Skip to main content
Log in

From Diffuse Gas to Dense Molecular Cloud Cores

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and their substructure from scales \(\sim1~\mbox{kpc}\) down to the filament and core scale. We first review the mechanisms of cloud formation from the warm diffuse interstellar medium down to the cold and dense molecular clouds, the process of molecule formation and the role of the thermal and gravitational instabilities. We also discuss the main physical mechanisms through which clouds gather their mass, and note that all of them may have a role at various stages of the process. In order to understand the dynamics of clouds we then give a critical review of the widely used virial theorem, and its relation to the measurable properties of molecular clouds. Since these properties are the tools we have for understanding the dynamical state of clouds, we critically analyse them. We finally discuss the ubiquitous filamentary structure of molecular clouds and its connection to prestellar cores and star formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It should be noticed that the Eulerian virial theorem involves two additional terms, related to the distribution of mass inside the fixed volume, and the flux of momentum between the volume and its environment (see Parker 1979; McKee and Zweibel 1992).

  2. It should be noticed that this result assumes that each line of sight is independent. This may not be the case in the case of strong magnetic fields, large scale gravitating structures, or a large correlation length of the turbulence.

  3. We call the Larson ratio the square root of the so-called velocity scaling, \(C\equiv \sigma _{v}^{2}/R\), in the extragalactic literature.

  4. We thank the anonymous referee for pointing out this issue.

References

  • A. Adamo, J.M.D. Kruijssen, N. Bastian et al., Probing the role of the galactic environment in the formation of stellar clusters, using M83 as a test bench. Mon. Not. R. Astron. Soc. 452, 246–260 (2015)

    Article  ADS  Google Scholar 

  • O. Agertz, A.V. Kravtsov, S.N. Leitner et al., Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770(1), 25 (2013)

    Article  ADS  Google Scholar 

  • C. Alves de Oliveira, N. Schneider, B. Merín et al., Herschel view of the large-scale structure in the Chamaeleon dark clouds. Astron. Astrophys. 568, A98 (2014)

    Article  Google Scholar 

  • J. Alves, M. Lombardi, C.J. Lada, The mass function of dense molecular cores and the origin of the IMF. Astron. Astrophys. 462(1), L17–L21 (2007)

    Article  ADS  Google Scholar 

  • J. Alves, M. Lombardi, C.J. Lada, The shapes of column density PDFs. The importance of the last closed contour. Astron. Astrophys. 606, L2 (2017)

    Article  ADS  Google Scholar 

  • P. André, A. Men’shchikov, S. Bontemps et al., From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt Survey. Astron. Astrophys. 518, L102 (2010)

    Article  ADS  Google Scholar 

  • P. André, J. Di Francesco, D. Ward-Thompson et al., From filamentary networks to dense cores in molecular clouds: toward a new paradigm for star formation, in Protostars and Planets VI, ed. by H. Beuther et al. (2014), pp. 27–51

    Google Scholar 

  • P. André, V. Revéret, V. Könyves et al., Characterizing filaments in regions of high-mass star formation: high-resolution submillimeter imaging of the massive star-forming complex NGC 6334 with ArTéMiS. Astron. Astrophys. 592, A54 (2016)

    Article  Google Scholar 

  • P. André, D. Arzoumanian, V. Könyves et al., The role of molecular filaments in the origin of the prestellar core mass function and stellar initial mass function. Astron. Astrophys. 629, L4 (2019)

    Article  ADS  Google Scholar 

  • D. Arzoumanian, P. André, P. Didelon et al., Characterizing interstellar filaments with Herschel in IC 5146. Astron. Astrophys. 529, L6 (2011)

    Article  ADS  Google Scholar 

  • D. Arzoumanian, P. André, N. Peretto et al., Formation and evolution of interstellar filaments. Hints from velocity dispersion measurements. Astron. Astrophys. 553, A119 (2013)

    Article  ADS  Google Scholar 

  • D. Arzoumanian, P. André, V. Könyves et al., Characterizing the properties of nearby molecular filaments observed with Herschel. Astron. Astrophys. 621, A42 (2019)

    Article  Google Scholar 

  • S. Auddy, S. Basu, T. Kudoh, A magnetic ribbon model for star-forming filaments. Astrophys. J. 831, 46 (2016)

    Article  ADS  Google Scholar 

  • E. Audit, P. Hennebelle, Thermal condensation in a turbulent atomic hydrogen flow. Astron. Astrophys. 433, 1–13 (2005)

    Article  ADS  Google Scholar 

  • E. Audit, P. Hennebelle, On the structure of the turbulent interstellar clouds. Influence of the equation of state on the dynamics of 3D compressible flows. Astron. Astrophys. 511, A76 (2010)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, Six myths on the virial theorem for interstellar clouds. Mon. Not. R. Astron. Soc. 372(1), 443–449 (2006)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, L. Hartmann, Remarks on rapid vs. slow star formation. Rev. Mex. Astron. Astrofís. 43, 123–136 (2007)

    ADS  Google Scholar 

  • J. Ballesteros-Paredes, M.M. Mac Low, Physical versus observational properties of clouds in turbulent molecular cloud models. Astrophys. J. 570, 734–748 (2002)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, E. Vázquez-Semadeni, Virial balance in turbulent MHD two dimensional numerical simulations of the ISM, in American Institute of Physics Conference Series, ed. by S.S. Holt, L.G. Mundy. American Institute of Physics Conference Series, vol. 393 (1997), pp. 81–84

    Google Scholar 

  • J. Ballesteros-Paredes, L. Hartmann, E. Vázquez-Semadeni, Turbulent flow-driven molecular cloud formation: a solution to the post-T Tauri problem? Astrophys. J. 527(1), 285–297 (1999a)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, E. Vázquez-Semadeni, J. Scalo, Clouds as turbulent density fluctuations: implications for pressure confinement and spectral line data interpretation. Astrophys. J. 515(1), 286–303 (1999b)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, A. Gazol, J. Kim et al., The mass spectra of cores in turbulent molecular clouds and implications for the initial mass function. Astrophys. J. 637(1), 384–391 (2006)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, G.C. Gómez, L. Loinard et al., Tidal forces as a regulator of star formation in Taurus. Mon. Not. R. Astron. Soc. 395(1), L81–L84 (2009a)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, G.C. Gómez, B. Pichardo et al., On the gravitational content of molecular clouds and their cores. Mon. Not. R. Astron. Soc. 393(4), 1563–1572 (2009b)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, L.W. Hartmann, E. Vázquez-Semadeni et al., Gravity or turbulence? Velocity dispersion-size relation. Mon. Not. R. Astron. Soc. 411(1), 65–70 (2011a)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, E. Vázquez-Semadeni, A. Gazol et al., Gravity or turbulence?—II. Evolving column density probability distribution functions in molecular clouds. Mon. Not. R. Astron. Soc. 416(2), 1436–1442 (2011b)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, P. D’Alessio, L. Hartmann, On the structure of molecular clouds. Mon. Not. R. Astron. Soc. 427, 2562–2571 (2012)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, L.W. Hartmann, N. Pérez-Goytia et al., Bondi-Hoyle-Littleton accretion and the upper-mass stellar initial mass function. Mon. Not. R. Astron. Soc. 452(1), 566–574 (2015)

    Article  ADS  Google Scholar 

  • J. Ballesteros-Paredes, E. Vázquez-Semadeni, A. Palau et al., Gravity or turbulence?—IV. Collapsing cores in out-of-virial disguise. Mon. Not. R. Astron. Soc. 479(2), 2112–2125 (2018)

    ADS  Google Scholar 

  • J. Ballesteros-Paredes, C. Román-Zúñiga, Q. Salomé et al., What is the physics behind the Larson mass-size relation? Mon. Not. R. Astron. Soc. 490(2), 2648–2655 (2019)

    Article  ADS  Google Scholar 

  • J. Bally, W.D. Langer, A.A. Stark et al., Filamentary structure in the Orion molecular cloud. Astrophys. J. Lett. 312, L45–L49 (1987)

    Article  ADS  Google Scholar 

  • R. Banerjee, E. Vázquez-Semadeni, P. Hennebelle et al., Clump morphology and evolution in MHD simulations of molecular cloud formation. Mon. Not. R. Astron. Soc. 398, 1082–1092 (2009)

    Article  ADS  Google Scholar 

  • P.J. Barnes, A.K. Hernandez, S.N. O’Dougherty et al., The galactic census of high- and medium-mass protostars. III. 12CO maps and physical properties of dense clump envelopes and their embedding GMCs. Astrophys. J. 831(1), 67 (2016)

    Article  ADS  Google Scholar 

  • A.T. Barnes, S.N. Longmore, C. Battersby et al., Star formation rates and efficiencies in the Galactic Centre. Mon. Not. R. Astron. Soc. 469, 2263–2285 (2017)

    Article  ADS  Google Scholar 

  • A.T. Barnes, J.D. Henshaw, P. Caselli et al., Similar complex kinematics within two massive, filamentary infrared dark clouds. Mon. Not. R. Astron. Soc. 475(4), 5268–5289 (2018)

    Article  ADS  Google Scholar 

  • J.A. Barranco, A.A. Goodman, Coherent dense cores. I. NH3 observations. Astrophys. J. 504(1), 207–222 (1998)

    Article  ADS  Google Scholar 

  • C.N. Beaumont, A.A. Goodman, J.F. Alves et al., A simple perspective on the mass-area relationship in molecular clouds. Mon. Not. R. Astron. Soc. 423(3), 2579–2586 (2012)

    Article  ADS  Google Scholar 

  • E.A. Bergin, L.W. Hartmann, J.C. Raymond et al., Molecular cloud formation behind shock waves. Astrophys. J. 612(2), 921–939 (2004)

    Article  ADS  Google Scholar 

  • O. Berné, N. Marcelino, J. Cernicharo, IRAM 30 m large scale survey of 12CO(2-1) and 13CO(2-1) emission in the orion molecular cloud. Astrophys. J. 795(1), 13 (2014)

    Article  ADS  Google Scholar 

  • F. Bertoldi, C.F. McKee, Pressure-confined clumps in magnetized molecular clouds. Astrophys. J. 395, 140 (1992)

    Article  ADS  Google Scholar 

  • H. Beuther, P. Schilke, Fragmentation in massive star formation. Science 303(5661), 1167–1169 (2004)

    Article  ADS  Google Scholar 

  • F. Bigiel, A. Leroy, F. Walter et al., The star formation law in nearby galaxies on sub-kpc scales. Astron. J. 136(6), 2846–2871 (2008)

    Article  ADS  Google Scholar 

  • L. Blitz, Giant molecular clouds, in Protostars and Planets III, ed. by E. Levy, J. Lunine (1993), pp. 125–161

    Google Scholar 

  • L. Blitz, F.H. Shu, The origin and lifetime of giant molecular cloud complexes. Astrophys. J. 238, 148–157 (1980)

    Article  ADS  Google Scholar 

  • L. Blitz, Y. Fukui, A. Kawamura et al., Giant molecular clouds in local group galaxies, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (University of Arizona Press, Tucson, 2007), p. 81

    Google Scholar 

  • A.D. Bolatto, A.K. Leroy, E. Rosolowsky et al., The resolved properties of extragalactic giant molecular clouds. Astrophys. J. 686(2), 948–965 (2008)

    Article  ADS  Google Scholar 

  • I.A. Bonnell, M.R. Bate, Star formation through gravitational collapse and competitive accretion. Mon. Not. R. Astron. Soc. 370(1), 488–494 (2006)

    Article  ADS  Google Scholar 

  • W. Bonnor, Boyle’s Law and gravitational instability. Mon. Not. R. Astron. Soc. 116, 351 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Bracco, P. Palmeirim, P. André et al., Probing changes of dust properties along a chain of solar-type prestellar and protostellar cores in Taurus with NIKA. Astron. Astrophys. 604, A52 (2017)

    Article  Google Scholar 

  • D. Bresnahan, D. Ward-Thompson, J.M. Kirk et al., The dense cores and filamentary structure of the molecular cloud in Corona Australis: Herschel SPIRE and PACS observations from the Herschel Gould Belt Survey. Astron. Astrophys. 615, A125 (2018)

    Article  Google Scholar 

  • C. Briceno, L.W. Hartmann, J.R. Stauffer et al., X-rays surveys and the post-T Tauri problem. Astron. J. 113, 740–752 (1997)

