The MAVEN Radio Occultation Science Experiment (ROSE)

A Correction to this article was published on 29 June 2020

This article has been updated

Abstract

The Radio Occultation Science Experiment (ROSE) is part of the scientific payload of the Mars Atmosphere Volatile EvolutioN (MAVEN) spacecraft. Here we motivate the science objectives of the MAVEN ROSE investigation, which are (1) to determine the vertical structure of plasma in the ionosphere and (2) to identify the density, altitude, and width of the ionospheric density peak. MAVEN ROSE achieves these science objectives by performing two-way X-band radio occultations. Data are acquired ingress and egress opportunities using the high-gain antenna and a carrier-only signal. They are also acquired on ingress opportunities using the low-gain antenna with telemetry on the signal. Raw data are processed to yield vertical profiles of the electron density in the ionosphere of Mars with an accuracy on the order of \(10^{9}\mbox{ m}^{-3}\), a vertical resolution on the order of 1 km, and a vertical range on the order of 100–500 km. Data products are archived at the NASA Planetary Data System. In order to ensure the reproducibility of the results of the MAVEN ROSE investigation, software programs to determine MAVEN ROSE electron density profiles from time series of frequency residuals accompany this article.

Furthermore, here we examine what the MAVEN ROSE observations reveal about the behavior of the ionosphere of Mars. Peak density, peak altitude, and total electron content mostly display the expected trends with solar zenith angle. However, deviations from those trends are present. Peak density at fixed dayside solar zenith angle can vary by 30% and M1 layer density at fixed solar zenith angle can vary even more. Solar irradiance variations are the most likely cause of these variations. Peak altitude at fixed dayside solar zenith angle can vary by 20 km or more. Thermospheric responses to lower atmospheric dust events are the most likely cause of these variations. Several instances of unusual ionospheric features are present in the dayside electron density profiles. A layer with density \(3 \times 10^{10}\mbox{ m}^{-3}\) that appears to occur at 60 km altitude may be a horizontally-confined region of larger density that actually occurs at higher altitudes. Significant changes in density over short vertical distances around 160 km altitude may be caused by ionospheric dynamics in the presence of strong crustal magnetic fields. Topside plasma layers around 200 km altitude may reflect sharp gradients in electron temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Change history

  • 29 June 2020

    <Emphasis Type="Bold">Correction to: Space Sci. Rev. (2020) 216: 61</Emphasis> <ExternalRef><RefSource><Emphasis Type="Bold">https://doi.org/10.1007/s11214-020-00687-6</Emphasis></RefSource><RefTarget Address="10.1007/s11214-020-00687-6" TargetType="DOI"/></ExternalRef>

    This article unfortunately was published without the Electronic Supplementary Material mentioned in the article text. With the publication of this correction the ESM “radio_occ_mvn_ssrlikev32.pro” is now available online.

References

  1. M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999). https://doi.org/10.1126/science.284.5415.790

    ADS  Article  Google Scholar 

  2. M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Rème, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106, 23403–23418 (2001). https://doi.org/10.1029/2000JE001404

    ADS  Article  Google Scholar 

  3. L. Andersson, R.E. Ergun, G.T. Delory, A. Eriksson, J. Westfall, H. Reed, J. McCauly, D. Summers, D. Meyers, The Langmuir Probe and Waves (LPW) instrument for MAVEN. Space Sci. Rev. 195, 173–198 (2015). https://doi.org/10.1007/s11214-015-0194-3

    ADS  Article  Google Scholar 

  4. J.W. Armstrong, R. Woo, F.B. Estabrook, Interplanetary phase scintillation and the search for very low frequency gravitational radiation. Astrophys. J. 230, 570–574 (1979). https://doi.org/10.1086/157114

    ADS  Article  Google Scholar 

  5. S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: noise budget and accuracy achievable in precision radio science observations. Radio Sci. 40, RS2001 (2005). https://doi.org/10.1029/2004RS003101

    ADS  Article  Google Scholar 

  6. S.W. Asmar, S.J. Bolton, D.R. Buccino, T.P. Cornish, W.M. Folkner, R. Formaro, L. Iess, A.P. Jongeling, D.K. Lewis, A.P. Mittskus, R. Mukai, L. Simone, The Juno gravity science instrument. Space Sci. Rev. 213, 205–218 (2017). https://doi.org/10.1007/s11214-017-0428-7

    ADS  Article  Google Scholar 

  7. C.A. Barth, A.I.F. Stewart, S.W. Bougher, D.M. Hunten, S.J. Bauer, A.F. Nagy, Aeronomy of the current Martian atmosphere, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Arizona, 1992), pp. 1054–1089

    Google Scholar 

  8. S.J. Bauer, H. Lammer, Planetary Aeronomy (Springer, New York, 2004)

    Book  Google Scholar 

  9. M. Benna, P.R. Mahaffy, J.M. Grebowsky, J.L. Fox, R.V. Yelle, B.M. Jakosky, First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophys. Res. Lett. 42, 8958–8965 (2015). https://doi.org/10.1002/2015GL066146

    ADS  Article  Google Scholar 

  10. M.K. Bird, S.W. Asmar, P. Edenhofer, O. Funke, M. Pätzold, H. Volland, The structure of Jupiter’s Io plasma torus inferred from Ulysses radio occultation observations. Planet. Space Sci. 41, 999–1010 (1993). https://doi.org/10.1016/0032-0633(93)90104-A

    ADS  Article  Google Scholar 

  11. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959)

    MATH  Google Scholar 

  12. S.W. Bougher, S. Engel, D.P. Hinson, J.M. Forbes, Mars Global Surveyor radio science electron density profiles: neutral atmosphere implications. Geophys. Res. Lett. 28, 3091–3094 (2001). https://doi.org/10.1029/2001GL012884

    ADS  Article  Google Scholar 

  13. S.W. Bougher, S. Engel, D.P. Hinson, J.R. Murphy, MGS radio science electron density profiles: interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res. 109, E03010 (2004). https://doi.org/10.1029/2003JE002154

    ADS  Article  Google Scholar 

  14. S.W. Bougher, T.E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev. 195(1–4), 423–456 (2015). https://doi.org/10.1007/s11214-014-0053-7

    ADS  Article  Google Scholar 

  15. S.W. Bougher, D.A. Brain, J.L. Fox, G.G. Francisco, C. Simon-Wedlund, P.G. Withers, Upper neutral atmosphere and ionosphere, in The Atmosphere and Climate of Mars, ed. by R.M. Haberle, R.T. Clancy, F. Forget, M.D. Smith, R.W. Zurek (Cambridge University Press, Cambridge, 2017), pp. 405–432. https://doi.org/10.1017/9781139060172.014

    Google Scholar 

  16. D.A. Brain, R.J. Lillis, D.L. Mitchell, J.S. Halekas, R.P. Lin, Electron pitch angle distributions as indicators of magnetic field topology near Mars. J. Geophys. Res. 112, A09201 (2007). https://doi.org/10.1029/2007JA012435

    ADS  Article  Google Scholar 

  17. D.A. Brain, S. Barabash, S.W. Bougher, F. Duru, B.M. Jakosky, R. Modolo, Solar wind interaction and atmospheric escape, in The Atmosphere and Climate of Mars, ed. by R.M. Haberle, R.T. Clancy, F. Forget, M.D. Smith, R.W. Zurek (Cambridge University Press, Cambridge, 2017), pp. 433–463. https://doi.org/10.1017/9781139060172.015

