries. Astrophys. J. 756(2), 145 (2012)

    ADS  Article  Google Scholar 

  340. J.M. Rathborne, S.N. Longmore, J.M. Jackson et al., Turbulence sets the initial conditions for star formation in high-pressure environments. Astrophys. J. Lett. 795, L25 (2014)

    ADS  Article  Google Scholar 

  341. M.A. Reid, C.D. Wilson, High-mass star formation. I. The mass distribution of submillimeter clumps in NGC 7538. Astrophys. J. 625(2), 891–905 (2005)

    ADS  Article  Google Scholar 

  342. M.A. Reid, C.D. Wilson, High-mass star formation. II. The mass function of submillimeter clumps in M17. Astrophys. J. 644(2), 990–1005 (2006a)

    ADS  Article  Google Scholar 

  343. M.A. Reid, C.D. Wilson, High-mass star formation. III. The functional form of the submillimeter clump mass function. Astrophys. J. 650(2), 970–984 (2006b)

    ADS  Article  Google Scholar 

  344. M. Reina-Campos, J.M.D. Kruijssen, A unified model for the maximum mass scales of molecular clouds, stellar clusters and high-redshift clumps. Mon. Not. R. Astron. Soc. 469, 1282–1298 (2017)

    ADS  Article  Google Scholar 

  345. A. Rivera-Ingraham, I. Ristorcelli, M. Juvela et al., Galactic cold cores. VII. Filament formation and evolution: methods and observational constraints. Astron. Astrophys. 591, A90 (2016)

    Article  Google Scholar 

  346. J. Roman-Duval, J.M. Jackson, M. Heyer et al., Physical properties and galactic distribution of molecular clouds identified in the Galactic Ring Survey. Astrophys. J. 723(1), 492–507 (2010)

    ADS  Article  Google Scholar 

  347. J. Roman-Duval, M. Heyer, C.M. Brunt et al., Distribution and mass of diffuse and dense CO gas in the Milky Way. Astrophys. J. 818(2), 144 (2016)

    ADS  Article  Google Scholar 

  348. C.G. Román-Zúñiga, J.F. Alves, C.J. Lada et al., Deep near-infrared survey of the Pipe Nebula. II. Data, methods, and dust extinction maps. Astrophys. J. 725(2), 2232–2250 (2010)

    ADS  Article  Google Scholar 

  349. E.W. Rosolowsky, J.E. Pineda, J. Kauffmann et al., Structural analysis of molecular clouds: dendrograms. Astrophys. J. 679(2), 1338–1351 (2008)

    ADS  Article  Google Scholar 

  350. E. Rosolowsky, M.K. Dunham, A. Ginsburg et al., The Bolocam Galactic Plane Survey. II. Catalog of the image data. Astrophys. J. Suppl. Ser. 188(1), 123–138 (2010)

    ADS  Article  Google Scholar 

  351. J. Rowles, D. Froebrich, The structure of molecular clouds—I. All-sky near-infrared extinction maps. Mon. Not. R. Astron. Soc. 395(3), 1640–1648 (2009)

    ADS  Article  Google Scholar 

  352. A. Roy, P. André, D. Arzoumanian et al., How the power spectrum of dust continuum images may hide the presence of a characteristic filament width. Astron. Astrophys. 626, A76 (2019)

    Article  Google Scholar 

  353. D. Russeil, M. Figueira, A. Zavagno et al., Herschel-HOBYS study of the earliest phases of high-mass star formation in NGC 6357. Astron. Astrophys. 625, A134 (2019)

    Article  Google Scholar 

  354. C.J. Salji, J.S. Richer, J.V. Buckle et al., The JCMT Gould Belt Survey: properties of star-forming filaments in Orion A North. Mon. Not. R. Astron. Soc. 449, 1782–1796 (2015)

    ADS  Article  Google Scholar 

  355. E.E. Salpeter, The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955)

    ADS  Article  Google Scholar 

  356. D.B. Sanders, N.Z. Scoville, P.M. Solomon, Giant molecular clouds in the galaxy. II. Characteristics of discrete features. Astrophys. J. 289, 373–387 (1985)