    Article  ADS  Google Scholar 

  • V. Camacho, E. Vázquez-Semadeni, J. Ballesteros-Paredes et al., Energy budget of forming clumps in numerical simulations of collapsing clouds. Astrophys. J. 833, 113 (2016)

    Article  ADS  Google Scholar 

  • J.S. Carr, A study of clumping in the Cepheus OB 3 molecular cloud. Astrophys. J. 323, 170 (1987)

    Article  ADS  Google Scholar 

  • P. Caselli, P.C. Myers, The line width–size relation in massive cloud cores. Astrophys. J. 446, 665 (1995)

    Article  ADS  Google Scholar 

  • P. Caselli, P.J. Benson, P.C. Myers et al., Dense cores in dark clouds. XIV. N2H+ (1-0) maps of dense cloud cores. Astrophys. J. 572(1), 238–263 (2002)

    Article  ADS  Google Scholar 

  • R. Cesaroni, H. Beuther, A. Ahmadi et al., IRAS 23385+6053: an embedded massive cluster in the making. Astron. Astrophys. 627, A68 (2019)

    Article  Google Scholar 

  • G. Chabrier, The initial mass function: from Salpeter 1955 to 2005, in The Initial Mass Function 50 Years Later, ed. by E. Corbelli, F. Palla, H. Zinnecker. Astrophysics and Space Science Library, vol. 327 (2005), p. 41

    Chapter  Google Scholar 

  • S. Chandrasekhar, E. Fermi, Magnetic fields in spiral arms. Astrophys. J. 118, 113 (1953)

    Article  ADS  Google Scholar 

  • N.L. Chapman, P.F. Goldsmith, J.L. Pineda et al., The magnetic field in Taurus probed by infrared polarization. Astrophys. J. 741, 21 (2011)

    Article  ADS  Google Scholar 

  • C.Y. Chen, Z.Y. Li, P.K. King et al., Fantastic striations and where to find them: the origin of magnetically aligned striations in interstellar clouds. Astrophys. J. 847, 140 (2017)

    Article  ADS  Google Scholar 

  • H.H.H. Chen, J.E. Pineda, A.A. Goodman et al., Droplets. I. Pressure-dominated coherent structures in L1688 and B18. Astrophys. J. 877(2), 93 (2019)

    Article  ADS  Google Scholar 

  • Y. Cheng, J.C. Tan, M. Liu et al., The core mass function in the massive protocluster G286.21+0.17 revealed by ALMA. Astrophys. J. 853(2), 160 (2018)

    Article  ADS  Google Scholar 

  • M. Chevance, S.C. Madden, V. Lebouteiller et al., A milestone toward understanding PDR properties in the extreme environment of LMC-30 Doradus. Astron. Astrophys. 590, A36 (2016)

    Article  Google Scholar 

  • M. Chevance, J.M.D. Kruijssen, A.P.S. Hygate et al., The lifecycle of molecular clouds in nearby star-forming disc galaxies. Mon. Not. R. Astron. Soc. 493(2), 2872–2909 (2020a)

    Article  ADS  Google Scholar 

  • M. Chevance, J.M.D. Kruijssen, E. Vazquez-Semadeni et al., The molecular cloud lifecycle. Space Sci. Rev. 216(4), 50 (2020b)

    Article  ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, R.S. Klessen et al., How long does it take to form a molecular cloud? Mon. Not. R. Astron. Soc. 424, 2599–2613 (2012)

    Article  ADS  Google Scholar 

  • S.D. Clarke, A.P. Whitworth, Investigating the global collapse of filaments using smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 449(2), 1819–1825 (2015)

    Article  ADS  Google Scholar 

  • S.D. Clarke, A.P. Whitworth, D.A. Hubber, Perturbation growth in accreting filaments. Mon. Not. R. Astron. Soc. 458, 319–324 (2016)

    Article  ADS  Google Scholar 

  • S.D. Clarke, A.P. Whitworth, A. Duarte-Cabral et al., Filamentary fragmentation in a turbulent medium. Mon. Not. R. Astron. Soc. 468, 2489–2505 (2017)

    Article  ADS  Google Scholar 

  • S.D. Clarke, A.P. Whitworth, R.L. Spowage et al., Synthetic C18O observations of fibrous filaments: the problems of mapping from PPV to PPP. Mon. Not. R. Astron. Soc. 479(2), 1722–1746 (2018)

    Article  ADS  Google Scholar 

  • D. Colombo, E. Rosolowsky, A. Duarte-Cabral et al., The integrated properties of the molecular clouds from the JCMT CO(3-2) high-resolution survey. Mon. Not. R. Astron. Soc. 483(4), 4291–4340 (2019)

    Article  ADS  Google Scholar 

  • E. Corbelli, J. Braine, R. Bandiera et al., From molecules to young stellar clusters: the star formation cycle across the disk of M 33. Astron. Astrophys. 601, A146 (2017)

    Article  Google Scholar 

  • M. Cottaar, M.R. Meyer, M. Andersen et al., Is the massive young cluster Westerlund I bound? Astron. Astrophys. 539, A5 (2012)

    Article  ADS  Google Scholar 

  • N.L.J. Cox, D. Arzoumanian, P. André et al., Filamentary structure and magnetic field orientation in Musca. Astron. Astrophys. 590, A110 (2016)

    Article  Google Scholar 

  • R.M. Crutcher, Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012)

    Article  ADS  Google Scholar 

  • R.M. Crutcher, A.J. Kemball, Review of Zeeman effect observations of regions of star formation K Zeeman effect, magnetic fields, star formation, masers, molecular clouds. Front. Astron. Space Sci. 6, 66 (2019)

    Article  ADS  Google Scholar 

  • R.M. Crutcher, B. Wandelt, C. Heiles et al., Magnetic fields in interstellar clouds from Zeeman observations: inference of total field strengths by Bayesian analysis. Astrophys. J. 725(1), 466–479 (2010)

    Article  ADS  Google Scholar 

  • J.E. Dale, J. Ngoumou, B. Ercolano et al., Before the first supernova: combined effects of H II regions and winds on molecular clouds. Mon. Not. R. Astron. Soc. 442(1), 694–712 (2014)

    Article  ADS  Google Scholar 

  • D. Dall’Olio, W.H.T. Vlemmings, M.V. Persson et al., ALMA reveals the magnetic field evolution in the high-mass star forming complex G9.62+0.19. Astron. Astrophys. 626, A36 (2019)

    Article  Google Scholar 

  • M.A. de Avillez, D. Breitschwerdt, Global dynamical evolution of the ISM in star forming galaxies. I. High resolution 3D simulations: effect of the magnetic field. Astron. Astrophys. 436(2), 585–600 (2005)

    Article  ADS  Google Scholar 

  • A. Dhabal, L.G. Mundy, M.J. Rizzo et al., Morphology and kinematics of filaments in the Serpens and Perseus molecular clouds. Astrophys. J. 853(2), 169 (2018)

    Article  ADS  Google Scholar 

  • P. Didelon, F. Motte, P. Tremblin et al., From forced collapse to H ii region expansion in Mon R2: envelope density structure and age determination with Herschel. Astron. Astrophys. 584, A4 (2015)

    Article  Google Scholar 

  • C.L. Dobbs, GMC formation by agglomeration and self gravity. Mon. Not. R. Astron. Soc. 391(2), 844–858 (2008)

    Article  ADS  Google Scholar 

  • C.L. Dobbs, A. Burkert, J.E. Pringle, The properties of the interstellar medium in disc galaxies with stellar feedback. Mon. Not. R. Astron. Soc. 417(2), 1318–1334 (2011a)

    Article  ADS  Google Scholar 

  • C.L. Dobbs, A. Burkert, J.E. Pringle, Why are most molecular clouds not gravitationally bound? Mon. Not. R. Astron. Soc. 413(4), 2935–2942 (2011b)

    Article  ADS  Google Scholar 

  • C.L. Dobbs, M.R. Krumholz, J. Ballesteros-Paredes et al., Formation of molecular clouds and global conditions for star formation, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 3

    Google Scholar 

  • C.L. Dobbs, J.E. Pringle, A. Duarte-Cabral, The frequency and nature of ‘cloud-cloud collisions’ in galaxies. Mon. Not. R. Astron. Soc. 446(4), 3608–3620 (2015)

    Article  ADS  Google Scholar 

  • B.T. Draine, Physics of the Interstellar and Intergalactic Medium (Princeton University Press, Princeton, 2011)

    Book  MATH  Google Scholar 

  • B.T. Draine, F. Bertoldi, Structure of stationary photodissociation fronts. Astrophys. J. 468, 269 (1996)

    Article  ADS  Google Scholar 

  • B.G. Elmegreen, Supercloud formation by nonaxisymmetric gravitational instabilities in sheared magnetic galaxy disks. Astrophys. J. 312, 626–639 (1987)

    Article  ADS  Google Scholar 

  • B.G. Elmegreen, Disk instabilities and star formation, in Star Formation, Galaxies and the Interstellar Medium, ed. by J. Franco, F. Ferrini, G. Tenorio-Tagle (1993), p. 337

    Google Scholar 

  • B.G. Elmegreen, Theory of starbursts in nuclear rings, in Revista Mexicana de Astronomia y Astrofisica Conference Series. Revista Mexicana de Astronomia y Astrofisica, vol. 6, ed. by J. Franco, R. Terlevich, A. Serrano (1997), p. 165

    Google Scholar 

  • B.G. Elmegreen, Star formation in a crossing time. Astrophys. J. 530(1), 277–281 (2000)

    Article  ADS  Google Scholar 

  • B.G. Elmegreen, Variations in stellar clustering with environment: dispersed star formation and the origin of faint fuzzies. Astrophys. J. 672, 1006–1012 (2008)

    Article  ADS  Google Scholar 

  • B.G. Elmegreen, J. Scalo, Interstellar turbulence I: observations and processes. Annu. Rev. Astron. Astrophys. 42(1), 211–273 (2004)

    Article  ADS  Google Scholar 

  • G. Engargiola, R. Plambeck, E. Rosolowsky et al., Giant molecular clouds in M33—I. BIMA all disk survey. Astrophys. J. Suppl. Ser. 149(2), 343–363 (2003)

    Article  ADS  Google Scholar 

  • N.J. Evans II, A. Heiderman, N. Vutisalchavakul, Star formation relations in nearby molecular clouds. Astrophys. J. 782, 114 (2014)

    Article  ADS  Google Scholar 

  • E. Falgarone, T.G. Phillips, C.K. Walker, The edges of molecular clouds: fractal boundaries and density structure. Astrophys. J. 378, 186 (1991)

    Article  ADS  Google Scholar 

  • E. Falgarone, T.H. Troland, R.M. Crutcher et al., CN Zeeman measurements in star formation regions. Astron. Astrophys. 487(1), 247–252 (2008)

    Article  ADS  Google Scholar 

  • E. Falgarone, J. Pety, P. Hily-Blant, Intermittency of interstellar turbulence: extreme velocity-shears and CO emission on milliparsec scale. Astron. Astrophys. 507(1), 355–368 (2009)

    Article  ADS  Google Scholar 

  • C. Federrath, Inefficient star formation through turbulence, magnetic fields and feedback. Mon. Not. R. Astron. Soc. 450, 4035–4042 (2015)

    Article  ADS  Google Scholar 

  • C. Federrath, On the universality of interstellar filaments: theory meets simulations and observations. Mon. Not. R. Astron. Soc. 457, 375–388 (2016)

    Article  ADS  Google Scholar 

  • C. Federrath, R.S. Klessen, The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys. J. 761, 156 (2012)

    Article  ADS  Google Scholar 

  • C. Federrath, R.S. Klessen, W. Schmidt, The density probability distribution in compressible isothermal turbulence: solenoidal versus compressive forcing. Astrophys. J. Lett. 688(2), L79 (2008)

    Article  ADS  Google Scholar 

  • C. Federrath, J. Roman-Duval, R.S. Klessen et al., Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81 (2010)

    Article  ADS  Google Scholar 

  • R. Feldmann, N.Y. Gnedin, A.V. Kravtsov, How universal is the \(\varSigma _{\text{SFR}} - \varSigma _{\text{H}_{2}}\) relation? Astrophys. J. 732, 115 (2011)

    Article  ADS  Google Scholar 

  • M. Fernández-López, H.G. Arce, L. Looney et al., CARMA large area star formation survey: observational analysis of filaments in the Serpens south molecular cloud. Astrophys. J. Lett. 790, L19 (2014)