    Google Scholar 

  18. K.L. Cahoy, D.P. Hinson, G.L. Tyler, Radio science measurements of atmospheric refractivity with Mars Global Surveyor. J. Geophys. Res. 111(E5), E05003 (2006). https://doi.org/10.1029/2005JE002634

    ADS  Article  Google Scholar 

  19. K.L. Cahoy, D.P. Hinson, G.L. Tyler, Characterization of a semidiurnal eastward-propagating tide at high northern latitudes with Mars Global Surveyor electron density profiles. Geophys. Res. Lett. 34(15), L15201 (2007). https://doi.org/10.1029/2007GL030449

    ADS  Article  Google Scholar 

  20. J.W. Chamberlain, D.M. Hunten, Theory of Planetary Atmospheres, 2nd edn. (Academic Press, New York, 1987)

    Google Scholar 

  21. R.H. Chen, T.E. Cravens, A.F. Nagy, The Martian ionosphere in light of the Viking observations. J. Geophys. Res. 83, 3871–3876 (1978)

    ADS  Article  Google Scholar 

  22. F. Chu, Z. Girazian, D.A. Gurnett, D.D. Morgan, J. Halekas, A.J. Kopf, E.M.B. Thiemann, F. Duru, The effects of crustal magnetic fields and solar EUV flux on ionopause formation at Mars. Geophys. Res. Lett. 46(10257), 10,25710,266 (2019). https://doi.org/10.1029/2019GL083499

    Article  Google Scholar 

  23. G.A. Collinson, J. McFadden, J. Grebowsky, D. Mitchell, R. Lillis, P. Withers, M.F. Vogt, M. Benna, J. Espley, B. Jakosky, Constantly forming sporadic E-like layers and rifts in the Martian ionosphere and their implications for Earth. Nat. Astron. (2020). https://doi.org/10.1038/s41550-019-0984-8

    Article  Google Scholar 

  24. J.E.P. Connerney, M.H. Acuna, P.J. Wasilewski, N.F. Ness, H. Reme, C. Mazelle, D. Vignes, R.P. Lin, D.L. Mitchell, P.A. Cloutier, Magnetic lineations in the ancient crust of Mars. Science 284, 794 (1999). https://doi.org/10.1126/science.284.5415.794

    ADS  Article  Google Scholar 

  25. J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Rème, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28, 4015–4018 (2001). https://doi.org/10.1029/2001GL013619

    ADS  Article  Google Scholar 

  26. J.E.P. Connerney, J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, D. Sheppard, The MAVEN magnetic field investigation. Space Sci. Rev. 195, 257–291 (2015). https://doi.org/10.1007/s11214-015-0169-4

    ADS  Article  Google Scholar 

  27. M.M.J. Crismani, N.M. Schneider, J.M.C. Plane, J.S. Evans, S.K. Jain, M.S. Chaffin, J.D. Carrillo-Sanchez, J.I. Deighan, R.V. Yelle, A.I.F. Stewart, W. McClintock, J. Clarke, G.M. Holsclaw, A. Stiepen, F. Montmessin, B.M. Jakosky, Detection of a persistent meteoric metal layer in the Martian atmosphere. Nat. Geosci. 10, 401–404 (2017). https://doi.org/10.1038/ngeo2958

    ADS  Article  Google Scholar 

  28. M.M.J. Crismani, J. Deighan, N.M. Schneider, J.M.C. Plane, P. Withers, J. Halekas, M. Chaffin, S. Jain, Localized ionization hypothesis for transient ionospheric layers. J. Geophys. Res. (2019). https://doi.org/10.1029/2018JA026251

    Article  Google Scholar 

  29. C. Diéval, D.D. Morgan, F. Němec, D.A. Gurnett, MARSIS observations of the Martian nightside ionosphere dependence on solar wind conditions. J. Geophys. Res. 119, 4077–4093 (2014). https://doi.org/10.1002/2014JA019788

    Article  Google Scholar 

  30. E. Dubinin, M. Fraenz, D. Andrews, D. Morgan, Martian ionosphere observed by Mars Express. 1. Influence of the crustal magnetic fields. Planet. Space Sci. 124, 62–75 (2016). https://doi.org/10.1016/j.pss.2016.02.004

    ADS  Article  Google Scholar 

  31. E. Dubinin, M. Fraenz, M. Pätzold, J. McFadden, J.S. Halekas, J.E.P. Connerney, B.M. Jakosky, O. Vaisberg, L. Zelenyi, Martian ionosphere observed by MAVEN. 3. Influence of solar wind and IMF on upper ionosphere. Planet. Space Sci. 160, 56–65 (2018). https://doi.org/10.1016/j.pss.2018.03.016

    ADS  Article  Google Scholar 

  32. E. Dubinin, M. Fraenz, M. Pätzold, J. Woch, J. McFadden, J.S. Halekas, J.E.P. Connerney, B.M. Jakosky, F. Eparvier, O. Vaisberg, L. Zelenyi, Expansion and shrinking of the Martian topside ionosphere. J. Geophys. Res. 124(11), 9725–9738 (2019). https://doi.org/10.1029/2019JA027077

    Article  Google Scholar 

  33. F. Duru, D.A. Gurnett, D.D. Morgan, R. Modolo, A.F. Nagy, D. Najib, Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations. J. Geophys. Res. 113, A07302 (2008). https://doi.org/10.1029/2008JA013073

    ADS  Article  Google Scholar 

  34. F. Duru, D.A. Gurnett, R.A. Frahm, J.D. Winningham, D.D. Morgan, G.G. Howes, Steep, transient density gradients in the Martian ionosphere similar to the ionopause at Venus. J. Geophys. Res. 114, A12310 (2009). https://doi.org/10.1029/2009JA014711

    ADS  Article  Google Scholar 

  35. F. Duru, B. Brain, D.A. Gurnett, J. Halekas, D.D. Morgan, C.J. Wilkinson, Electron density profiles in the upper ionosphere of Mars from 11 years of MARSIS data: variability due to seasons, solar cycle, and crustal magnetic fields. J. Geophys. Res. 124(4), 3057–3066 (2019). https://doi.org/10.1029/2018JA026327

    Article  Google Scholar 

  36. H. Egan, Y. Ma, C. Dong, R. Modolo, R. Jarvinen, S. Bougher, J. Halekas, D. Brain, J. Mcfadden, J. Connerney, D. Mitchell, B. Jakosky, Comparison of global Martian plasma models in the context of MAVEN observations. J. Geophys. Res. 123(5), 3714–3726 (2018). https://doi.org/10.1029/2017JA025068

    Article  Google Scholar 

  37. F.G. Eparvier, P.C. Chamberlin, T.N. Woods, E.M.B. Thiemann, The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev. 195, 293–301 (2015). https://doi.org/10.1007/s11214-015-0195-2

    ADS  Article  Google Scholar 

  38. R.E. Ergun, M.W. Morooka, L.A. Andersson, C.M. Fowler, G.T. Delory, D.J. Andrews, A.I. Eriksson, T. McEnulty, B.M. Jakosky, Dayside electron temperature and density profiles at Mars: first results from the MAVEN Langmuir probe and waves instrument. Geophys. Res. Lett. 42, 8846–8853 (2015). https://doi.org/10.1002/2015GL065280