    ADS  Article  Google Scholar 

  357. J. Scalo, Perception of interstellar structure—facing complexity, in Physical Processes in Fragmentation and Star Formation. Astrophysics and Space Science Library, vol. 162, ed. by R. Capuzzo-Dolcetta, C. Chiosi, A. di Fazio (1990), pp. 151–176

    Google Scholar 

  358. E. Schisano, K.L.J. Rygl, S. Molinari et al., The identification of filaments on far-infrared and submillimeter images: morphology, physical conditions and relation with star formation of filamentary structure. Astrophys. J. 791, 27 (2014)

    ADS  Article  Google Scholar 

  359. S. Schneider, B.G. Elmegreen, A catalog of dark globular filaments. Astrophys. J. Suppl. Ser. 41, 87–95 (1979)

    ADS  Article  Google Scholar 

  360. N. Schneider, T. Csengeri, S. Bontemps et al., Dynamic star formation in the massive DR21 filament. Astron. Astrophys. 520, A49 (2010)

    Article  Google Scholar 

  361. A. Schruba, A.K. Leroy, F. Walter et al., The scale dependence of the molecular gas depletion time in M33. Astrophys. J. 722(2), 1699–1706 (2010)

    ADS  Article  Google Scholar 

  362. A. Schruba, J.M.D. Kruijssen, A.K. Leroy, How galactic environment affects the dynamical state of molecular clouds and their star formation efficiency. Astrophys. J. 883(1), 2 (2019)

    ADS  Article  Google Scholar 

  363. N.Z. Scoville, K. Hersh, Collisional growth of giant molecular clouds. Astrophys. J. 229, 578–582 (1979)

    ADS  Article  Google Scholar 

  364. N.Z. Scoville, C.D. Wilson, Molecular gas forming massive star clusters and starbursts, in The Formation and Evolution of Massive Young Star Clusters, ed. by H.J.G.L.M. Lamers, L.J. Smith, A. Nota. Astronomical Society of the Pacific Conference Series, vol. 322 (2004), p. 245

    Google Scholar 

  365. D. Seifried, W. Schmidt, J.C. Niemeyer, Forced turbulence in thermally bistable gas: a parameter study. Astron. Astrophys. 526, A14 (2011)

    ADS  MATH  Article  Google Scholar 

  366. D. Seifried, S. Walch, S. Haid et al., Is molecular cloud turbulence driven by external supernova explosions? Astrophys. J. 855(2), 81 (2018)

    ADS  Article  Google Scholar 

  367. R. Shetty, E.C. Ostriker, Cloud and star formation in disk galaxy models with feedback. Astrophys. J. 684(2), 978–995 (2008)

    ADS  Article  Google Scholar 

  368. R. Shetty, S.C. Glover, C.P. Dullemond et al., Modelling CO emission—I. CO as a column density tracer and the X factor in molecular clouds. Mon. Not. R. Astron. Soc. 412(3), 1686–1700 (2011)

    ADS  Article  Google Scholar 

  369. R. Shetty, C.N. Beaumont, M.G. Burton et al., The linewidth-size relationship in the dense interstellar medium of the Central Molecular Zone. Mon. Not. R. Astron. Soc. 425(1), 720–729 (2012)

    ADS  Article  Google Scholar 

  370. Y. Shimajiri, P. André, E. Ntormousi et al., Probing fragmentation and velocity sub-structure in the massive NGC 6334 filament with ALMA. Astron. Astrophys. 632, A83 (2019a)

    Article  Google Scholar 

  371. Y. Shimajiri, P. André, P. Palmeirim et al., Probing accretion of ambient cloud material into the Taurus B211/B213 filament. Astron. Astrophys. 623, A16 (2019b)

    Article  Google Scholar 

  372. Y.L. Shirley, N.J. Evans II, K.E. Young et al., A CS \(J=5\rightarrow4\) mapping survey toward high-mass star-forming cores associated with water masers. Astrophys. J. Suppl. Ser. 149(2), 375–403 (2003)

    ADS  Article  Google Scholar 

  373. F.H. Shu, Self-similar collapse of isothermal spheres and star formation. Astrophys. J. 214, 488–497 (1977)

    ADS  Article  Google Scholar 

  374. F.H. Shu, F.C. Adams, S. Lizano, Star formation in molecular clouds: observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987)