    Article  ADS  Google Scholar 

  • K.M. Ferriére, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001)

    Article  ADS  Google Scholar 

  • J.D. Fiege, R.E. Pudritz, Polarized submillimeter emission from filamentary molecular clouds. Astrophys. J. 544, 830–837 (2000)

    Article  ADS  Google Scholar 

  • G.B. Field, Thermal instability. Astrophys. J. 142, 531 (1965)

    Article  ADS  Google Scholar 

  • G.B. Field, W.C. Saslaw, A statistical model of the formation of stars and interstellar clouds. Astrophys. J. 142, 568 (1965)

    Article  ADS  Google Scholar 

  • G.B. Field, D.W. Goldsmith, H.J. Habing, Cosmic-ray heating of the interstellar gas. Astrophys. J. Lett. 155, L149 (1969)

    Article  ADS  Google Scholar 

  • G.B. Field, E.G. Blackman, E.R. Keto, Does external pressure explain recent results for molecular clouds? Mon. Not. R. Astron. Soc. 416(1), 710–714 (2011)

    ADS  Google Scholar 

  • J. Fischera, P.G. Martin, Physical properties of interstellar filaments. Astron. Astrophys. 542, A77 (2012)

    Article  ADS  Google Scholar 

  • J. Franco, D.P. Cox, Molecular clouds in galaxies with different Z: fragmentation of diffuse clouds driven by opacity. Publ. Astron. Soc. Pac. 98, 1076–1079 (1986)

    Article  ADS  Google Scholar 

  • A. Gazol, E. Vázquez-Semadeni, F.J. Sánchez-Salcedo et al., The temperature distribution in turbulent interstellar gas. Astrophys. J. Lett. 557(2), L121–L124 (2001)

    Article  ADS  Google Scholar 

  • A. Giannetti, F. Wyrowski, J. Brand et al., ATLASGAL-selected massive clumps in the inner galaxy. I. CO depletion and isotopic ratios. Astron. Astrophys. 570, A65 (2014)

    Article  Google Scholar 

  • P. Girichidis et al., Physical processes in star formation. Space Sci. Rev. 216, 68 (2020)

    Article  ADS  Google Scholar 

  • S.C.O. Glover, P.C. Clark, Approximations for modelling CO chemistry in giant molecular clouds: a comparison of approaches. Mon. Not. R. Astron. Soc. 421(1), 116–131 (2012a)

    ADS  Google Scholar 

  • S.C.O. Glover, P.C. Clark, Is molecular gas necessary for star formation? Mon. Not. R. Astron. Soc. 421(1), 9–19 (2012b)

    Article  ADS  Google Scholar 

  • S.C.O. Glover, M.M. Mac Low, Simulating the formation of molecular clouds. II. Rapid formation from turbulent initial conditions. Astrophys. J. 659(2), 1317–1337 (2007)

    Article  ADS  Google Scholar 

  • P. Goldreich, D. Lynden-Bell, I. Gravitational stability of uniformly rotating disks. Mon. Not. R. Astron. Soc. 130, 97 (1965)

    Article  ADS  Google Scholar 

  • P.F. Goldsmith, W.D. Langer, Population diagram analysis of molecular line emission. Astrophys. J. 517(1), 209–225 (1999)

    Article  ADS  Google Scholar 

  • P.F. Goldsmith, M. Heyer, G. Narayanan et al., Large-scale structure of the molecular gas in Taurus revealed by high linear dynamic range spectral line mapping. Astrophys. J. 680, 428–445 (2008)

    Article  ADS  Google Scholar 

  • G.C. Gómez, Errors in kinematic distances and our image of the Milky Way galaxy. Astron. J. 132(6), 2376–2382 (2006)

    Article  ADS  Google Scholar 

  • G.C. Gómez, E. Vázquez-Semadeni, Filaments in simulations of molecular cloud formation. Astrophys. J. 791, 124 (2014)

    Article  ADS  Google Scholar 

  • G.C. Gómez, E. Vázquez-Semadeni, M. Zamora-Avilés, The magnetic field structure in molecular cloud filaments. Mon. Not. R. Astron. Soc. 480, 2939–2944 (2018)

    Article  ADS  Google Scholar 

  • M. Gong, E.C. Ostriker, C.G. Kim, The \(X_{\mathrm{CO}}\) conversion factor from galactic multiphase ISM simulations. Astrophys. J. 858(1), 16 (2018)

    Article  ADS  Google Scholar 

  • A.A. Goodman, J.A. Barranco, D.J. Wilner et al., Coherence in dense cores. II. The transition to coherence. Astrophys. J. 504, 223–246 (1998)

    Article  ADS  Google Scholar 

  • M. Gritschneder, T. Naab, S. Walch et al., Driving turbulence and triggering star formation by ionizing radiation. Astrophys. J. Lett. 694(1), L26–L30 (2009)

    Article  ADS  Google Scholar 

  • M. Gritschneder, S. Heigl, A. Burkert, Oscillating filaments. I. Oscillation and geometrical fragmentation. Astrophys. J. 834, 202 (2017)

    Article  ADS  Google Scholar 

  • M.Y. Grudić, P.F. Hopkins et al., On the nature of variations in the measured star formation efficiency of molecular clouds. Mon. Not. R. Astron. Soc. 488(2), 1501–1518 (2019)

    Article  ADS  Google Scholar 

  • R.A. Gutermuth, J.L. Pipher, S.T. Megeath et al., A correlation between surface densities of young stellar objects and gas in eight nearby molecular clouds. Astrophys. J. 739, 84 (2011)

    Article  ADS  Google Scholar 

  • H.J. Habing, The interstellar radiation density between 912 A and 2400 A. Bull. Astron. Inst. s19, 421 (1968)

    ADS  Google Scholar 

  • A. Hacar, M. Tafalla, Dense core formation by fragmentation of velocity-coherent filaments in L1517. Astron. Astrophys. 533, A34 (2011)

    Article  ADS  Google Scholar 

  • A. Hacar, M. Tafalla, J. Kauffmann et al., Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region. Astron. Astrophys. 554, A55 (2013)

    Article  ADS  Google Scholar 

  • A. Hacar, J. Alves, A. Burkert et al., Opacity broadening and interpretation of suprathermal CO linewidths: macroscopic turbulence and tangled molecular clouds. Astron. Astrophys. 591, A104 (2016a)

    Article  ADS  Google Scholar 

  • A. Hacar, J. Kainulainen, M. Tafalla et al., The Musca cloud: a 6 pc-long velocity-coherent, sonic filament. Astron. Astrophys. 587, A97 (2016b)

    Article  ADS  Google Scholar 

  • A. Hacar, M. Tafalla, J. Alves, Fibers in the NGC 1333 proto-cluster. Astron. Astrophys. 606, A123 (2017)

    Article  ADS  Google Scholar 

  • A. Hacar, M. Tafalla, J. Forbrich et al., An ALMA study of the orion integral filament. I. Evidence for narrow fibers in a massive cloud. Astron. Astrophys. 610, A77 (2018)

    Article  Google Scholar 

  • L. Hartmann, Flows, fragmentation, and star formation. I. Low-mass stars in Taurus. Astrophys. J. 578, 914–924 (2002)

    Article  ADS  Google Scholar 

  • L. Hartmann, J. Ballesteros-Paredes, E.A. Bergin, Rapid formation of molecular clouds and stars in the solar neighborhood. Astrophys. J. 562(2), 852–868 (2001)

    Article  ADS  Google Scholar 

  • L. Hartmann, J. Ballesteros-Paredes, F. Heitsch, Rapid star formation and global gravitational collapse. Mon. Not. R. Astron. Soc. 420(2), 1457–1461 (2012)

    Article  ADS  Google Scholar 

  • M.A. Hausman, Theoretical models of the mass spectrum of interstellar clouds. Astrophys. J. 261, 532–542 (1982)

    Article  ADS  Google Scholar 

  • A. Heiderman, N.J. Evans II, L.E. Allen et al., The star formation rate and gas surface density relation in the Milky Way: implications for extragalactic studies. Astrophys. J. 723, 1019–1037 (2010)

    Article  ADS  Google Scholar 

  • C. Heiles, H I shells and supershells. Astrophys. J. 229, 533–537 (1979)

    Article  ADS  Google Scholar 

  • C. Heiles, HI shells, supershells, shell-like objects, and “worms”. Astrophys. J. Suppl. Ser. 55, 585–595 (1984)

    Article  ADS  Google Scholar 

  • C. Heiles, T.H. Troland, The millennium Arecibo 21 centimeter absorption-line survey. IV. Statistics of magnetic field, column density, and turbulence. Astrophys. J. 624(2), 773–793 (2005)

    Article  ADS  Google Scholar 

  • C. Heiles, A.A. Goodman, C.F. McKee et al., Magnetic fields in star-forming regions—observations, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (1993), p. 279

    Google Scholar 

  • A. Heithausen, F. Bensch, J. Stutzki et al., The IRAM key project: small-scale structure of pre-star forming regions. Combined mass spectra and scaling laws. Astron. Astrophys. 331, L65–L68 (1998)

    ADS  Google Scholar 

  • F. Heitsch, E.G. Zweibel, M.M. Mac Low et al., Magnetic field diagnostics based on far-infrared polarimetry: tests using numerical simulations. Astrophys. J. 561(2), 800–814 (2001)

    Article  ADS  Google Scholar 

  • F. Heitsch, A.D. Slyz, J.E.G. Devriendt et al., The birth of molecular clouds: formation of atomic precursors in colliding flows. Astrophys. J. 648, 1052–1065 (2006)

    Article  ADS  Google Scholar 

  • F. Heitsch, L.W. Hartmann, A. Burkert, Fragmentation of shocked flows: gravity, turbulence, and cooling. Astrophys. J. 683(2), 786–795 (2008)

    Article  ADS  Google Scholar 

  • F. Heitsch, J. Ballesteros-Paredes, L. Hartmann, Gravitational collapse and filament formation: comparison with the Pipe Nebula. Astrophys. J. 704(2), 1735–1742 (2009a)

    Article  ADS  Google Scholar 

  • F. Heitsch, J.M. Stone, L.W. Hartmann, Effects of magnetic field strength and orientation on molecular cloud formation. Astrophys. J. 695(1), 248–258 (2009b)

    Article  ADS  Google Scholar 

  • P. Hennebelle, P. André, Ion-neutral friction and accretion-driven turbulence in self-gravitating filaments. Astron. Astrophys. 560, A68 (2013)

    Article  ADS  Google Scholar 

  • P. Hennebelle, E. Falgarone, Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012)

    Article  ADS  Google Scholar 

  • P. Hennebelle, Si. Inutsuka, The role of magnetic field in molecular cloud formation and evolution. Front. Astron. Space Sci. 6, 5 (2019)

    Article  ADS  Google Scholar 

  • P. Hennebelle, M. Pérault, Dynamical condensation in a thermally bistable flow. Application to interstellar cirrus. Astron. Astrophys. 351, 309–322 (1999)

    ADS  Google Scholar 

  • P. Hennebelle, R. Banerjee, E. Vázquez-Semadeni et al., From the warm magnetized atomic medium to molecular clouds. Astron. Astrophys. 486, L43–L46 (2008)

    Article  ADS  Google Scholar 

  • P. Hennebelle, Y.N. Lee, G. Chabrier, How first hydrostatic cores, tidal forces, and gravoturbulent fluctuations set the characteristic mass of stars. Astrophys. J. 883(2), 140 (2019)

    Article  ADS  Google Scholar 

  • M. Hennemann, F. Motte, N. Schneider et al., The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X. Astron. Astrophys. 543, L3 (2012)

    Article  ADS  Google Scholar 

  • T. Henning, H. Linz, O. Krause et al., The seeds of star formation in the filamentary infrared-dark cloud G011.11-0.12. Astron. Astrophys. 518, L95 (2010)

    Article  ADS  Google Scholar 

  • J.D. Henshaw, P. Caselli, F. Fontani et al., The dynamical properties of dense filaments in the infrared dark cloud G035.39-00.33. Mon. Not. R. Astron. Soc. 440, 2860–2881 (2014)

    Article  ADS  Google Scholar 

  • J.D. Henshaw, S.N. Longmore, J.M.D. Kruijssen et al., Molecular gas kinematics within the central 250 pc of the Milky Way. Mon. Not. R. Astron. Soc. 457, 2675–2702 (2016)