    ADS  Article  Google Scholar 

  39. V.R. Eshleman, The radio occultation method for the study of planetary atmospheres. Planet. Space Sci. 21, 1521–1531 (1973)

    ADS  Article  Google Scholar 

  40. K. Fallows, P. Withers, M. Matta, An observational study of the influence of solar zenith angle on properties of the M1 layer of the Mars ionosphere. J. Geophys. Res. 120, 1299–1310 (2015). https://doi.org/10.1002/2014JA020750

    Article  Google Scholar 

  41. K. Fallows, P. Withers, D. Morgan, A. Kopf, Extremely high plasma densities in the Mars ionosphere associated with cusp-like magnetic fields. J. Geophys. Res. (2019). https://doi.org/10.1029/2019JA026690

    Article  Google Scholar 

  42. G. Fjeldbo, V.R. Eshleman, The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet. Space Sci. 16(8), 1035–1059 (1968). https://doi.org/10.1016/0032-0633(68)90020-2

    ADS  Article  Google Scholar 

  43. G. Fjeldbo, A. Kliore, B. Seidel, The Mariner 1969 occultation measurements of the upper atmosphere of Mars. Radio Sci. 5(2), 381–386 (1970). https://doi.org/10.1029/RS005i002p00381

    ADS  Article  Google Scholar 

  44. G. Fjeldbo, A.J. Kliore, V.R. Eshleman, The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J. 76, 123–140 (1971)

    ADS  Article  Google Scholar 

  45. G. Fjeldbo, D. Sweetnam, J. Brenkle, E. Christensen, D. Farless, J. Mehta, B. Seidel, W. Jr. Michael, A. Wallio, M. Grossi, Viking radio occultation measurements of the Martian atmosphere and topography — primary mission coverage. J. Geophys. Res. 82, 4317–4324 (1977). https://doi.org/10.1029/JS082i028p04317

    ADS  Article  Google Scholar 

  46. C.L. Flynn, M.F. Vogt, P. Withers, L. Andersson, S. England, G. Liu, MAVEN observations of the effects of crustal magnetic fields on electron density and temperature in the Martian dayside ionosphere. Geophys. Res. Lett. 44(10), 10,812–10,821 (2017). https://doi.org/10.1002/2017GL075367

    Article  Google Scholar 

  47. C.M. Fowler, L. Andersson, R.E. Ergun, M. Morooka, G. Delory, D.J. Andrews, R.J. Lillis, T. McEnulty, T.D. Weber, T.M. Chamandy, A.I. Eriksson, D.L. Mitchell, C. Mazelle, B.M. Jakosky, The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophys. Res. Lett. 42(21), 8854–8861 (2015). https://doi.org/10.1002/2015GL065267

    ADS  Article  Google Scholar 

  48. J.L. Fox, Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays. J. Geophys. Res. 109, A11310 (2004). https://doi.org/10.1029/2004JA010380

    ADS  Article  Google Scholar 

  49. J.L. Fox, A.J. Weber, MGS electron density profiles: analysis and modeling of peak altitudes. Icarus 221, 1002–1019 (2012). https://doi.org/10.1016/j.icarus.2012.10.002

    ADS  Article  Google Scholar 

  50. J.L. Fox, K.E. Yeager, Morphology of the near-terminator Martian ionosphere: a comparison of models and data. J. Geophys. Res. 111, A10309 (2006). https://doi.org/10.1029/2006JA011697

    ADS  Article  Google Scholar 

  51. J.L. Fox, K.E. Yeager, MGS electron density profiles: analysis of the peak magnitudes. Icarus 200, 468–479 (2009). https://doi.org/10.1016/j.icarus.2008.12.002

    ADS  Article  Google Scholar 

  52. Z. Girazian, P. Withers, The dependence of peak electron density in the ionosphere of Mars on solar irradiance. Geophys. Res. Lett. 40(10), 1960–1964 (2013). https://doi.org/10.1002/grl.50344

    ADS  Article  Google Scholar 

  53. Z. Girazian, P. Withers, An empirical model of the extreme ultraviolet solar spectrum as a function of F10.7. J. Geophys. Res. 120, 6779–6794 (2015). https://doi.org/10.1002/2015JA021436

    Article  Google Scholar 

  54. Z. Girazian, P. Withers, B. Häusler, M. Pätzold, S. Tellmann, K. Peter, Characterization of the lower layer in the dayside Venus ionosphere and comparisons with Mars. Planet. Space Sci. 117, 146–158 (2015). https://doi.org/10.1016/j.pss.2015.06.007

    ADS  Article  Google Scholar 

  55. Z. Girazian, P. Mahaffy, R.J. Lillis, M. Benna, M. Elrod, C.M. Fowler, D.L. Mitchell, Ion densities in the nightside ionosphere of Mars: effects of electron impact ionization. Geophys. Res. Lett. 44, 11 (2017). https://doi.org/10.1002/2017GL075431

    Article  Google Scholar 

  56. Z. Girazian, P.R. Mahaffy, R.J. Lillis, M. Benna, M. Elrod, B.M. Jakosky, Nightside ionosphere of Mars: composition, vertical structure, and variability. J. Geophys. Res. 122(4), 4712–4725 (2017b). https://doi.org/10.1002/2016JA023508

    Article  Google Scholar 

  57. Z. Girazian, J. Halekas, D.D. Morgan, A.J. Kopf, D.A. Gurnett, F. Chu, The effects of solar wind dynamic pressure on the structure of the topside ionosphere of Mars. Geophys. Res. Lett. 46(15), 8652–8662 (2019a). https://doi.org/10.1029/2019GL083643

    ADS  Article  Google Scholar 

  58. Z. Girazian, P. Mahaffy, Y. Lee, E.M.B. Thiemann, Seasonal, solar zenith angle, and solar flux variations of O+ in the topside ionosphere of Mars. J. Geophys. Res. 124(4), 3125–3138 (2019b). https://doi.org/10.1029/2018JA026086

    Article  Google Scholar 

  59. J. Grebowsky, K. Fast, E. Talaat, M. Combi, F. Crary, S. England, Y. Ma, M. Mendillo, P. Rosenblatt, K. Seki, M. Stevens, P. Withers, Science enhancements by the MAVEN participating scientists. Space Sci. Rev. 195(1–4), 319–355 (2015). https://doi.org/10.1007/s11214-014-0080-4

    ADS  Article  Google Scholar 

  60. D.A. Gurnett, R.L. Huff, D.D. Morgan, A.M. Persoon, T.F. Averkamp, D.L. Kirchner, F. Duru, F. Akalin, A.J. Kopf, E. Nielsen, A. Safaeinili, J.J. Plaut, G. Picardi, An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft. Adv. Space Res. 41, 1335–1346 (2008). https://doi.org/10.1016/j.asr.2007.01.062

    ADS  Article  Google Scholar 

  61. S.D. Guzewich, M. Lemmon, C.L. Smith, G. Martínez, Á de Vicente-Retortillo, C.E. Newman, M. Baker, C. Campbell, B. Cooper, J. Gómez-Elvira, A.M. Harri, D. Hassler, F.J. Martin-Torres, T. McConnochie, J.E. Moores, H. Kahanpää, A. Khayat, M.I. Richardson, M.D. Smith, R. Sullivan, M. de la Torre Juarez, A.R. Vasavada, D. Viúdez-Moreiras, C. Zeitlin, M.P. Zorzano Mier, Mars Science Laboratory observations of the 2018/Mars Year 34 global dust storm. Geophys. Res. Lett. 46(1), 71–79 (2019). https://doi.org/10.1029/2018GL080839