    ADS  Article  Google Scholar 

  375. J. Silk, Feedback, disk self-regulation, and galaxy formation. Astrophys. J. 481(2), 703–709 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  376. R.J. Smith, S.C.O. Glover, R.S. Klessen, On the nature of star-forming filaments—I. Filament morphologies. Mon. Not. R. Astron. Soc. 445(3), 2900–2917 (2014)

    ADS  Article  Google Scholar 

  377. R.J. Smith, S.C.O. Glover, R.S. Klessen et al., On the nature of star-forming filaments—II. Subfilaments and velocities. Mon. Not. R. Astron. Soc. 455(4), 3640–3655 (2016)

    ADS  Article  Google Scholar 

  378. J.D. Soler, Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure. Astron. Astrophys. 629, A96 (2019)

    ADS  Article  Google Scholar 

  379. J.D. Soler, P. Hennebelle, What are we learning from the relative orientation between density structures and the magnetic field in molecular clouds? Astron. Astrophys. 607, A2 (2017)

    ADS  Article  Google Scholar 

  380. J.D. Soler, P. Hennebelle, P.G. Martin et al., An imprint of molecular cloud magnetization in the morphology of the dust polarized emission. Astrophys. J. 774(2), 128 (2013)

    ADS  Article  Google Scholar 

  381. P.M. Solomon, A.R. Rivolo, J. Barrett et al., Mass, luminosity, and line width relations of galactic molecular clouds. Astrophys. J. 319, 730 (1987)

    ADS  Article  Google Scholar 

  382. S.W. Stahler, F. Palla, The Formation of Stars (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  383. T. Stanke, M.D. Smith, R. Gredel et al., An unbiased search for the signatures of protostars in the \(\rho\) Ophiuchi molecular cloud. II. Millimetre continuum observations. Astron. Astrophys. 447(2), 609–622 (2006)

    ADS  Article  Google Scholar 

  384. J.S. Stodólkiewicz, On the gravitational instability of some magneto-hydrodynamical systems of astrophysical interest. Part III. Acta Astron. 13, 30–54 (1963)

    ADS  MATH  Google Scholar 

  385. S. Storm, L.G. Mundy, K.I. Lee et al., CARMA large area star formation survey: dense gas in the Young L1451 region of Perseus. Astrophys. J. 830(2), 127 (2016)

    ADS  Article  Google Scholar 

  386. R. Stutzki, The small scale structure of molecular clouds. Rev. Mod. Astron. 6, 209–232 (1993)

    ADS  Google Scholar 

  387. J. Stutzki, R. Guesten, High spatial resolution isotopic CO and CS observations of M17 SW: the clumpy structure of the molecular cloud core. Astrophys. J. 356, 513 (1990)

    ADS  Article  Google Scholar 

  388. J. Sun, A.K. Leroy, A. Schruba et al., Cloud-scale molecular gas properties in 15 nearby galaxies. Astrophys. J. 860(2), 172 (2018)

    ADS  Article  Google Scholar 

  389. J. Sun, A.K. Leroy, E.C. Ostriker et al., Dynamical equilibrium in the molecular ISM in 28 nearby star-forming galaxies. Astrophys. J. 892, 148 (2020)

    ADS  Article  Google Scholar 

  390. M. Tafalla, A. Hacar, Chains of dense cores in the Taurus L1495/B213 complex. Astron. Astrophys. 574, A104 (2015)

    ADS  Article  Google Scholar 

  391. M. Tafalla, P.C. Myers, P. Caselli et al., On the internal structure of starless cores. I. Physical conditions and the distribution of CO, CS, N2H+, and NH3 in L1498 and L1517B. Astron. Astrophys. 416, 191–212 (2004)

    ADS  Article  Google Scholar 

  392. L.G. Taff, M.P. Savedoff, The mass distribution of objects under-going collisions with applications to interstellar HI clouds. Mon. Not. R. Astron. Soc. 164, 357 (1973)

    ADS  Article  Google Scholar 

  393. E.J. Tasker, J.C. Tan, Star formation in disk galaxies. I. Formation and evolution of giant molecular clouds via gravitational instability and cloud collisions. Astrophys. J. 700(1), 358–375 (2009)