    Article  ADS  Google Scholar 

  • G.H. Herbig, Can post-T Tauri stars be found? in Problems of Physics and Evolution of the Universe, ed. by L.V. Mirzoyan (Publishing House of the Armenian Academy of Sciences, Yerevan, 1978), p. 171

    Google Scholar 

  • A.K. Hernandez, J.C. Tan, The giant molecular cloud environments of infrared dark clouds. Astrophys. J. 809(2), 154 (2015)

    Article  ADS  Google Scholar 

  • M.H. Heyer, C.M. Brunt, The universality of turbulence in galactic molecular clouds. Astrophys. J. Lett. 615(1), L45–L48 (2004)

    Article  ADS  Google Scholar 

  • M. Heyer, T.M. Dame, Molecular clouds in the Milky Way. Annu. Rev. Astron. Astrophys. 53, 583–629 (2015)

    Article  ADS  Google Scholar 

  • M.H. Heyer, S. Terebey, The anatomy of the Perseus Spiral Arm: 12CO and IRAS imaging observations of the W3-W4-W5 cloud complex. Astrophys. J. 502(1), 265–277 (1998)

    Article  ADS  Google Scholar 

  • M.H. Heyer, C. Brunt, R.L. Snell et al., The five college radio astronomy observatory CO survey of the outer galaxy. Astrophys. J. Suppl. Ser. 115, 241 (1998)

    Article  ADS  Google Scholar 

  • M.H. Heyer, J.M. Carpenter, R.L. Snell, The equilibrium state of molecular regions in the outer galaxy. Astrophys. J. 551(2), 852–866 (2001)

    Article  ADS  Google Scholar 

  • M. Heyer, C. Krawczyk, J. Duval et al., Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699(2), 1092–1103 (2009)

    Article  ADS  Google Scholar 

  • M. Heyer, P.F. Goldsmith, U.A. Yıldız et al., Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves? Mon. Not. R. Astron. Soc. 461, 3918–3926 (2016)

    Article  ADS  Google Scholar 

  • T. Hill, F. Motte, P. Didelon et al., Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites. Astron. Astrophys. 533, A94 (2011)

    Article  Google Scholar 

  • W.A. Hiltner, Polarization of light from distant stars by interstellar medium. Science 109(2825), 165 (1949)

    Article  ADS  Google Scholar 

  • P. Hily-Blant, E. Falgarone, J. Pety, Dissipative structures of diffuse molecular gas. III. Small-scale intermittency of intense velocity-shears. Astron. Astrophys. 481(2), 367–380 (2008)

    Article  ADS  Google Scholar 

  • P.F. Hopkins, A. Wetzel, D. Kereš et al., FIRE-2 simulations: physics versus numerics in galaxy formation. Mon. Not. R. Astron. Soc. 480(1), 800–863 (2018)

    Article  ADS  Google Scholar 

  • A. Hughes, S.E. Meidt, D. Colombo et al., A comparative study of giant molecular clouds in M51, M33, and the Large Magellanic Cloud. Astrophys. J. 779(1), 46 (2013)

    Article  ADS  Google Scholar 

  • A.P.S. Hygate, J.M.D. Kruijssen, M. Chevance et al., The cloud-scale physics of star-formation and feedback in M33. Mon. Not. R. Astron. Soc. (2019, submitted)

  • J.C. Ibáñez-Mejía, M.M. Mac Low, R.S. Klessen et al., Gravitational contraction versus supernova driving and the origin of the velocity dispersion-size relation in molecular clouds. Astrophys. J. 824(1), 41 (2016)

    Article  ADS  Google Scholar 

  • O. Iffrig, P. Hennebelle, Structure distribution and turbulence in self-consistently supernova-driven ISM of multiphase magnetized galactic discs. Astron. Astrophys. 604, A70 (2017)

    Article  ADS  Google Scholar 

  • N. Imara, C.M. Faesi, ALMA observations of giant molecular clouds in the starburst dwarf galaxy Henize 2-10. Astrophys. J. 876(2), 141 (2019)

    Article  ADS  Google Scholar 

  • T. Inoue, Si. Inutsuka, Two-fluid magnetohydrodynamic simulations of converging H I flows in the interstellar medium. I. Methodology and basic results. Astrophys. J. 687, 303–310 (2008)

    Article  ADS  Google Scholar 

  • T. Inoue, Si. Inutsuka, Two-fluid magnetohydrodynamics simulations of converging H I flows in the interstellar medium. II. Are molecular clouds generated directly from a warm neutral medium? Astrophys. J. 704, 161–169 (2009)

    Article  ADS  Google Scholar 

  • T. Inoue, Si. Inutsuka, Formation of turbulent and magnetized molecular clouds via accretion flows of H I clouds. Astrophys. J. 759, 35 (2012)

    Article  ADS  Google Scholar 

  • Si. Inutsuka, The mass function of molecular cloud cores. Astrophys. J. Lett. 559, L149–L152 (2001)

    Article  ADS  Google Scholar 

  • Si. Inutsuka, S.M. Miyama, Self-similar solutions and the stability of collapsing isothermal filaments. Astrophys. J. 388, 392–399 (1992)

    Article  ADS  Google Scholar 

  • Si. Inutsuka, S.M. Miyama, A production mechanism for clusters of dense cores. Astrophys. J. 480, 681 (1997)

    Article  ADS  Google Scholar 

  • Si. Inutsuka, T. Inoue, K. Iwasaki et al., The formation and destruction of molecular clouds and galactic star formation. An origin for the cloud mass function and star formation efficiency. Astron. Astrophys. 580, A49 (2015)

    Article  Google Scholar 

  • K. Iwasaki, K. Tomida, T. Inoue et al., The early stage of molecular cloud formation by compression of two-phase atomic gases. ArXiv e-prints (2018)

  • S.M.R. Jeffreson, J.M.D. Kruijssen, A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics. Mon. Not. R. Astron. Soc. 476, 3688–3715 (2018)

    Article  ADS  Google Scholar 

  • S.M.R. Jeffreson, J.M.D. Kruijssen, M.R. Krumholz et al., On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way. Mon. Not. R. Astron. Soc. 478, 3380–3385 (2018)

    Article  ADS  Google Scholar 

  • D. Johnstone, C.D. Wilson, G. Moriarty-Schieven et al., Large-area mapping at 850 microns. I. Optimum image reconstruction from chop measurements. Astrophys. J. Suppl. Ser. 131(2), 505–518 (2000)

    Article  ADS  Google Scholar 

  • D. Johnstone, M. Fich, G.F. Mitchell et al., Large area mapping at 850 microns. III. Analysis of the clump distribution in the Orion B molecular cloud. Astrophys. J. 559(1), 307–317 (2001)

    Article  ADS  Google Scholar 

  • D. Johnstone, J. Di Francesco, H. Kirk, An extinction threshold for protostellar cores in Ophiuchus. Astrophys. J. Lett. 611, L45–L48 (2004)

    Article  ADS  Google Scholar 

  • M. Jura, Interstellar clouds containing optically thin H2. Astrophys. J. 197, 575–580 (1975)

    Article  ADS  Google Scholar 

  • M. Juvela, I. Ristorcelli, L. Pagani et al., Galactic cold cores. III. General cloud properties. Astron. Astrophys. 541, A12 (2012)

    Article  Google Scholar 

  • J. Kainulainen, H. Beuther, T. Henning et al., Probing the evolution of molecular cloud structure. From quiescence to birth. Astron. Astrophys. 508, L35–L38 (2009)

    Article  ADS  Google Scholar 

  • J. Kainulainen, H. Beuther, R. Banerjee et al., Probing the evolution of molecular cloud structure. II. From chaos to confinement. Astron. Astrophys. 530, A64 (2011)

    Article  ADS  Google Scholar 

  • P.M.W. Kalberla, J. Kerp, The Hi distribution of the Milky Way. Annu. Rev. Astron. Astrophys. 47(1), 27–61 (2009)

    Article  ADS  Google Scholar 

  • J. Kauffmann, T. Pillai, R. Shetty et al., The mass-size relation from clouds to cores. I. A new probe of structure in molecular clouds. Astrophys. J. 712(2), 1137–1146 (2010a)

    Article  ADS  Google Scholar 

  • J. Kauffmann, T. Pillai, R. Shetty et al., The mass-size relation from clouds to cores. II. Solar neighborhood clouds. Astrophys. J. 716(1), 433–445 (2010b)

    Article  ADS  Google Scholar 

  • J. Kauffmann, T. Pillai, P.F. Goldsmith, Low virial parameters in molecular clouds: implications for high-mass star formation and magnetic fields. Astrophys. J. 779(2), 185 (2013)

    Article  ADS  Google Scholar 

  • J. Kauffmann, T. Pillai, Q. Zhang et al., The Galactic Center Molecular Cloud Survey. I. A steep linewidth-size relation and suppression of star formation. Astron. Astrophys. 603, A89 (2017)

    Article  Google Scholar 

  • A. Kawamura, Y. Mizuno, T. Minamidani et al., The second survey of the molecular clouds in the Large Magellanic Cloud by Nanten. II. Star formation. Astrophys. J. Suppl. Ser. 184(1), 1–17 (2009)

    Article  ADS  Google Scholar 

  • R.C. Kennicutt Jr., The global Schmidt law in star-forming galaxies. Astrophys. J. 498(2), 541–552 (1998)

    Article  ADS  Google Scholar 

  • R.C. Kennicutt, N.J. Evans, Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012)

    Article  ADS  Google Scholar 

  • R. Kerr, H. Kirk, J. Di Francesco et al., The Green Bank Ammonia Survey: a virial analysis of Gould belt clouds in data release 1. Astrophys. J. 874(2), 147 (2019)

    Article  ADS  Google Scholar 

  • E.R. Keto, P.C. Myers, CO observations of southern high-latitude clouds. Astrophys. J. 304, 466 (1986)

    Article  ADS  Google Scholar 

  • S.A. Khoperskov, E.O. Vasiliev, D.A. Ladeyschikov et al., Giant molecular cloud scaling relations: the role of the cloud definition. Mon. Not. R. Astron. Soc. 455(2), 1782–1795 (2016)

    Article  ADS  Google Scholar 

  • W.T. Kim, E.C. Ostriker, Amplification, saturation, and Q thresholds for runaway: growth of self-gravitating structures in models of magnetized galactic gas disks. Astrophys. J. 559(1), 70–95 (2001)

    Article  ADS  Google Scholar 

  • W.T. Kim, E.C. Ostriker, Formation and fragmentation of gaseous spurs in spiral galaxies. Astrophys. J. 570(1), 132–151 (2002)

    Article  ADS  Google Scholar 

  • W.T. Kim, E.C. Ostriker, Gravitational runaway and turbulence driving in star-gas galactic disks. Astrophys. J. 660(2), 1232–1245 (2007)

    Article  ADS  Google Scholar 

  • W.T. Kim, E.C. Ostriker, J.M. Stone, Three-dimensional simulations of Parker, magneto-jeans, and swing instabilities in shearing galactic gas disks. Astrophys. J. 581(2), 1080–1100 (2002)

    Article  ADS  Google Scholar 

  • W.T. Kim, E.C. Ostriker, J.M. Stone, Magnetorotationally driven galactic turbulence and the formation of giant molecular clouds. Astrophys. J. 599(2), 1157–1172 (2003)

    Article  ADS  Google Scholar 

  • J.G. Kim, W.T. Kim, E.C. Ostriker, Modeling UV radiation feedback from massive stars. II. Dispersal of star-forming giant molecular clouds by photoionization and radiation pressure. Astrophys. J. 859(1), 68 (2018)

    Article  ADS  Google Scholar 

  • H. Kirk, D. Johnstone, J. Di Francesco, The large- and small-scale structures of dust in the star-forming Perseus molecular cloud. Astrophys. J. 646, 1009–1023 (2006)

    Article  ADS  Google Scholar 

  • H. Kirk, P.C. Myers, T.L. Bourke et al., Filamentary accretion flows in the embedded Serpens south protocluster. Astrophys. J. 766, 115 (2013)

    Article  ADS  Google Scholar 

  • H. Kirk, R.K. Friesen, J.E. Pineda et al., The Green Bank Ammonia Survey: dense cores under pressure in Orion A. Astrophys. J. 846(2), 144 (2017)