    ADS  Article  Google Scholar 

  62. J.S. Halekas, E.R. Taylor, G. Dalton, G. Johnson, D.W. Curtis, J.P. McFadden, D.L. Mitchell, R.P. Lin, B.M. Jakosky, The solar wind ion analyzer for MAVEN. Space Sci. Rev. 195, 125–151 (2015). https://doi.org/10.1007/s11214-013-0029-z

    ADS  Article  Google Scholar 

  63. Q. Han, K. Fan, J. Cui, Y. Wei, M. Fraenz, E. Dubinin, L. Chai, Z. Rong, W. Wan, L. Andersson, D.L. Mitchell, J.E.P. Connerney, The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations. J. Geophys. Res. 124(10), 8015–8022 (2019). https://doi.org/10.1029/2019JA026739

    Article  Google Scholar 

  64. M.H. Hantsch, S.J. Bauer, Solar control of the Mars ionosphere. Planet. Space Sci. 38, 539–542 (1990)

    ADS  Article  Google Scholar 

  65. Y. Harada, D.A. Gurnett, A.J. Kopf, J.S. Halekas, S. Ruhunusiri, Ionospheric irregularities at Mars probed by MARSIS topside sounding. J. Geophys. Res. 123, 1018–1030 (2018). https://doi.org/10.1002/2017JA024913

    Article  Google Scholar 

  66. D.P. Hinson, MGS RST science data products USA_NASA_JPL_MORS_1102, in MGS-M-RSS-5-EDS-V1.0, NASA Planetary Data System, ed. by R.A. Simpson (2007)

    Google Scholar 

  67. D.P. Hinson, F.M. Flasar, A.J. Kliore, P.J. Schinder, J.D. Twicken, R.G. Herrera, Jupiter’s ionosphere: results from the first Galileo radio occultation experiment. Geophys. Res. Lett. 24(17), 2107–2110 (1997). https://doi.org/10.1029/97GL01608

    ADS  Article  Google Scholar 

  68. D.P. Hinson, R.A. Simpson, J.D. Twicken, G.L. Tyler, F.M. Flasar, Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 26997–27012 (1999)

    ADS  Article  Google Scholar 

  69. D.P. Hinson, I.R. Linscott, L.A. Young, G.L. Tyler, S.A. Stern, R.A. Beyer, M.K. Bird, K. Ennico, G.R. Gladstone, C.B. Olkin, M. Pätzold, P.M. Schenk, D.F. Strobel, M.E. Summers, H.A. Weaver, W.W. Woods, Radio occultation measurements of Pluto’s neutral atmosphere with New Horizons. Icarus 290, 96–111 (2017). https://doi.org/10.1016/j.icarus.2017.02.031

    ADS  Article  Google Scholar 

  70. T. Imamura, H. Ando, S. Tellmann, M. Pätzold, B. Häusler, A. Yamazaki, T.M. Sato, K. Noguchi, Y. Futaana, J. Oschlisniok, S. Limaye, R.K. Choudhary, Y. Murata, H. Takeuchi, C. Hirose, T. Ichikawa, T. Toda, A. Tomiki, T. Abe, Z. Yamamoto, H. Noda, T. Iwata, S. Murakami T. Satoh, T. Fukuhara, K. Ogohara, K. Sugiyama, H. Kashimura, S. Ohtsuki, S. Takagi, Y. Yamamoto, N. Hirata, G.L. Hashimoto, M. Yamada, M. Suzuki, N. Ishii, T. Hayashiyama, Y.J. Lee, M. Nakamura, Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki. Earth Planets Space 69(1), 137 (2017). https://doi.org/10.1186/s40623-017-0722-3

    ADS  Article  Google Scholar 

  71. B.M. Jakosky, MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions. J. Geophys. Res. 122(9), 9552–9553 (2017). https://doi.org/10.1002/2017JA024324

    Article  Google Scholar 

  72. B.M. Jakosky, R.P. Lin, J.M. Grebowsky, J.G. Luhmann, D.F. Mitchell, G. Beutelschies, T. Priser, M. Acuna, L. Andersson, D. Baird, D. Baker, R. Bartlett, M. Benna, S. Bougher, D. Brain, D. Carson, S. Cauffman, P. Chamberlin, J.Y. Chaufray, O. Cheatom, J. Clarke, J. Connerney, T. Cravens, D. Curtis, G. Delory, S. Demcak, A. DeWolfe, F. Eparvier, R. Ergun, A. Eriksson, J. Espley, X. Fang, D. Folta, J. Fox, C. Gomez-Rosa, S. Habenicht, J. Halekas, G. Holsclaw, M. Houghton, R. Howard, M. Jarosz, N. Jedrich, M. Johnson, W. Kasprzak, M. Kelley, T. King, M. Lankton, D. Larson, F. Leblanc, F. Lefevre, R. Lillis, P. Mahaffy, C. Mazelle, W. McClintock, J. McFadden, D.L. Mitchell, F. Montmessin, J. Morrissey, W. Peterson, W. Possel, J.A. Sauvaud, N. Schneider, W. Sidney, S. Sparacino, A.I.F. Stewart, R. Tolson, D. Toublanc, C. Waters, T. Woods, R. Yelle, R. Zurek, The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. 195, 3–48 (2015). https://doi.org/10.1007/s11214-015-0139-x

    ADS  Article  Google Scholar 

  73. B.M. Jakosky, D. Brain, M. Chaffin, S. Curry, J. Deighan, J. Grebowsky, J. Halekas, F. Leblanc, R. Lillis, J.G. Luhmann, L. Andersson, N. Andre, D. Andrews, D. Baird, D. Baker, J. Bell, M. Benna, D. Bhattacharyya, S. Bougher, C. Bowers, P. Chamberlin, J.Y. Chaufray, J. Clarke, G. Collinson, M. Combi, J. Connerney, K. Connour, J. Correira, K. Crabb, F. Crary, T. Cravens, M. Crismani, G. Delory, R. Dewey, G. DiBraccio, C. Dong, Y. Dong, P. Dunn, H. Egan, M. Elrod, S. England, F. Eparvier, R. Ergun, A. Eriksson, T. Esman, J. Espley, S. Evans, K. Fallows, X. Fang, M. Fillingim, C. Flynn, A. Fogle, C. Fowler, J. Fox, M. Fujimoto, P. Garnier, Z. Girazian, H. Groeller, J. Gruesbeck, O. Hamil, K.G. Hanley, T. Hara, Y. Harada, J. Hermann, M. Holmberg, G. Holsclaw, S. Houston, S. Inui, S. Jain, R. Jolitz, A. Kotova, T. Kuroda, D. Larson, Y. Lee, C. Lee, F. Lefevre, C. Lentz, D. Lo, R. Lugo, Y.J. Ma, P. Mahaffy, M.L. Marquette, Y. Matsumoto, M. Mayyasi, C. Mazelle, W. McClintock, J. McFadden, A. Medvedev, M. Mendillo, K. Meziane, Z. Milby, D. Mitchell, R. Modolo, F. Montmessin, A. Nagy, H. Nakagawa, C. Narvaez, K. Olsen, D. Pawlowski, W. Peterson, A. Rahmati, K. Roeten, N. Romanelli, S. Ruhunusiri, C. Russell, S. Sakai, N. Schneider, K. Seki, R. Sharrar, S. Shaver, D.E. Siskind, M. Slipski, Y. Soobiah, M. Steckiewicz, M.H. Stevens, I. Stewart, A. Stiepen, S. Stone, V. Tenishev, N. Terada, K. Terada, E. Thiemann, R. Tolson, G. Toth, J. Trovato, M. Vogt, T. Weber, P. Withers, S. Xu, R. Yelle, E. Yiğit, R. Zurek, Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018). https://doi.org/10.1016/j.icarus.2018.05.030