    ADS  Article  Google Scholar 

  394. K. Tassis, D.A. Christie, A. Urban et al., Do lognormal column-density distributions in molecular clouds imply supersonic turbulence? Mon. Not. R. Astron. Soc. 408(2), 1089–1094 (2010)

    ADS  Article  Google Scholar 

  395. G. Tenorio-Tagle, P. Bodenheimer, Large-scale expanding superstructures in galaxies. Annu. Rev. Astron. Astrophys. 26, 145–197 (1988)

    ADS  Article  Google Scholar 

  396. L. Testi, A.I. Sargent, Star formation in clusters: a survey of compact millimeter-wave sources in the Serpens core. Astrophys. J. Lett. 508(1), L91–L94 (1998)

    ADS  Article  Google Scholar 

  397. A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  398. J.A. Toalá, E. Vázquez-Semadeni, G.C. Gómez, The free-fall time of finite sheets and filaments. Astrophys. J. 744(2), 190 (2012)

    ADS  Article  Google Scholar 

  399. J.E. Tohline, Hydrodynamic collapse. Fundam. Cosm. Phys. 8, 1–82 (1982)

    ADS  Google Scholar 

  400. K. Tomisaka, Coagulation of interstellar clouds in spiral gravitational potential and formation of giant molecular clouds. Publ. Astron. Soc. Jpn. 36(3), 457–475 (1984)

    ADS  Google Scholar 

  401. K. Tomisaka, Magnetohydrostatic equilibrium structure and mass of filamentary isothermal cloud threaded by lateral magnetic field. Astrophys. J. 785, 24 (2014)

    ADS  Article  Google Scholar 

  402. A. Traficante, A. Duarte-Cabral, D. Elia et al., Testing the Larson relations in massive clumps. Mon. Not. R. Astron. Soc. 477(2), 2220–2242 (2018a)

    ADS  Article  Google Scholar 

  403. A. Traficante, G.A. Fuller, R.J. Smith et al., Massive 70 μm quiet clumps—II. Non-thermal motions driven by gravity in massive star formation? Mon. Not. R. Astron. Soc. 473(4), 4975–4985 (2018b)

    ADS  Article  Google Scholar 

  404. A. Traficante, Y.N. Lee, P. Hennebelle et al., A possible observational bias in the estimation of the virial parameter in virialized clumps. Astron. Astrophys. 619, L7 (2018c)

    ADS  Article  Google Scholar 

  405. A. Tritsis, K. Tassis, Striations in molecular clouds: streamers or MHD waves? Mon. Not. R. Astron. Soc. 462, 3602–3615 (2016)

    ADS  Article  Google Scholar 

  406. T.H. Troland, R.M. Crutcher, Magnetic fields in dark cloud cores: Arecibo OH Zeeman observations. Astrophys. J. 680(1), 457–465 (2008)

    ADS  Article  Google Scholar 

  407. A.E. Tsitali, A. Belloche, R.T. Garrod et al., Star formation in Chamaeleon I and III: a molecular line study of the starless core population. Astron. Astrophys. 575, A27 (2015)

    ADS  Article  Google Scholar 

  408. D. Utomo, J. Sun, A.K. Leroy et al., Star formation efficiency per free-fall time in nearby galaxies. Astrophys. J. Lett. 861(2), L18 (2018)

    ADS  Article  Google Scholar 

  409. V. Valdivia, P. Hennebelle, M. Gérin et al., H2 distribution during the formation of multiphase molecular clouds. Astron. Astrophys. 587, A76 (2016)

    ADS  Article  Google Scholar 

  410. V. Valdivia, B. Godard, P. Hennebelle et al., Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift. Astron. Astrophys. 600, A114 (2017)

    Article  Google Scholar 

  411. E. Vazquez-Semadeni, Hierarchical structure in nearly pressureless flows as a consequence of self-similar statistics. Astrophys. J. 423, 681 (1994)