    Article  ADS  Google Scholar 

  • R.S. Klessen, S.C.O. Glover, Physical Processes in the Interstellar Medium. Saas-Fee Advanced Course, vol. 43 (2016), p. 85

    Google Scholar 

  • R.S. Klessen, P. Hennebelle, Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks. Astron. Astrophys. 520, A17 (2010)

    Article  ADS  Google Scholar 

  • R.S. Klessen, J. Ballesteros-Paredes, E. Vázquez-Semadeni et al., Quiescent and coherent cores from gravoturbulent fragmentation. Astrophys. J. 620(2), 786–794 (2005)

    Article  ADS  Google Scholar 

  • E.W. Koch, E.W. Rosolowsky, Filament identification through mathematical morphology. Mon. Not. R. Astron. Soc. 452, 3435–3450 (2015)

    Article  ADS  Google Scholar 

  • J. Koda, N. Scoville, T. Sawada et al., Dynamically driven evolution of the interstellar medium in M51. Astrophys. J. 700(2), L132–L136 (2009)

    Article  ADS  Google Scholar 

  • J. Koda, N. Scoville, M. Heyer, Evolution of molecular and atomic gas phases in the Milky Way. Astrophys. J. 823(2), 76 (2016)

    Article  ADS  Google Scholar 

  • A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akad. Nauk SSSR Dokl. 30, 301–305 (1941)

    ADS  MathSciNet  Google Scholar 

  • V. Könyves, P. André, A. Men’shchikov et al., A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey. Astron. Astrophys. 584, A91 (2015)

    Article  Google Scholar 

  • V. Könyves, P. André, D. Arzoumanian et al., Properties of the dense core population in Orion B as seen by the Herschel Gould Belt survey. Astron. Astrophys. 635, A34 (2020)

    Article  Google Scholar 

  • B. Körtgen, R. Banerjee, Impact of magnetic fields on molecular cloud formation and evolution. Mon. Not. R. Astron. Soc. 451, 3340–3353 (2015)

    Article  ADS  Google Scholar 

  • H. Koyama, Si. Inutsuka, Molecular cloud formation in shock-compressed layers. Astrophys. J. 532, 980–993 (2000)

    Article  ADS  Google Scholar 

  • H. Koyama, Si. Inutsuka, An origin of supersonic motions in interstellar clouds. Astrophys. J. Lett. 564, L97–L100 (2002)

    Article  ADS  Google Scholar 

  • C. Kramer, J. Stutzki, R. Rohrig et al., Clump mass spectra of molecular clouds. Astron. Astrophys. 329, 249–264 (1998)

    ADS  Google Scholar 

  • K. Kreckel, C. Faesi, J.M.D. Kruijssen et al., A 50 pc scale view of star formation efficiency across NGC 628. Astrophys. J. Lett. 863, L21 (2018)

    Article  ADS  Google Scholar 

  • K. Kreckel, I.T. Ho, G.A. Blanc et al., Mapping metallicity variations across nearby galaxy disks. Astrophys. J. 887(1), 80 (2019)

    Article  ADS  Google Scholar 

  • A.G. Kritsuk, M.L. Norman, R. Wagner, On the density distribution in star-forming interstellar clouds. Astrophys. J. 727(1), L20 (2011)

    Article  ADS  Google Scholar 

  • J.M.D. Kruijssen, On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 426, 3008–3040 (2012)

    Article  ADS  Google Scholar 

  • J.M.D. Kruijssen, S.N. Longmore, Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue. Mon. Not. R. Astron. Soc. 435, 2598–2603 (2013)

    Article  ADS  Google Scholar 

  • J.M.D. Kruijssen, S.N. Longmore, An uncertainty principle for star formation—I. Why galactic star formation relations break down below a certain spatial scale. Mon. Not. R. Astron. Soc. 439(4), 3239–3252 (2014)

    Article  ADS  Google Scholar 

  • J.M.D. Kruijssen, J.E. Dale, S.N. Longmore, The dynamical evolution of molecular clouds near the Galactic Centre—I. Orbital structure and evolutionary timeline. Mon. Not. R. Astron. Soc. 447, 1059–1079 (2015)

    Article  ADS  Google Scholar 

  • J.M.D. Kruijssen, A. Schruba, A.P.S. Hygate et al., An uncertainty principle for star formation—II. A new method for characterizing the cloud-scale physics of star formation and feedback across cosmic history. Mon. Not. R. Astron. Soc. 479, 1866–1952 (2018)

    Article  ADS  Google Scholar 

  • J.M.D. Kruijssen, J.E. Dale, S.N. Longmore et al., The dynamical evolution of molecular clouds near the Galactic Centre—II. Spatial structure and kinematics of simulated clouds. Mon. Not. R. Astron. Soc. 484(4), 5734–5754 (2019a)

    Article  ADS  Google Scholar 

  • J.M.D. Kruijssen, A. Schruba, M. Chevance et al., Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature 569(7757), 519–522 (2019b)

    Article  ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630, 250–268 (2005)

    Article  ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, J. Bland-Hawthorn, Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019)

    Article  ADS  Google Scholar 

  • A. Kuznetsova, L. Hartmann, J. Ballesteros-Paredes, Signatures of star cluster formation by cold collapse. Astrophys. J. 815(1), 27 (2015)

    Article  ADS  Google Scholar 

  • A. Kuznetsova, L. Hartmann, J. Ballesteros-Paredes, Kinematics and structure of star-forming regions: insights from cold collapse models. Mon. Not. R. Astron. Soc. 473(2), 2372–2377 (2018)

    Article  ADS  Google Scholar 

  • J. Kwan, The mass spectrum of interstellar clouds. Astrophys. J. 229, 567–577 (1979)

    Article  ADS  Google Scholar 

  • J. Kwan, F. Valdes, Spiral gravitational potentials and the mass growth of molecular clouds. Astrophys. J. 271, 604–610 (1983)

    Article  ADS  Google Scholar 

  • J. Kwan, F. Valdes, The spatial and mass distributions of molecular clouds and spiral structures. Astrophys. J. 315, 92 (1987)

    Article  ADS  Google Scholar 

  • C.J. Lada, A.A. Muench, J. Rathborne et al., The nature of the dense core population in the Pipe Nebula: thermal cores under pressure. Astrophys. J. 672(1), 410–422 (2008)

    Article  ADS  Google Scholar 

  • C.J. Lada, M. Lombardi, J.F. Alves, On the star formation rates in molecular clouds. Astrophys. J. 724, 687–693 (2010)

    Article  ADS  Google Scholar 

  • C.J. Lada, M. Lombardi, C. Roman-Zuniga et al., Schmidt’s conjecture and star formation in molecular clouds. Astrophys. J. 778(2), 133 (2013)

    Article  ADS  Google Scholar 

  • B. Ladjelate, P. André, V. Könyves et al., The Herschel view of the dense core population in the Ophiuchus molecular cloud. Astron. Astrophys. (2020, in press). ArXiv:2001.11036

  • R.B. Larson, Numerical calculations of the dynamics of collapsing proto-star. Mon. Not. R. Astron. Soc. 145, 271 (1969)

    Article  ADS  Google Scholar 

  • R.B. Larson, Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981)

    Article  ADS  Google Scholar 

  • R.B. Larson, Cloud fragmentation and stellar masses. Mon. Not. R. Astron. Soc. 214, 379–398 (1985)

    Article  ADS  Google Scholar 

  • R.B. Larson, Thermal physics, cloud geometry and the stellar initial mass function. Mon. Not. R. Astron. Soc. 359, 211–222 (2005)

    Article  ADS  Google Scholar 

  • Y.N. Lee, P. Hennebelle, Stellar mass spectrum within massive collapsing clumps. II. Thermodynamics and tidal forces of the first Larson core. A robust mechanism for the peak of the IMF. Astron. Astrophys. 611, A89 (2018)

    Article  Google Scholar 

  • Y.N. Lee, P. Hennebelle, G. Chabrier, Analytical Core Mass Function (CMF) from filaments: under which circumstances can filament fragmentation reproduce the CMF? Astrophys. J. 847(2), 114 (2017)

    Article  ADS  Google Scholar 

  • D. Leisawitz, F.N. Bash, P. Thaddeus, A CO survey of regions around 34 open clusters. Astrophys. J. Suppl. Ser. 70, 731 (1989)

    Article  ADS  Google Scholar 

  • A.K. Leroy, F. Walter, K. Sandstrom et al., Molecular gas and star formation in nearby disk galaxies. Astron. J. 146(2), 19 (2013)

    Article  ADS  Google Scholar 

  • A.K. Leroy, A.D. Bolatto, E.C. Ostriker et al., ALMA reveals the molecular medium fueling the nearest nuclear starburst. Astrophys. J. 801(1), 25 (2015)

    Article  ADS  Google Scholar 

  • A.K. Leroy, E. Schinnerer, A. Hughes et al., Cloud-scale ISM structure and star formation in M51. Astrophys. J. 846, 71 (2017)

    Article  ADS  Google Scholar 

  • D.J. Leverett, J.L. Greenstein, The polarization of starlight by aligned dust grains. Astrophys. J. 114, 206 (1951)

    Article  ADS  Google Scholar 

  • F. Levrier, F. Le Petit, P. Hennebelle et al., UV-driven chemistry in simulations of the interstellar medium. I. Post-processed chemistry with the Meudon PDR code. Astron. Astrophys. 544, A22 (2012)

    Article  Google Scholar 

  • Y. Li, M.M. Mac Low, R.S. Klessen, Control of star formation in galaxies by gravitational instability. Astrophys. J. Lett. 620(1), L19–L22 (2005)

    Article  ADS  Google Scholar 

  • S. Li, Q. Zhang, H.B. Liu et al., ALMA observations of NGC 6334S—I: forming massive stars and cluster in subsonic and transonic filamentary clouds. ArXiv e-prints (2020). ArXiv:2003.13534

  • M. Lombardi, J.F. Alves, C.J. Lada, Larson’s third law and the universality of molecular cloud structure. Astron. Astrophys. 519, L7 (2010)

    Article  ADS  Google Scholar 

  • S.N. Longmore, J.M.D. Kruijssen, N. Bastian et al., The formation and early evolution of young massive clusters, in Protostars and Planets VI (2014), pp. 291–314

    Google Scholar 

  • L.A. Lopez, M.R. Krumholz, A.D. Bolatto et al., What drives the expansion of giant H II regions?: A study of stellar feedback in 30 Doradus. Astrophys. J. 731, 91 (2011)

    Article  ADS  Google Scholar 

  • L.A. Lopez, M.R. Krumholz, A.D. Bolatto et al., The role of stellar feedback in the dynamics of H II regions. Astrophys. J. 795, 121 (2014)

    Article  ADS  Google Scholar 

  • R.B. Loren, The cobwebs of Ophiuchus. II. 13CO filament kinematics. Astrophys. J. 338, 925 (1989)

    Article  ADS  Google Scholar 

  • K.A. Marsh, J.M. Kirk, P. André et al., A census of dense cores in the Taurus L1495 cloud from the Herschel. Mon. Not. R. Astron. Soc. 459, 342–356 (2016)

    Article  ADS  Google Scholar 

  • T. Maschberger, I.A. Bonnell, C.J. Clarke et al., The relation between accretion rates and the initial mass function in hydrodynamical simulations of star formation. Mon. Not. R. Astron. Soc. 439(1), 234–246 (2014)

    Article  ADS  Google Scholar 

  • C.F. McKee, J.P. Ostriker, A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977)

    Article  ADS  Google Scholar 

  • C.F. McKee, E.C. Ostriker, Theory of star formation. Annu. Rev. Astron. Astrophys. 45(1), 565–687 (2007)

    Article  ADS  Google Scholar 

  • C.F. McKee, E.G. Zweibel, On the virial theorem for turbulent molecular clouds. Astrophys. J. 399, 551 (1992)

    Article  ADS  Google Scholar 

  • A.F. McLeod, J.E. Dale, C.J. Evans et al., Feedback from massive stars at low metallicities: MUSE observations of N44 and N180 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 486(4), 5263–5288 (2019a)

    Article  ADS  Google Scholar 

  • A.F. McLeod, J.M.D. Kruijssen, D.R. Weisz et al., Stellar feedback and resolved stellar IFU spectroscopy in the nearby spiral galaxy NGC 300. Astrophys. J. (2019b, in press). ArXiv:1910.11270