    ADS  Article  Google Scholar 

  74. J.M. Jenkins, P.G. Steffes, D.P. Hinson, J.D. Twicken, G.L. Tyler, Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 2: results from the October 1991 experiments. Icarus 110, 79–94 (1994). https://doi.org/10.1006/icar.1994.1108

    ADS  Article  Google Scholar 

  75. A. Kliore, D.L. Cain, G.S. Levy, V.R. Eshleman, G. Fjeldbo, F.D. Drake, Occultation experiment: results of the first direct measurement of Mars’s atmosphere and ionosphere. Science 149, 1243–1248 (1965). https://doi.org/10.1126/science.149.3689.1243

    ADS  Article  Google Scholar 

  76. A.J. Kliore, D.L. Cain, G. Fjeldbo, B.L. Seidel, M.J. Sykes, S.I. Rasool, The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus 17, 484–516 (1972)

    ADS  Article  Google Scholar 

  77. A.J. Kliore, G. Fjeldbo, B.L. Seidel, M.J. Sykes, P.M. Woiceshyn, S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: extended mission coverage of polar and intermediate latitudes. J. Geophys. Res. 78, 4331–4351 (1973). https://doi.org/10.1029/JB078i020p04331

    ADS  Article  Google Scholar 

  78. A.J. Kliore, D.P. Hinson, F.M. Flasar, A.F. Nagy, T.E. Cravens, The ionosphere of Europa from Galileo radio occultations. Science 277, 355–358 (1997). https://doi.org/10.1126/science.277.5324.355

    ADS  Article  Google Scholar 

  79. A.J. Kopf, D.A. Gurnett, D.D. Morgan, D.L. Kirchner, Transient layers in the topside ionosphere of Mars. Geophys. Res. Lett. 35, L17102 (2008). https://doi.org/10.1029/2008GL034948

    ADS  Article  Google Scholar 

  80. A.J. Kopf, D.A. Gurnett, G.A. DiBraccio, D.D. Morgan, J.S. Halekas, The transient topside layer and associated current sheet in the ionosphere of Mars. J. Geophys. Res. 122(5), 5579–5590 (2017). https://doi.org/10.1002/2016JA023591

    Article  Google Scholar 

  81. A.M. Krymskii, T.K. Breus, N.F. Ness, D.P. Hinson, D.I. Bojkov, Effect of crustal magnetic fields on the near terminator ionosphere at Mars: comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars Global Surveyor. J. Geophys. Res. 108, 1431 (2003). https://doi.org/10.1029/2002JA009662

    Article  Google Scholar 

  82. D.E. Larson, R.J. Lillis, C.O. Lee, P.A. Dunn, K. Hatch, M. Robinson, D. Glaser, J. Chen, D. Curtis, C. Tiu, R.P. Lin, J.G. Luhmann, B.M. Jakosky, The MAVEN solar energetic particle investigation. Space Sci. Rev. 195, 153–172 (2015). https://doi.org/10.1007/s11214-015-0218-z

    ADS  Article  Google Scholar 

  83. R.J. Lillis, D.A. Brain, Nightside electron precipitation at Mars: geographic variability and dependence on solar wind conditions. J. Geophys. Res. 118, 3546–3556 (2013). https://doi.org/10.1002/jgra.50171

    Article  Google Scholar 

  84. R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, B.M. Jakosky, R. Modolo, J. Fox, J. Deighan, X. Fang, Y.C. Wang, Y. Lee, C. Dong, Y. Ma, T. Cravens, L. Andersson, S.M. Curry, N. Schneider, M. Combi, I. Stewart, J. Clarke, J. Grebowsky, D.L. Mitchell, R. Yelle, A.F. Nagy, D. Baker, R.P. Lin, Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. 195, 357–422 (2015). https://doi.org/10.1007/s11214-015-0165-8

    ADS  Article  Google Scholar 

  85. R.J. Lillis, J. Deighan, J.L. Fox, S.W. Bougher, Y. Lee, M.R. Combi, T.E. Cravens, A. Rahmati, P.R. Mahaffy, M. Benna, M.K. Elrod, J.P. McFadden, R.E. Ergun, L. Andersson, C.M. Fowler, B.M. Jakosky, E. Thiemann, F. Eparvier, J.S. Halekas, F. Leblanc, J.Y. Chaufray, Photochemical escape of oxygen from Mars: first results from MAVEN in situ data. J. Geophys. Res. 122, 3815–3836 (2017). https://doi.org/10.1002/2016JA023525

    Article  Google Scholar 

  86. R.J. Lillis, M.O. Fillingim, Y. Ma, F. Gonzalez-Galindo, F. Forget, C.L. Johnson, A. Mittelholz, C.T. Russell, L. Andersson, C.M. Fowler, Modeling wind-driven ionospheric dynamo currents at Mars: expectations for InSight magnetic field measurements. Geophys. Res. Lett. 46(10), 5083–5091 (2019). https://doi.org/10.1029/2019GL082536

    ADS  Article  Google Scholar 

  87. G.F. Lindal, H.B. Hotz, D.N. Sweetnam, Z. Shippony, J.P. Brenkle, G.V. Hartsell, R.T. Spear, Viking radio occultation measurements of the atmosphere and topography of Mars — data acquired during 1 Martian year of tracking. J. Geophys. Res. 84, 8443–8456 (1979). https://doi.org/10.1029/JB084iB14p08443

    ADS  Article  Google Scholar 

  88. Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004). https://doi.org/10.1029/2003JA010367

    ADS  Article  Google Scholar 

  89. Y.J. Ma, X. Fang, A.F. Nagy, C.T. Russell, G. Toth, Martian ionospheric responses to dynamic pressure enhancements in the solar wind. J. Geophys. Res. 119, 1272–1286 (2014). https://doi.org/10.1002/2013JA019402

    Article  Google Scholar 

  90. P.R. Mahaffy, M. Benna, M. Elrod, R.V. Yelle, S.W. Bougher, S.W. Stone, B.M. Jakosky, Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett. 42(21), 8951–8957 (2015a). https://doi.org/10.1002/2015GL065329

    ADS  Article  Google Scholar 

  91. P.R. Mahaffy, M. Benna, T. King, D.N. Harpold, R. Arvey, M. Barciniak, M. Bendt, D. Carrigan, T. Errigo, V. Holmes, C.S. Johnson, J. Kellogg, P. Kimvilakani, M. Lefavor, J. Hengemihle, F. Jaeger, E. Lyness, J. Maurer, A. Melak, F. Noreiga, M. Noriega, K. Patel, B. Prats, E. Raaen, F. Tan, E. Weidner, C. Gundersen, S. Battel, B.P. Block, K. Arnett, R. Miller, C. Cooper, C. Edmonson, J.T. Nolan, The neutral gas and ion mass spectrometer on the Mars Atmosphere and Volatile Evolution mission. Space Sci. Rev. 195, 49–73 (2015b). https://doi.org/10.1007/s11214-014-0091-1