    ADS  Article  Google Scholar 

  412. E. Vázquez-Semadeni, Turbulence in molecular clouds, in Millimeter-Wave Astronomy: Molecular Chemistry & Physics in Space, Proceedings of the 1996 INAOE Summer School of Millimeter-Wave Astronomy Held at INAOE, ed. by W.F. Wall, A. Carramiñana, L. Carrasco. Astrophysics and Space Science Library, vol. 241. Tonantzintla, Puebla, Mexico, 15–31 July 1996 (Kluwer Academic Publishers, Dordrecht, 1999), p. 161

    Google Scholar 

  413. E. Vázquez-Semadeni, N. García, The probability distribution function of column density in molecular clouds. Astrophys. J. 557(2), 727–735 (2001)

    ADS  Article  Google Scholar 

  414. E. Vazquez-Semadeni, T. Passot, A. Pouquet, A turbulent model for the interstellar medium. I. Threshold star formation and self-gravity. Astrophys. J. 441, 702 (1995)

    ADS  Article  Google Scholar 

  415. E. Vázquez-Semadeni, D. Ryu, T. Passot et al., Molecular cloud evolution. I. Molecular cloud and thin cold neutral medium sheet formation. Astrophys. J. 643, 245–259 (2006)

    ADS  Article  Google Scholar 

  416. E. Vázquez-Semadeni, G.C. Gómez, A.K. Jappsen et al., Molecular cloud evolution. II. From cloud formation to the early stages of star formation in decaying conditions. Astrophys. J. 657(2), 870–883 (2007)

    ADS  Article  Google Scholar 

  417. E. Vázquez-Semadeni, A. González-Samaniego, P. Colín, Hierarchical star cluster assembly in globally collapsing molecular clouds. Mon. Not. R. Astron. Soc. 467, 1313–1328 (2017)

    ADS  Google Scholar 

  418. E. Vázquez-Semadeni, M. Zamora-Avilés, R. Galván-Madrid et al., Molecular cloud evolution—VI. Measuring cloud ages. Mon. Not. R. Astron. Soc. 479(3), 3254–3263 (2018)

    ADS  Article  Google Scholar 

  419. E. Vázquez-Semadeni, A. Palau, J. Ballesteros-Paredes et al., Global hierarchical collapse in molecular clouds. Towards a comprehensive scenario. Mon. Not. R. Astron. Soc. 490, 3061–3097 (2019)

    ADS  Article  Google Scholar 

  420. T.V. Veltchev, V. Ossenkopf-Okada, O. Stanchev et al., Spatially associated clump populations in Rosette from CO and dust maps. Mon. Not. R. Astron. Soc. 475, 2215–2235 (2018)

    ADS  Article  Google Scholar 

  421. S. Walch, T. Naab, The energy and momentum input of supernova explosions in structured and ionized molecular clouds. Mon. Not. R. Astron. Soc. 451, 2757–2771 (2015)

    ADS  Article  Google Scholar 

  422. K. Wang, L. Testi, A. Ginsburg et al., Large-scale filaments associated with Milky Way spiral arms. Mon. Not. R. Astron. Soc. 450, 4043–4049 (2015)

    ADS  Article  Google Scholar 

  423. J.L. Ward, M. Chevance, J.M.D. Kruijssen et al., Towards a multi-tracer timeline of star formation in the LMC I: deriving the lifetimes of HI clouds. Mon. Not. R. Astron. Soc. (2019, submitted)

  424. A.P. Whitworth, A.S. Bhattal, N. Francis et al., Star formation and the singular isothermal sphere. Mon. Not. R. Astron. Soc. 283(3), 1061–1070 (1996)

    ADS  Article  Google Scholar 

  425. J.P. Williams, E.J. de Geus, L. Blitz, Determining structure in molecular clouds. Astrophys. J. 428, 693–712 (1994)

    ADS  Article  Google Scholar 

  426. R.W. Wilson, K.B. Jefferts, A.A. Penzias, Carbon monoxide in the Orion Nebula. Astrophys. J. Lett. 161, L43 (1970)

    ADS  Article  Google Scholar 

  427. M.G. Wolfire, C.F. McKee, D. Hollenbach et al., Neutral atomic phases of the interstellar medium in the galaxy. Astrophys. J. 587, 278–311 (2003)