  • S.E. Meidt, E. Schinnerer, S. García-Burillo et al., Gas kinematics on giant molecular cloud scales in M51 with PAWS: cloud stabilization through dynamical pressure. Astrophys. J. 779(1), 45 (2013)

    Article  ADS  Google Scholar 

  • S.E. Meidt, A. Hughes, C.L. Dobbs et al., Short GMC lifetimes: an observational estimate with the PdBI Arcsecond Whirlpool Survey (PAWS). Astrophys. J. 806(1), 72 (2015)

    Article  ADS  Google Scholar 

  • S.E. Meidt, A.K. Leroy, E. Rosolowsky et al., A model for the onset of self-gravitation and star formation in molecular gas governed by galactic forces. I. Cloud-scale gas motions. Astrophys. J. 854(2), 100 (2018)

    Article  ADS  Google Scholar 

  • S.E. Meidt, S. Glover, J.M.D. Kruijssen et al., A model for the onset of self-gravitation and star formation in molecular gas governed by galactic forces: II. A bottleneck set by cloud-environment decoupling. Astrophys. J. (2019, submitted)

  • A. Men’shchikov, A multi-scale filament extraction method: getfilaments. Astron. Astrophys. 560, A63 (2013)

    Article  ADS  Google Scholar 

  • A. Men’shchikov, P. André, P. Didelon et al., A multi-scale, multi-wavelength source extraction method: getsources. Astron. Astrophys. 542, A81 (2012)

    Article  Google Scholar 

  • L. Mestel, J.L. Spitzer, Star formation in magnetic dust clouds. Mon. Not. R. Astron. Soc. 116, 503 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.S. Miesch, J.M. Scalo, Exponential tails in the centroid velocity distributions of star-forming regions. Astrophys. J. Lett. 450, L27 (1995)

    Article  ADS  Google Scholar 

  • M.S. Miesch, J. Scalo, J. Bally, Velocity field statistics in star-forming regions. I. Centroid velocity observations. Astrophys. J. 524(2), 895–922 (1999)

    Article  ADS  Google Scholar 

  • R.E. Miura, K. Kohno, T. Tosaki et al., Giant molecular cloud evolutions in the nearby spiral galaxy M33. Astrophys. J. 761(1), 37 (2012)

    Article  ADS  Google Scholar 

  • M.A. Miville-Deschênes, P.G. Martin, A. Abergel et al., Herschel-SPIRE observations of the Polaris flare: structure of the diffuse interstellar medium at the sub-parsec scale. Astron. Astrophys. 518, L104 (2010)

    Article  ADS  Google Scholar 

  • M.A. Miville-Deschênes, P.A. Duc, F. Marleau et al., Probing interstellar turbulence in cirrus with deep optical imaging: no sign of energy dissipation at 0.01 pc scale. Astron. Astrophys. 593, A4 (2016)

    Article  Google Scholar 

  • M.A. Miville-Deschênes, N. Murray, E.J. Lee, Physical properties of molecular clouds for the entire Milky Way disk. Astrophys. J. 834(1), 1–31 (2017)

    ADS  Google Scholar 

  • S.M. Miyama, S. Narita, C. Hayashi, Fragmentation of isothermal sheet-like clouds. II—full nonlinear numerical simulations. Prog. Theor. Phys. 78(6), 1273–1287 (1987)

    Article  ADS  Google Scholar 

  • S. Molinari, B. Swinyard, J. Bally et al., Clouds, filaments, and protostars: the Herschel Hi-GAL Milky Way. Astron. Astrophys. 518, L100 (2010)

    Article  ADS  Google Scholar 

  • S. Molinari, J. Bally, A. Noriega-Crespo et al., A 100 pc elliptical and twisted ring of cold and dense molecular clouds revealed by Herschel around the Galactic Center. Astrophys. J. Lett. 735(2), L33 (2011)

    Article  ADS  Google Scholar 

  • B. Mookerjea, C. Kramer, M. Nielbock et al., The Giant Molecular Cloud associated with RCW 106. A 1.2 mm continuum mapping study. Astron. Astrophys. 426, 119–129 (2004)

    Article  ADS  Google Scholar 

  • F. Motte, P. Andre, R. Neri, The initial conditions of star formation in the rho Ophiuchi main cloud: wide-field millimeter continuum mapping. Astron. Astrophys. 336, 150–172 (1998)

    ADS  Google Scholar 

  • F. Motte, P. André, D. Ward-Thompson et al., A SCUBA survey of the NGC 2068/2071 protoclusters. Astron. Astrophys. 372, L41–L44 (2001)

    Article  ADS  Google Scholar 

  • F. Motte, T. Nony, F. Louvet et al., The unexpectedly large proportion of high-mass star-forming cores in a galactic mini-starburst. Nat. Astron. 2, 478–482 (2018)

    Article  ADS  Google Scholar 

  • N. Murray, P. Chang, Star formation in self-gravitating turbulent fluids. Astrophys. J. 804(1), 44 (2015)

    Article  ADS  Google Scholar 

  • P.C. Myers, Dense cores in dark clouds. III. Subsonic turbulence. Astrophys. J. 270, 105–118 (1983)

    Article  ADS  Google Scholar 

  • P. Myers, Filamentary structure of star-forming complexes. Astrophys. J. 700, 1609–1625 (2009)

    Article  ADS  Google Scholar 

  • M. Nagasawa, Gravitational instability of the isothermal gas cylinder with an axial magnetic field. Prog. Theor. Phys. 77(3), 635–652 (1987)

    Article  ADS  Google Scholar 

  • F. Nakamura, Z.Y. Li, Quiescent cores and the efficiency of turbulence-accelerated, magnetically regulated star formation. Astrophys. J. 631(1), 411–428 (2005)

    Article  ADS  Google Scholar 

  • R. Naranjo-Romero, E. Vázquez-Semadeni, R.M. Loughnane, Hierarchical gravitational fragmentation. I. Collapsing cores within collapsing clouds. Astrophys. J. 814(1), 48 (2015)

    Article  ADS  Google Scholar 

  • Q. Nguyen-Luong, F. Nakamura, K. Sugitani et al., Large-scale molecular gas distribution in the M17 cloud complex: dense gas conditions of massive star formation? Astrophys. J. 891(1), 66 (2020)

    Article  ADS  Google Scholar 

  • E. Ntormousi, P. Hennebelle, P. André et al., The effect of ambipolar diffusion on low-density molecular ISM filaments. Astron. Astrophys. 589, A24 (2016)

    Article  ADS  Google Scholar 

  • S.S.R. Offner, Y. Liu, Turbulent action at a distance due to stellar feedback in magnetized clouds. Nat. Astron. 2, 896–900 (2018)

    Article  ADS  Google Scholar 

  • S. Ohashi, P. Sanhueza, H.R.V. Chen et al., Dense core properties in the infrared dark cloud G14.225-0.506 revealed by ALMA. Astrophys. J. 833(2), 209 (2016)

    Article  ADS  Google Scholar 

  • T. Onishi, A. Mizuno, A. Kawamura et al., A C18O survey of dense cloud cores in Taurus: star formation. Astrophys. J. 502, 296–314 (1998)

    Article  ADS  Google Scholar 

  • J.H. Oort, Outline of a theory on the origin and acceleration of interstellar clouds and O associations. Bull. Astron. Inst. s12, 177 (1954)

    ADS  Google Scholar 

  • V. Ossenkopf, M.M. Mac Low, Turbulent velocity structure in molecular clouds. Astron. Astrophys. 390, 307–326 (2002)

    Article  ADS  Google Scholar 

  • J. Ostriker, The equilibrium of polytropic and isothermal cylinders. Astrophys. J. 140, 1056 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • P. Padoan, Å. Nordlund, The star formation rate of supersonic magnetohydrodynamic turbulence. Astrophys. J. 730, 40 (2011)

    Article  ADS  Google Scholar 

  • P. Padoan, L. Pan, T. Haugbølle et al., Supernova driving. I. The origin of molecular cloud turbulence. Astrophys. J. 822(1), 11 (2016)

    Article  ADS  Google Scholar 

  • P. Padoan, L. Pan, M. Juvela et al., The origin of massive stars: the inertial-inflow model. ArXiv e-prints (2019). ArXiv:1911.04465

  • A. Palau, R. Estalella, J.M. Girart et al., Fragmentation of massive dense cores down to \(\sim1000~\mbox{AU}\): relation between fragmentation and density structure. Astrophys. J. 785(1), 42 (2014)

    Article  ADS  Google Scholar 

  • P. Palmeirim, P. André, J. Kirk et al., Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? Astron. Astrophys. 550, A38 (2013)

    Article  Google Scholar 

  • H.A. Pan, Y. Fujimoto, E.J. Tasker et al., Effects of galactic disc inclination and resolution on observed GMC properties and Larson’s scaling relations. Mon. Not. R. Astron. Soc. 458(3), 2443–2453 (2016)

    Article  ADS  Google Scholar 

  • L. Pan, P. Padoan, Å. Nordlund, The probability distribution of density fluctuations in supersonic turbulence. Astrophys. J. 881, 155 (2019)

    Article  ADS  Google Scholar 

  • G.V. Panopoulou, K. Tassis, P.F. Goldsmith et al., 13CO filaments in the Taurus molecular cloud. Mon. Not. R. Astron. Soc. 444, 2507–2524 (2014)

    Article  ADS  Google Scholar 

  • G.V. Panopoulou, I. Psaradaki, R. Skalidis et al., A closer look at the ‘characteristic’ width of molecular cloud filaments. Mon. Not. R. Astron. Soc. 466, 2529–2541 (2017)

    Article  ADS  Google Scholar 

  • E.N. Parker, Cosmical Magnetic Fields. Their Origin and Their Activity (Oxford University Press, London, 1979)

    Google Scholar 

  • T. Passot, E. Vázquez-Semadeni, Density probability distribution in one-dimensional polytropic gas dynamics. Phys. Rev. E 58(4), 4501–4510 (1998)

    Article  ADS  Google Scholar 

  • T. Passot, A. Pouquet, P. Woodward, The plausibility of Kolmogorov-type spectra in molecular clouds. Astron. Astrophys. 197(1–2), 228–234 (1988)

    ADS  MATH  Google Scholar 

  • T. Passot, E. Vazquez-Semadeni, A. Pouquet, A turbulent model for the interstellar medium. II. Magnetic fields and rotation. Astrophys. J. 455, 536 (1995)

    Article  ADS  Google Scholar 

  • N. Peretto, P. André, V. Könyves et al., The Pipe Nebula as seen with Herschel: formation of filamentary structures by large-scale compression? Astron. Astrophys. 541, A63 (2012)

    Article  Google Scholar 

  • N. Peretto, G.A. Fuller, A. Duarte-Cabral et al., Global collapse of molecular clouds as a formation mechanism for the most massive stars. Astron. Astrophys. 555, A112 (2013)

    Article  Google Scholar 

  • N. Peretto, G.A. Fuller, P. André et al., SDC13 infrared dark clouds: longitudinally collapsing filaments? Astron. Astrophys. 561, A83 (2014)

    Article  Google Scholar 

  • T.G. Phillips, P.J. Huggins, P.G. Wannier et al., Observations of \(\mbox{CO}(J = 2-1)\) emission from molecular clouds. Astrophys. J. 231, 720–731 (1979)

    Article  ADS  Google Scholar 

  • J.E. Pineda, A.A. Goodman, H.G. Arce et al., Direct observation of a sharp transition to coherence in dense cores. Astrophys. J. Lett. 712(1), L116–L121 (2010)

    Article  ADS  Google Scholar 

  • J.E. Pineda, A.A. Goodman, H.G. Arce et al., Expanded very large array observations of the Barnard 5 star-forming core: embedded filaments revealed. Astrophys. J. Lett. 739, L2 (2011)

    Article  ADS  Google Scholar 

  • J.L. Pineda, W.D. Langer, T. Velusamy et al., A Herschel [C ii] galactic plane survey. I. The global distribution of ISM gas components. Astron. Astrophys. 554, A103 (2013)

    Article  ADS  Google Scholar 

  • Planck Collaboration, Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds. Astron. Astrophys. 586, A138 (2016)

    Article  Google Scholar 

  • R. Plume, D.T. Jaffe, N.J. Evans II et al., Dense gas and star formation: characteristics of cloud cores associated with water masers. Astrophys. J. 476(2), 730–749 (1997)