    ADS  Article  Google Scholar 

  92. C.R. Martinis, J.K. Wilson, M.J. Mendillo, Modeling day-to-day ionospheric variability on Mars. J. Geophys. Res. 108, 1383 (2003). https://doi.org/10.1029/2003JA009973

    Article  Google Scholar 

  93. M. Matta, M. Galand, L. Moore, M. Mendillo, P. Withers, Numerical simulations of ion and electron temperatures in the ionosphere of Mars: multiple ions and diurnal variations. Icarus 227, 78–88 (2014). https://doi.org/10.1016/j.icarus.2013.09.006

    ADS  Article  Google Scholar 

  94. M. Matta, M. Mendillo, P. Withers, D. Morgan, Interpreting Mars ionospheric anomalies over crustal magnetic field regions using a 2-D ionospheric model. J. Geophys. Res. 120(1), 766–777 (2015). https://doi.org/10.1002/2014JA020721

    Article  Google Scholar 

  95. M. Mayyasi, P. Withers, K. Fallows, A sporadic topside layer in the ionosphere of Mars from analysis of MGS radio occultation data. J. Geophys. Res. 123, 883–900 (2018). https://doi.org/10.1002/2017JA024938

    Article  Google Scholar 

  96. M. Mayyasi, C. Narvaez, M. Benna, M. Elrod, P. Mahaffy, Ion-neutral coupling in the upper atmosphere of Mars: a dominant driver of topside ionospheric structure. J. Geophys. Res. 124(5), 3786–3798 (2019). https://doi.org/10.1029/2019JA026481

    Article  Google Scholar 

  97. W.E. McClintock, N.M. Schneider, G.M. Holsclaw, J.T. Clarke, A.C. Hoskins, I. Stewart, F. Montmessin, R.V. Yelle, J. Deighan, The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. (2014). https://doi.org/10.1007/s11214-014-0098-7

    Article  Google Scholar 

  98. J.P. McFadden, O. Kortmann, D. Curtis, G. Dalton, G. Johnson, R. Abiad, R. Sterling, K. Hatch, P. Berg, C. Tiu, D. Gordon, S. Heavner, M. Robinson, M. Marckwordt, R. Lin, B. Jakosky, MAVEN SupraThermal and Thermal Ion Compostion (STATIC) instrument. Space Sci. Rev. 195, 199–256 (2015). https://doi.org/10.1007/s11214-015-0175-6

    ADS  Article  Google Scholar 

  99. M. Mendillo, S. Smith, J. Wroten, H. Rishbeth, D. Hinson, Simultaneous ionospheric variability on Earth and Mars. J. Geophys. Res. 108, 1432 (2003). https://doi.org/10.1029/2003JA009961

    Article  Google Scholar 

  100. M. Mendillo, X. Pi, S. Smith, C. Martinis, J. Wilson, D. Hinson, Ionospheric effects upon a satellite navigation system at Mars. Radio Sci. 39(2), RS2028. https://doi.org/10.1029/2003RS002933 (2004)

    ADS  Article  Google Scholar 

  101. M. Mendillo, P. Withers, D. Hinson, H. Rishbeth, B. Reinisch, Effects of solar flares on the ionosphere of Mars. Science 311, 1135–1138 (2006). https://doi.org/10.1126/science.1122099

    ADS  Article  Google Scholar 

  102. M. Mendillo, C. Narvaez, J. Trovato, P. Withers, M. Mayyasi, D. Morgan, A. Kopf, D. Gurnett, F. Němec, B. Campbell, Mars Initial Reference Ionosphere (MIRI) model: updates and validations using MAVEN, MEX, and MRO data sets. J. Geophys. Res. 123(7), 5674–5683 (2018). https://doi.org/10.1029/2018JA025263

    Article  Google Scholar 

  103. D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106, 23419–23428 (2001)

    ADS  Article  Google Scholar 

  104. D.L. Mitchell, C. Mazelle, J.A. Sauvaud, J.J. Thocaven, J. Rouzaud, A. Fedorov, P. Rouger, D. Toublanc, E. Taylor, D. Gordon, M. Robinson, S. Heavner, P. Turin, M. Diaz-Aguado, D.W. Curtis, R.P. Lin, B.M. Jakosky, The MAVEN solar wind electron analyzer. Space Sci. Rev. 200, 495–528 (2016). https://doi.org/10.1007/s11214-015-0232-1

    ADS  Article  Google Scholar 

  105. V.I. Moroz, The atmosphere of Mars. Space Sci. Rev. 19, 763–843 (1976)

    ADS  Article  Google Scholar 

  106. A. Morschhauser, V. Lesur, M. Grott, A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res. 119, 1162–1188 (2014). https://doi.org/10.1002/2013JE004555

    Article  Google Scholar 

  107. F. Němec, D.D. Morgan, D.A. Gurnett, F. Duru, Nightside ionosphere of Mars: radar soundings by the Mars express spacecraft. J. Geophys. Res. 115, E12009 (2010). https://doi.org/10.1029/2010JE003663

    ADS  Article  Google Scholar 

  108. F. Němec, D.D. Morgan, D.A. Gurnett, D.A. Brain, Areas of enhanced ionization in the deep nightside ionosphere of Mars. J. Geophys. Res. 116, E06006 (2011a). https://doi.org/10.1029/2011JE003804

    ADS  Article  Google Scholar 

  109. F. Němec, D.D. Morgan, D.A. Gurnett, F. Duru, V. Truhlík, Dayside ionosphere of Mars: empirical model based on data from the MARSIS instrument. J. Geophys. Res. 116, E07003 (2011b). https://doi.org/10.1029/2010JE003789

    ADS  Article  Google Scholar 

  110. F. Němec, D.D. Morgan, A.J. Kopf, D.A. Gurnett, D. Pitoňák, C.M. Fowler, D.J. Andrews, L. Andersson, Characterizing average electron densities in the Martian dayside upper ionosphere. J. Geophys. Res. 124(1), 76–93 (2019). https://doi.org/10.1029/2018JE005849

    Article  Google Scholar 

  111. H.J. Opgenoorth, D.J. Andrews, M. Fränz, M. Lester, N.J.T. Edberg, D. Morgan, F. Duru, O. Witasse, A.O. Williams, Mars ionospheric response to solar wind variability. J. Geophys. Res. 118, 6558–6587 (2013). https://doi.org/10.1002/jgra.50537

    Article  Google Scholar 

  112. M. Paik, S.W. Asmar, Detecting high dynamics signals from open-loop radio science investigations. Proc. IEEE 99(5), 881–888 (2011). https://doi.org/10.1109/JPROC.2010.2084550

    Article  Google Scholar 

  113. M. Pätzold, S. Tellmann, B. Häusler, D. Hinson, R. Schaa, G.L. Tyler, A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005). https://doi.org/10.1126/science.1117755