    ADS  Article  Google Scholar 

  428. J. Wu, N.J. Evans II, Y.L. Shirley et al., The properties of massive, dense clumps: mapping surveys of HCN and CS. Astrophys. J. Suppl. Ser. 188(2), 313–357 (2010)

    ADS  Article  Google Scholar 

  429. S. Xu, A. Lazarian, Turbulence in a self-gravitating molecular cloud core. Astrophys. J. 890(2), 157 (2020)

    ADS  Article  Google Scholar 

  430. N. Ysard, A. Abergel, I. Ristorcelli et al., Variation in dust properties in a dense filament of the Taurus molecular complex (L1506). Astron. Astrophys. 559, A133 (2013)

    Article  Google Scholar 

  431. M. Zamora-Avilés, E. Vázquez-Semadeni, P. Colín, An evolutionary model for collapsing molecular clouds and their star formation activity. Astrophys. J. 751(1), 77 (2012)

    ADS  Article  Google Scholar 

  432. M. Zamora-Avilés, J. Ballesteros-Paredes, L.W. Hartmann, Are fibres in molecular cloud filaments real objects? Mon. Not. R. Astron. Soc. 472(1), 647–656 (2017)

    ADS  Article  Google Scholar 

  433. M. Zamora-Avilés, E. Vázquez-Semadeni, B. Körtgen et al., Magnetic suppression of turbulence and the star formation activity of molecular clouds. Mon. Not. R. Astron. Soc. 474(4), 4824–4836 (2018)

    ADS  Article  Google Scholar 

  434. C.P. Zhang, G.X. Li, Mass-size scaling \(M\propto r^{1}.67\) of massive star-forming clumps—evidences of turbulence-regulated gravitational collapse. Mon. Not. R. Astron. Soc. 469(2), 2286–2291 (2017)

    ADS  Article  Google Scholar 

  435. G.Y. Zhang, J.L. Xu, A.I. Vasyunin et al., Physical properties and chemical composition of the cores in the California molecular cloud. Astron. Astrophys. 620, A163 (2018)

    Article  Google Scholar 

  436. S. Zhang, A. Zavagno, J. Yuan et al., HII regions and high-mass starless clump candidates I: catalogs and properties. ArXiv e-prints (2020). ArXiv:2003.11433

Download references

Acknowledgements

The authors acknowledge the hospitality of the International Space Science Institute during the “Workshop on Star Formation”, held in Bern, Switzerland, May 2019. JBP acknowledges UNAM-DGAPA-PAPIIT support through grant number IN-111-219. PhA acknowledges support from the French national programs of CNRS/INSU on stellar and ISM physics (PNPS and PCMI) and from the European Research Council via the ERC Advanced Grant ORISTARS (Grant Agreement no. 291294). RSK acknowledges financial support from the German Research Foundation (DFG) via the collaborative research center (SFB 881, Project-ID 138713538) “The Milky Way System” (subprojects A1, B1, B2, and B8). He also thanks for funding from the Heidelberg Cluster of Excellence STRUCTURES in the framework of Germany’s Excellence Strategy (grant EXC-2181/1—390900948) and for funding from the European Research Council via the ERC Synergy Grant ECOGAL (grant 855130) and the ERC Advanced Grant STARLIGHT (grant 339177). M.C. and J.M.D.K. gratefully acknowledge funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4801/1-1) and a DFG Sachbeihilfe Grant (grant number KR4801/2-1). J.M.D.K. gratefully acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907), and from Sonderforschungsbereich SFB 881 “The Milky Way System” (subproject B2) of the DFG. A.A. acknowledges the support of the Swedish Research Council, Vetenskapsrådet, and the Swedish National Space Agency (SNSA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier Ballesteros-Paredes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Star Formation

Edited by Andrei Bykov, Corinne Charbonnel, Patrick Hennebelle, Alexandre Marcowith, Georges Meynet, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballesteros-Paredes, J., André, P., Hennebelle, P. et al. From Diffuse Gas to Dense Molecular Cloud Cores. Space Sci Rev 216, 76 (2020). https://doi.org/10.1007/s11214-020-00698-3

Download citation

Keywords

  • ISM: kinematics and dynamics
  • Stars: formation
  • ISM: magnetic fields
  • ISM: clouds