    Article  ADS  Google Scholar 

  • R. Pokhrel, R. Gutermuth, B. Ali et al., A Herschel-SPIRE survey of the Mon R2 giant molecular cloud: analysis of the gas column density probability density function. Mon. Not. R. Astron. Soc. 461, 22–35 (2016)

    Article  ADS  Google Scholar 

  • A. Pon, D. Johnstone, F. Heitsch, Modes of star formation in finite molecular clouds. Astrophys. J. 740(2), 88 (2011)

    Article  ADS  Google Scholar 

  • A. Pon, J.A. Toalá, D. Johnstone et al., Aspect ratio dependence of the free-fall time for non-spherical symmetries. Astrophys. J. 756(2), 145 (2012)

    Article  ADS  Google Scholar 

  • J.M. Rathborne, S.N. Longmore, J.M. Jackson et al., Turbulence sets the initial conditions for star formation in high-pressure environments. Astrophys. J. Lett. 795, L25 (2014)

    Article  ADS  Google Scholar 

  • M.A. Reid, C.D. Wilson, High-mass star formation. I. The mass distribution of submillimeter clumps in NGC 7538. Astrophys. J. 625(2), 891–905 (2005)

    Article  ADS  Google Scholar 

  • M.A. Reid, C.D. Wilson, High-mass star formation. II. The mass function of submillimeter clumps in M17. Astrophys. J. 644(2), 990–1005 (2006a)

    Article  ADS  Google Scholar 

  • M.A. Reid, C.D. Wilson, High-mass star formation. III. The functional form of the submillimeter clump mass function. Astrophys. J. 650(2), 970–984 (2006b)

    Article  ADS  Google Scholar 

  • M. Reina-Campos, J.M.D. Kruijssen, A unified model for the maximum mass scales of molecular clouds, stellar clusters and high-redshift clumps. Mon. Not. R. Astron. Soc. 469, 1282–1298 (2017)

    Article  ADS  Google Scholar 

  • A. Rivera-Ingraham, I. Ristorcelli, M. Juvela et al., Galactic cold cores. VII. Filament formation and evolution: methods and observational constraints. Astron. Astrophys. 591, A90 (2016)

    Article  Google Scholar 

  • J. Roman-Duval, J.M. Jackson, M. Heyer et al., Physical properties and galactic distribution of molecular clouds identified in the Galactic Ring Survey. Astrophys. J. 723(1), 492–507 (2010)

    Article  ADS  Google Scholar 

  • J. Roman-Duval, M. Heyer, C.M. Brunt et al., Distribution and mass of diffuse and dense CO gas in the Milky Way. Astrophys. J. 818(2), 144 (2016)

    Article  ADS  Google Scholar 

  • C.G. Román-Zúñiga, J.F. Alves, C.J. Lada et al., Deep near-infrared survey of the Pipe Nebula. II. Data, methods, and dust extinction maps. Astrophys. J. 725(2), 2232–2250 (2010)

    Article  ADS  Google Scholar 

  • E.W. Rosolowsky, J.E. Pineda, J. Kauffmann et al., Structural analysis of molecular clouds: dendrograms. Astrophys. J. 679(2), 1338–1351 (2008)

    Article  ADS  Google Scholar 

  • E. Rosolowsky, M.K. Dunham, A. Ginsburg et al., The Bolocam Galactic Plane Survey. II. Catalog of the image data. Astrophys. J. Suppl. Ser. 188(1), 123–138 (2010)

    Article  ADS  Google Scholar 

  • J. Rowles, D. Froebrich, The structure of molecular clouds—I. All-sky near-infrared extinction maps. Mon. Not. R. Astron. Soc. 395(3), 1640–1648 (2009)

    Article  ADS  Google Scholar 

  • A. Roy, P. André, D. Arzoumanian et al., How the power spectrum of dust continuum images may hide the presence of a characteristic filament width. Astron. Astrophys. 626, A76 (2019)

    Article  Google Scholar 

  • D. Russeil, M. Figueira, A. Zavagno et al., Herschel-HOBYS study of the earliest phases of high-mass star formation in NGC 6357. Astron. Astrophys. 625, A134 (2019)

    Article  Google Scholar 

  • C.J. Salji, J.S. Richer, J.V. Buckle et al., The JCMT Gould Belt Survey: properties of star-forming filaments in Orion A North. Mon. Not. R. Astron. Soc. 449, 1782–1796 (2015)

    Article  ADS  Google Scholar 

  • E.E. Salpeter, The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955)

    Article  ADS  Google Scholar 

  • D.B. Sanders, N.Z. Scoville, P.M. Solomon, Giant molecular clouds in the galaxy. II. Characteristics of discrete features. Astrophys. J. 289, 373–387 (1985)

    Article  ADS  Google Scholar 

  • J. Scalo, Perception of interstellar structure—facing complexity, in Physical Processes in Fragmentation and Star Formation. Astrophysics and Space Science Library, vol. 162, ed. by R. Capuzzo-Dolcetta, C. Chiosi, A. di Fazio (1990), pp. 151–176

    Chapter  Google Scholar 

  • E. Schisano, K.L.J. Rygl, S. Molinari et al., The identification of filaments on far-infrared and submillimeter images: morphology, physical conditions and relation with star formation of filamentary structure. Astrophys. J. 791, 27 (2014)

    Article  ADS  Google Scholar 

  • S. Schneider, B.G. Elmegreen, A catalog of dark globular filaments. Astrophys. J. Suppl. Ser. 41, 87–95 (1979)

    Article  ADS  Google Scholar 

  • N. Schneider, T. Csengeri, S. Bontemps et al., Dynamic star formation in the massive DR21 filament. Astron. Astrophys. 520, A49 (2010)

    Article  Google Scholar 

  • A. Schruba, A.K. Leroy, F. Walter et al., The scale dependence of the molecular gas depletion time in M33. Astrophys. J. 722(2), 1699–1706 (2010)

    Article  ADS  Google Scholar 

  • A. Schruba, J.M.D. Kruijssen, A.K. Leroy, How galactic environment affects the dynamical state of molecular clouds and their star formation efficiency. Astrophys. J. 883(1), 2 (2019)

    Article  ADS  Google Scholar 

  • N.Z. Scoville, K. Hersh, Collisional growth of giant molecular clouds. Astrophys. J. 229, 578–582 (1979)

    Article  ADS  Google Scholar 

  • N.Z. Scoville, C.D. Wilson, Molecular gas forming massive star clusters and starbursts, in The Formation and Evolution of Massive Young Star Clusters, ed. by H.J.G.L.M. Lamers, L.J. Smith, A. Nota. Astronomical Society of the Pacific Conference Series, vol. 322 (2004), p. 245

    Google Scholar 

  • D. Seifried, W. Schmidt, J.C. Niemeyer, Forced turbulence in thermally bistable gas: a parameter study. Astron. Astrophys. 526, A14 (2011)

    Article  ADS  MATH  Google Scholar 

  • D. Seifried, S. Walch, S. Haid et al., Is molecular cloud turbulence driven by external supernova explosions? Astrophys. J. 855(2), 81 (2018)

    Article  ADS  Google Scholar 

  • R. Shetty, E.C. Ostriker, Cloud and star formation in disk galaxy models with feedback. Astrophys. J. 684(2), 978–995 (2008)

    Article  ADS  Google Scholar 

  • R. Shetty, S.C. Glover, C.P. Dullemond et al., Modelling CO emission—I. CO as a column density tracer and the X factor in molecular clouds. Mon. Not. R. Astron. Soc. 412(3), 1686–1700 (2011)

    Article  ADS  Google Scholar 

  • R. Shetty, C.N. Beaumont, M.G. Burton et al., The linewidth-size relationship in the dense interstellar medium of the Central Molecular Zone. Mon. Not. R. Astron. Soc. 425(1), 720–729 (2012)

    Article  ADS  Google Scholar 

  • Y. Shimajiri, P. André, E. Ntormousi et al., Probing fragmentation and velocity sub-structure in the massive NGC 6334 filament with ALMA. Astron. Astrophys. 632, A83 (2019a)

    Article  Google Scholar 

  • Y. Shimajiri, P. André, P. Palmeirim et al., Probing accretion of ambient cloud material into the Taurus B211/B213 filament. Astron. Astrophys. 623, A16 (2019b)

    Article  Google Scholar 

  • Y.L. Shirley, N.J. Evans II, K.E. Young et al., A CS \(J=5\rightarrow4\) mapping survey toward high-mass star-forming cores associated with water masers. Astrophys. J. Suppl. Ser. 149(2), 375–403 (2003)

    Article  ADS  Google Scholar 

  • F.H. Shu, Self-similar collapse of isothermal spheres and star formation. Astrophys. J. 214, 488–497 (1977)

    Article  ADS  Google Scholar 

  • F.H. Shu, F.C. Adams, S. Lizano, Star formation in molecular clouds: observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987)

    Article  ADS  Google Scholar 

  • J. Silk, Feedback, disk self-regulation, and galaxy formation. Astrophys. J. 481(2), 703–709 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • R.J. Smith, S.C.O. Glover, R.S. Klessen, On the nature of star-forming filaments—I. Filament morphologies. Mon. Not. R. Astron. Soc. 445(3), 2900–2917 (2014)

    Article  ADS  Google Scholar 

  • R.J. Smith, S.C.O. Glover, R.S. Klessen et al., On the nature of star-forming filaments—II. Subfilaments and velocities. Mon. Not. R. Astron. Soc. 455(4), 3640–3655 (2016)

    Article  ADS  Google Scholar 

  • J.D. Soler, Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure. Astron. Astrophys. 629, A96 (2019)

    Article  ADS  Google Scholar 

  • J.D. Soler, P. Hennebelle, What are we learning from the relative orientation between density structures and the magnetic field in molecular clouds? Astron. Astrophys. 607, A2 (2017)

    Article  ADS  Google Scholar 

  • J.D. Soler, P. Hennebelle, P.G. Martin et al., An imprint of molecular cloud magnetization in the morphology of the dust polarized emission. Astrophys. J. 774(2), 128 (2013)

    Article  ADS  Google Scholar 

  • P.M. Solomon, A.R. Rivolo, J. Barrett et al., Mass, luminosity, and line width relations of galactic molecular clouds. Astrophys. J. 319, 730 (1987)

    Article  ADS  Google Scholar 

  • S.W. Stahler, F. Palla, The Formation of Stars (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  • T. Stanke, M.D. Smith, R. Gredel et al., An unbiased search for the signatures of protostars in the \(\rho\) Ophiuchi molecular cloud. II. Millimetre continuum observations. Astron. Astrophys. 447(2), 609–622 (2006)

    Article  ADS  Google Scholar 

  • J.S. Stodólkiewicz, On the gravitational instability of some magneto-hydrodynamical systems of astrophysical interest. Part III. Acta Astron. 13, 30–54 (1963)

    ADS  MATH  Google Scholar 

  • S. Storm, L.G. Mundy, K.I. Lee et al., CARMA large area star formation survey: dense gas in the Young L1451 region of Perseus. Astrophys. J. 830(2), 127 (2016)

    Article  ADS  Google Scholar 

  • R. Stutzki, The small scale structure of molecular clouds. Rev. Mod. Astron. 6, 209–232 (1993)

    ADS  Google Scholar 

  • J. Stutzki, R. Guesten, High spatial resolution isotopic CO and CS observations of M17 SW: the clumpy structure of the molecular cloud core. Astrophys. J. 356, 513 (1990)

    Article  ADS  Google Scholar 

  • J. Sun, A.K. Leroy, A. Schruba et al., Cloud-scale molecular gas properties in 15 nearby galaxies. Astrophys. J. 860(2), 172 (2018)

    Article  ADS  Google Scholar 

  • J. Sun, A.K. Leroy, E.C. Ostriker et al., Dynamical equilibrium in the molecular ISM in 28 nearby star-forming galaxies. Astrophys. J. 892, 148 (2020)

    Article  ADS  Google Scholar 

  • M. Tafalla, A. Hacar, Chains of dense cores in the Taurus L1495/B213 complex. Astron. Astrophys. 574, A104 (2015)

    Article  ADS  Google Scholar 

  • M. Tafalla, P.C. Myers, P. Caselli et al., On the internal structure of starless cores. I. Physical conditions and the distribution of CO, CS, N2H+, and NH3 in L1498 and L1517B. Astron. Astrophys. 416, 191–212 (2004)