    ADS  Article  Google Scholar 

  114. M. Pätzold, B. Häusler, G.L. Tyler, T. Andert, S.W. Asmar, M.K. Bird, V. Dehant, D.P. Hinson, P. Rosenblatt, R.A. Simpson, S. Tellmann, P. Withers, M. Beuthe, A.I. Efimov, M. Hahn, D. Kahan, S. Le Maistre, J. Oschlisniok, K. Peter, S. Remus, Mars express 10 years at Mars: observations by the Mars Express Radio Science Experiment (MaRS). Planet. Space Sci. 127, 44–90 (2016). https://doi.org/10.1016/j.pss.2016.02.013

    ADS  Article  Google Scholar 

  115. K. Peter, M. Pätzold, G. Molina-Cuberos, O. Witasse, F. González-Galindo, P. Withers, M.K. Bird, B. Häusler, D.P. Hinson, S. Tellmann, G.L. Tyler, The dayside ionospheres of Mars and Venus: comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus 233, 66–82 (2014). https://doi.org/10.1016/j.icarus.2014.01.028

    ADS  Article  Google Scholar 

  116. W.K. Peterson, C.M. Fowler, L.A. Andersson, E.M.B. Thiemann, S.K. Jain, M. Mayyasi, T.M. Esman, R. Yelle, M. Benna, J. Espley, Martian electron temperatures in the subsolar region: MAVEN observations compared to a one-dimensional model. J. Geophys. Res. 123, 5960–5973 (2018). https://doi.org/10.1029/2018JA025406

    Article  Google Scholar 

  117. J.A. Riousset, C.S. Paty, R.J. Lillis, M.O. Fillingim, S.L. England, P.G. Withers, J.P.M. Hale, Three-dimensional multifluid modeling of atmospheric electrodynamics in Mars’ dynamo region. J. Geophys. Res. 118(6), 3647–3659 (2013). https://doi.org/10.1002/jgra.50328

    Article  Google Scholar 

  118. J.A. Riousset, C.S. Paty, R.J. Lillis, M.O. Fillingim, S.L. England, P.G. Withers, J.P.M. Hale, Electrodynamics of the Martian dynamo region near magnetic cusps and loops. Geophys. Res. Lett. 41(4), 1119–1125 (2014). https://doi.org/10.1002/2013GL059130

    ADS  Article  Google Scholar 

  119. H. Rishbeth, M. Mendillo, Ionospheric layers of Mars and Earth. Planet. Space Sci. 52, 849–852 (2004). https://doi.org/10.1016/j.pss.2004.02.007

    ADS  Article  Google Scholar 

  120. A. Safaeinili, W. Kofman, J. Mouginot, Y. Gim, A. Herique, A.B. Ivanov, J.J. Plaut, G. Picardi, Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett. 34, L23204 (2007). https://doi.org/10.1029/2007GL032154

    ADS  Article  Google Scholar 

  121. S. Sakai, L. Andersson, T.E. Cravens, D.L. Mitchell, C. Mazelle, A. Rahmati, C.M. Fowler, S.W. Bougher, E.M.B. Thiemann, F.G. Eparvier, J.M. Fontenla, P.R. Mahaffy, J.E.P. Connerney, B.M. Jakosky, Electron energetics in the Martian dayside ionosphere: model comparisons with MAVEN data. J. Geophys. Res. 121, 7049–7066 (2016). https://doi.org/10.1002/2016JA022782

    Article  Google Scholar 

  122. A. Sanchez-Lavega, T. Rio-Gaztelurrutia, J. Hernandez-Bernal, M. Delcroix, Mars Science Laboratory observations of the 2018/Mars Year 34 global dust storm. Geophys. Res. Lett. 46, 6101–6108 (2019). https://doi.org/10.1029/2018GL080839

    ADS  Article  Google Scholar 

  123. N.A. Savich, V.A. Samovol, The night time ionosphere of Mars from Mars 4 and Mars 5 dual-frequency radio occultation measurements. Space Res. XVI, 1009–1011 (1976)

    ADS  Google Scholar 

  124. P.J. Schinder, F.M. Flasar, E.A. Marouf, R.G. French, A. Anabtawi, E. Barbinis, A.J. Kliore, A numerical technique for two-way radio occultations by oblate axisymmetric atmospheres with zonal winds. Radio Sci. 50, 712–727 (2015). https://doi.org/10.1002/2015RS005690

    ADS  Article  Google Scholar 

  125. R.W. Schunk, A.F. Nagy, Ionospheres, 2nd edn. (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  126. A.D. Shane, S. Xu, M.W. Liemohn, D.L. Mitchell, Mars nightside electrons over strong crustal fields. J. Geophys. Res. 121, 3808–3823 (2016). https://doi.org/10.1002/2015JA021947

    Article  Google Scholar 

  127. C. Simon Wedlund, G. Gronoff, J. Lilensten, H. Ménager, M. Barthélemy, Comprehensive calculation of the energy per ion pair or W values for five major planetary upper atmospheres. Ann. Geophys. 29, 187–195 (2011). https://doi.org/10.5194/angeo-29-187-2011

    ADS  Article  Google Scholar 

  128. S.W. Stone, R.V. Yelle, M. Benna, M.K. Elrod, P.R. Mahaffy, Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. J. Geophys. Res. 123(11), 2842–2867 (2018). https://doi.org/10.1029/2018JE005559

    Article  Google Scholar 

  129. E.M.B. Thiemann, P.C. Chamberlin, F.G. Eparvier, B. Templeman, T.N. Woods, S.W. Bougher, B.M. Jakosky, The MAVEN EUVM model of solar spectral irradiance variability at Mars: algorithms and results. J. Geophys. Res. 122, 2748–2767 (2017). https://doi.org/10.1002/2016JA023512

    Article  Google Scholar 

  130. M.F. Vogt, P. Withers, P.R. Mahaffy, M. Benna, M.K. Elrod, J.S. Halekas, J.E.P. Connerney, J.R. Espley, D.L. Mitchell, C. Mazelle, B.M. Jakosky, Ionopause-like density gradients in the Martian ionosphere: a first look with MAVEN. Geophys. Res. Lett. 42(21), 8885–8893 (2015). https://doi.org/10.1002/2015GL065269

    ADS  Article  Google Scholar 

  131. M.F. Vogt, P. Withers, K. Fallows, L. Andersson, Z. Girazian, P.R. Mahaffy, M. Benna, M.K. Elrod, J.E.P. Connerney, J.R. Espley, F.G. Eparvier, B.M. Jakosky, MAVEN observations of dayside peak electron densities in the ionosphere of Mars. J. Geophys. Res. 122, 891–906 (2017). https://doi.org/10.1002/2016JA023473

    Article  Google Scholar 

  132. O. Witasse, T. Cravens, M. Mendillo, J. Moses, A. Kliore, A.F. Nagy, T. Breus, Solar system ionospheres. Space Sci. Rev. 139, 235–265 (2008). https://doi.org/10.1007/s11214-008-9395-3

    ADS  Article  Google Scholar 

  133. P. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44, 277–307 (2009). https://doi.org/10.1016/j.asr.2009.04.027

    ADS  Article  Google Scholar 

  134. P. Withers, Prediction of uncertainties in atmospheric properties measured by radio occultation experiments. Adv. Space Res. 46, 58–73 (2010). https://doi.org/10.1016/j.asr.2010.03.004

    ADS  Article  Google Scholar 

  135. P. Withers, B.M. Jakosky, Implications of MAVEN’s planetographic coordinate system for comparisons to other recent Mars orbital missions. J. Geophys. Res. 122, 802–807 (2017). https://doi.org/10.1002/2016JA023470