    Article  ADS  Google Scholar 

  • L.G. Taff, M.P. Savedoff, The mass distribution of objects under-going collisions with applications to interstellar HI clouds. Mon. Not. R. Astron. Soc. 164, 357 (1973)

    Article  ADS  Google Scholar 

  • E.J. Tasker, J.C. Tan, Star formation in disk galaxies. I. Formation and evolution of giant molecular clouds via gravitational instability and cloud collisions. Astrophys. J. 700(1), 358–375 (2009)

    Article  ADS  Google Scholar 

  • K. Tassis, D.A. Christie, A. Urban et al., Do lognormal column-density distributions in molecular clouds imply supersonic turbulence? Mon. Not. R. Astron. Soc. 408(2), 1089–1094 (2010)

    Article  ADS  Google Scholar 

  • G. Tenorio-Tagle, P. Bodenheimer, Large-scale expanding superstructures in galaxies. Annu. Rev. Astron. Astrophys. 26, 145–197 (1988)

    Article  ADS  Google Scholar 

  • L. Testi, A.I. Sargent, Star formation in clusters: a survey of compact millimeter-wave sources in the Serpens core. Astrophys. J. Lett. 508(1), L91–L94 (1998)

    Article  ADS  Google Scholar 

  • A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  • J.A. Toalá, E. Vázquez-Semadeni, G.C. Gómez, The free-fall time of finite sheets and filaments. Astrophys. J. 744(2), 190 (2012)

    Article  ADS  Google Scholar 

  • J.E. Tohline, Hydrodynamic collapse. Fundam. Cosm. Phys. 8, 1–82 (1982)

    ADS  Google Scholar 

  • K. Tomisaka, Coagulation of interstellar clouds in spiral gravitational potential and formation of giant molecular clouds. Publ. Astron. Soc. Jpn. 36(3), 457–475 (1984)

    ADS  Google Scholar 

  • K. Tomisaka, Magnetohydrostatic equilibrium structure and mass of filamentary isothermal cloud threaded by lateral magnetic field. Astrophys. J. 785, 24 (2014)

    Article  ADS  Google Scholar 

  • A. Traficante, A. Duarte-Cabral, D. Elia et al., Testing the Larson relations in massive clumps. Mon. Not. R. Astron. Soc. 477(2), 2220–2242 (2018a)

    Article  ADS  Google Scholar 

  • A. Traficante, G.A. Fuller, R.J. Smith et al., Massive 70 μm quiet clumps—II. Non-thermal motions driven by gravity in massive star formation? Mon. Not. R. Astron. Soc. 473(4), 4975–4985 (2018b)

    Article  ADS  Google Scholar 

  • A. Traficante, Y.N. Lee, P. Hennebelle et al., A possible observational bias in the estimation of the virial parameter in virialized clumps. Astron. Astrophys. 619, L7 (2018c)

    Article  ADS  Google Scholar 

  • A. Tritsis, K. Tassis, Striations in molecular clouds: streamers or MHD waves? Mon. Not. R. Astron. Soc. 462, 3602–3615 (2016)

    Article  ADS  Google Scholar 

  • T.H. Troland, R.M. Crutcher, Magnetic fields in dark cloud cores: Arecibo OH Zeeman observations. Astrophys. J. 680(1), 457–465 (2008)

    Article  ADS  Google Scholar 

  • A.E. Tsitali, A. Belloche, R.T. Garrod et al., Star formation in Chamaeleon I and III: a molecular line study of the starless core population. Astron. Astrophys. 575, A27 (2015)

    Article  ADS  Google Scholar 

  • D. Utomo, J. Sun, A.K. Leroy et al., Star formation efficiency per free-fall time in nearby galaxies. Astrophys. J. Lett. 861(2), L18 (2018)

    Article  ADS  Google Scholar 

  • V. Valdivia, P. Hennebelle, M. Gérin et al., H2 distribution during the formation of multiphase molecular clouds. Astron. Astrophys. 587, A76 (2016)

    Article  ADS  Google Scholar 

  • V. Valdivia, B. Godard, P. Hennebelle et al., Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift. Astron. Astrophys. 600, A114 (2017)

    Article  Google Scholar 

  • E. Vazquez-Semadeni, Hierarchical structure in nearly pressureless flows as a consequence of self-similar statistics. Astrophys. J. 423, 681 (1994)

    Article  ADS  Google Scholar 

  • E. Vázquez-Semadeni, Turbulence in molecular clouds, in Millimeter-Wave Astronomy: Molecular Chemistry & Physics in Space, Proceedings of the 1996 INAOE Summer School of Millimeter-Wave Astronomy Held at INAOE, ed. by W.F. Wall, A. Carramiñana, L. Carrasco. Astrophysics and Space Science Library, vol. 241. Tonantzintla, Puebla, Mexico, 15–31 July 1996 (Kluwer Academic Publishers, Dordrecht, 1999), p. 161

    Chapter  Google Scholar 

  • E. Vázquez-Semadeni, N. García, The probability distribution function of column density in molecular clouds. Astrophys. J. 557(2), 727–735 (2001)

    Article  ADS  Google Scholar 

  • E. Vazquez-Semadeni, T. Passot, A. Pouquet, A turbulent model for the interstellar medium. I. Threshold star formation and self-gravity. Astrophys. J. 441, 702 (1995)

    Article  ADS  Google Scholar 

  • E. Vázquez-Semadeni, D. Ryu, T. Passot et al., Molecular cloud evolution. I. Molecular cloud and thin cold neutral medium sheet formation. Astrophys. J. 643, 245–259 (2006)

    Article  ADS  Google Scholar 

  • E. Vázquez-Semadeni, G.C. Gómez, A.K. Jappsen et al., Molecular cloud evolution. II. From cloud formation to the early stages of star formation in decaying conditions. Astrophys. J. 657(2), 870–883 (2007)

    Article  ADS  Google Scholar 

  • E. Vázquez-Semadeni, A. González-Samaniego, P. Colín, Hierarchical star cluster assembly in globally collapsing molecular clouds. Mon. Not. R. Astron. Soc. 467, 1313–1328 (2017)

    ADS  Google Scholar 

  • E. Vázquez-Semadeni, M. Zamora-Avilés, R. Galván-Madrid et al., Molecular cloud evolution—VI. Measuring cloud ages. Mon. Not. R. Astron. Soc. 479(3), 3254–3263 (2018)

    Article  ADS  Google Scholar 

  • E. Vázquez-Semadeni, A. Palau, J. Ballesteros-Paredes et al., Global hierarchical collapse in molecular clouds. Towards a comprehensive scenario. Mon. Not. R. Astron. Soc. 490, 3061–3097 (2019)

    Article  ADS  Google Scholar 

  • T.V. Veltchev, V. Ossenkopf-Okada, O. Stanchev et al., Spatially associated clump populations in Rosette from CO and dust maps. Mon. Not. R. Astron. Soc. 475, 2215–2235 (2018)

    Article  ADS  Google Scholar 

  • S. Walch, T. Naab, The energy and momentum input of supernova explosions in structured and ionized molecular clouds. Mon. Not. R. Astron. Soc. 451, 2757–2771 (2015)

    Article  ADS  Google Scholar 

  • K. Wang, L. Testi, A. Ginsburg et al., Large-scale filaments associated with Milky Way spiral arms. Mon. Not. R. Astron. Soc. 450, 4043–4049 (2015)

    Article  ADS  Google Scholar 

  • J.L. Ward, M. Chevance, J.M.D. Kruijssen et al., Towards a multi-tracer timeline of star formation in the LMC I: deriving the lifetimes of HI clouds. Mon. Not. R. Astron. Soc. (2019, submitted)

  • A.P. Whitworth, A.S. Bhattal, N. Francis et al., Star formation and the singular isothermal sphere. Mon. Not. R. Astron. Soc. 283(3), 1061–1070 (1996)

    Article  ADS  Google Scholar 

  • J.P. Williams, E.J. de Geus, L. Blitz, Determining structure in molecular clouds. Astrophys. J. 428, 693–712 (1994)

    Article  ADS  Google Scholar 

  • R.W. Wilson, K.B. Jefferts, A.A. Penzias, Carbon monoxide in the Orion Nebula. Astrophys. J. Lett. 161, L43 (1970)

    Article  ADS  Google Scholar 

  • M.G. Wolfire, C.F. McKee, D. Hollenbach et al., Neutral atomic phases of the interstellar medium in the galaxy. Astrophys. J. 587, 278–311 (2003)

    Article  ADS  Google Scholar 

  • J. Wu, N.J. Evans II, Y.L. Shirley et al., The properties of massive, dense clumps: mapping surveys of HCN and CS. Astrophys. J. Suppl. Ser. 188(2), 313–357 (2010)

    Article  ADS  Google Scholar 

  • S. Xu, A. Lazarian, Turbulence in a self-gravitating molecular cloud core. Astrophys. J. 890(2), 157 (2020)

    Article  ADS  Google Scholar 

  • N. Ysard, A. Abergel, I. Ristorcelli et al., Variation in dust properties in a dense filament of the Taurus molecular complex (L1506). Astron. Astrophys. 559, A133 (2013)

    Article  Google Scholar 

  • M. Zamora-Avilés, E. Vázquez-Semadeni, P. Colín, An evolutionary model for collapsing molecular clouds and their star formation activity. Astrophys. J. 751(1), 77 (2012)

    Article  ADS  Google Scholar 

  • M. Zamora-Avilés, J. Ballesteros-Paredes, L.W. Hartmann, Are fibres in molecular cloud filaments real objects? Mon. Not. R. Astron. Soc. 472(1), 647–656 (2017)

    Article  ADS  Google Scholar 

  • M. Zamora-Avilés, E. Vázquez-Semadeni, B. Körtgen et al., Magnetic suppression of turbulence and the star formation activity of molecular clouds. Mon. Not. R. Astron. Soc. 474(4), 4824–4836 (2018)

    Article  ADS  Google Scholar 

  • C.P. Zhang, G.X. Li, Mass-size scaling \(M\propto r^{1}.67\) of massive star-forming clumps—evidences of turbulence-regulated gravitational collapse. Mon. Not. R. Astron. Soc. 469(2), 2286–2291 (2017)

    Article  ADS  Google Scholar 

  • G.Y. Zhang, J.L. Xu, A.I. Vasyunin et al., Physical properties and chemical composition of the cores in the California molecular cloud. Astron. Astrophys. 620, A163 (2018)

    Article  Google Scholar 

  • S. Zhang, A. Zavagno, J. Yuan et al., HII regions and high-mass starless clump candidates I: catalogs and properties. ArXiv e-prints (2020). ArXiv:2003.11433

Download references

Acknowledgements

The authors acknowledge the hospitality of the International Space Science Institute during the “Workshop on Star Formation”, held in Bern, Switzerland, May 2019. JBP acknowledges UNAM-DGAPA-PAPIIT support through grant number IN-111-219. PhA acknowledges support from the French national programs of CNRS/INSU on stellar and ISM physics (PNPS and PCMI) and from the European Research Council via the ERC Advanced Grant ORISTARS (Grant Agreement no. 291294). RSK acknowledges financial support from the German Research Foundation (DFG) via the collaborative research center (SFB 881, Project-ID 138713538) “The Milky Way System” (subprojects A1, B1, B2, and B8). He also thanks for funding from the Heidelberg Cluster of Excellence STRUCTURES in the framework of Germany’s Excellence Strategy (grant EXC-2181/1—390900948) and for funding from the European Research Council via the ERC Synergy Grant ECOGAL (grant 855130) and the ERC Advanced Grant STARLIGHT (grant 339177). M.C. and J.M.D.K. gratefully acknowledge funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4801/1-1) and a DFG Sachbeihilfe Grant (grant number KR4801/2-1). J.M.D.K. gratefully acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907), and from Sonderforschungsbereich SFB 881 “The Milky Way System” (subproject B2) of the DFG. A.A. acknowledges the support of the Swedish Research Council, Vetenskapsrådet, and the Swedish National Space Agency (SNSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ballesteros-Paredes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Star Formation

Edited by Andrei Bykov, Corinne Charbonnel, Patrick Hennebelle, Alexandre Marcowith, Georges Meynet, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballesteros-Paredes, J., André, P., Hennebelle, P. et al. From Diffuse Gas to Dense Molecular Cloud Cores. Space Sci Rev 216, 76 (2020). https://doi.org/10.1007/s11214-020-00698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00698-3

Keywords

Navigation