    Article  Google Scholar 

  136. P. Withers, L. Moore, How to process radio occultation data: 2. From time series of two-way, single-frequency frequency residuals to vertical profiles of ionospheric properties, Radio Science (2020, under review)

  137. P. Withers, R. Pratt, An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus 225, 378–389 (2013). https://doi.org/10.1016/j.icarus.2013.02.032

    ADS  Article  Google Scholar 

  138. P. Withers, M. Mendillo, H. Rishbeth, D.P. Hinson, J. Arkani-Hamed, Ionospheric characteristics above Martian crustal magnetic anomalies. Geophys. Res. Lett. 32, L16204 (2005). https://doi.org/10.1029/2005GL023483

    ADS  Article  Google Scholar 

  139. P. Withers, M. Mendillo, D.P. Hinson, K. Cahoy, Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment. J. Geophys. Res. 113, A12314 (2008). https://doi.org/10.1029/2008JA013636

    ADS  Article  Google Scholar 

  140. P. Withers, K. Fallows, Z. Girazian, M. Matta, B. Häusler, D. Hinson, L. Tyler, D. Morgan, M. Pätzold, K. Peter, S. Tellmann, J. Peralta, O. Witasse, A clear view of the multifaceted dayside ionosphere of Mars. Geophys. Res. Lett. 39, L18202 (2012a). https://doi.org/10.1029/2012GL053193

    ADS  Article  Google Scholar 

  141. P. Withers, M.O. Fillingim, R.J. Lillis, B. Häusler, D.P. Hinson, G.L. Tyler, M. Pätzold, K. Peter, S. Tellmann, O. Witasse, Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res. 117, A12307 (2012b). https://doi.org/10.1029/2012JA018185

    ADS  Article  Google Scholar 

  142. P. Withers, L. Moore, K. Cahoy, I. Beerer, How to process radio occultation data: 1. From time series of frequency residuals to vertical profiles of atmospheric and ionospheric properties. Planet. Space Sci. 101, 77–88 (2014). https://doi.org/10.1016/j.pss.2014.06.011

    ADS  Article  Google Scholar 

  143. P. Withers, D.D. Morgan, D.A. Gurnett, Variations in peak electron densities in the ionosphere of Mars over a full solar cycle. Icarus 251, 5–11 (2015a). https://doi.org/10.1016/j.icarus.2014.08.008

    ADS  Article  Google Scholar 

  144. P. Withers, M. Vogt, P. Mahaffy, M. Benna, M. Elrod, B. Jakosky, Changes in the thermosphere and ionosphere of Mars from Viking to MAVEN. Geophys. Res. Lett. 42(21), 9071–9079 (2015b). https://doi.org/10.1002/2015GL065985

    ADS  Article  Google Scholar 

  145. P. Withers, M. Vogt, M. Mayyasi, P. Mahaffy, M. Benna, M. Elrod, S. Bougher, C. Dong, J.Y. Chaufray, Y. Ma, B. Jakosky, Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data. Geophys. Res. Lett. 42, 8966–8976 (2015). https://doi.org/10.1002/2015GL065205

    ADS  Article  Google Scholar 

  146. P. Withers, M. Matta, M. Lester, D. Andrews, N.J.T. Edberg, H. Nilsson, H. Opgenoorth, S. Curry, R. Lillis, E. Dubinin, M. Fränz, X. Han, W. Kofman, L. Lei, D. Morgan, M. Pätzold, K. Peter, A. Opitz, J.A. Wild, O. Witasse, The morphology of the topside ionosphere of Mars under different solar wind conditions: results of a multi-instrument observing campaign by Mars Express in 2010. Planet. Space Sci. 120, 24–34 (2016). https://doi.org/10.1016/j.pss.2015.10.013

    ADS  Article  Google Scholar 

  147. P. Withers, M. Felici, M. Mendillo, L. Moore, C. Narvaez, M.F. Vogt, B.M. Jakosky, First ionospheric results from the MAVEN Radio Occultation Science Experiment (ROSE). J. Geophys. Res. 123, 4171–4180 (2018). https://doi.org/10.1029/2018JA025182

    Article  Google Scholar 

  148. P. Withers, C.L. Flynn, M.F. Vogt, M. Mayyasi, P. Mahaffy, M. Benna, M. Elrod, J.P. McFadden, P. Dunn, G. Liu, L. Andersson, S. England, Mars’s dayside upper ionospheric composition is affected by magnetic field conditions. J. Geophys. Res. 124(4), 3100–3109 (2019). https://doi.org/10.1029/2018JA026266

    Article  Google Scholar 

  149. X.S. Wu, J. Cui, S.S. Xu, R.J. Lillis, R.V. Yelle, N.J.T. Edberg, E. Vigren, Z.J. Rong, K. Fan, J.P. Guo, Y.T. Cao, F.Y. Jiang, Y. Wei, D.L. Mitchell, The morphology of the topside Martian ionosphere: implications on bulk ion flow. J. Geophys. Res. 124(3), 734–751 (2019). https://doi.org/10.1029/2018JE005895

    Article  Google Scholar 

  150. O.I. Yakovlev, Space Radio Science (Taylor & Francis, New York, 2002)

    Google Scholar 

  151. M. Yao, J. Cui, X. Wu, Y. Huang, W. Wang, Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment. Earth Planet. Phys. 3(4), 283–289 (2019)

    ADS  Article  Google Scholar 

  152. M.H.G. Zhang, J.G. Luhmann, A.J. Kliore, An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res. 95, 17095–17102 (1990). https://doi.org/10.1029/JA095iA10p17095

    ADS  Article  Google Scholar 

  153. R.W. Zurek, R.H. Tolson, D. Baird, M.Z. Johnson, S.W. Bougher, Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization. Space Sci. Rev. 195, 303–317 (2015). https://doi.org/10.1007/s11214-014-0095-x

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank Dick Simpson at Stanford University for supporting archiving; Mike Haggard, Wayne Sidney, and other colleagues at Lockheed Martin for implementing MAVEN ROSE spacecraft operations; colleagues at the JPL PRRSG and DSN for implementing MAVEN ROSE ground operations; and colleagues throughout the MAVEN team for their contributions to the successful implementation of the MAVEN ROSE investigation. We also thank two anonymous reviewers. The MAVEN project is supported by NASA through the Mars Exploration Program. MAVEN ROSE data are available from the PPI node of the NASA Planetary Data System (https://pds-ppi.igpp.ucla.edu/mission/MAVEN/MAVEN/ROSE). In order to ensure the reproducibility of the results of the MAVEN ROSE investigation, software programs to determine MAVEN ROSE electron density profiles from time series of frequency residuals accompany this article as supplemental information. They are written in the IDL language and require the JPL NAIF SPICE toolkit (https://naif.jpl.nasa.gov/naif/toolkit.html).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Withers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a Special Communication, linked to the Topical Volume on ‘The Mars Atmosphere and Volatile Evolution (MAVEN) Mission’ published in Space Science Reviews (https://link.springer.com/journal/11214/195/1)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Withers, P., Felici, M., Mendillo, M. et al. The MAVEN Radio Occultation Science Experiment (ROSE). Space Sci Rev 216, 61 (2020). https://doi.org/10.1007/s11214-020-00687-6

Download citation

Keywords

  • Mars
  • Ionosphere
  • Radio occultation