Relict Ocean Worlds: Ceres

Abstract

The aim of this chapter is to describe available evidence for the existence of relict ocean worlds. The focus is on Ceres as a clear example of such a world as indicated by the results from the Dawn mission. The sections of this chapter will also reflect the differences and commonalities with other recognized ocean worlds. We focus on Ceres as an example of relict ocean world and the implications it holds for the broader solar system. The presence of a large amount of water in the outer Solar System, the presence of low eutectic salts, and the similar pressure and temperature regimes at depth in icy moons and other dwarf planets suggest that many of these large icy worlds harbor or harbored deep oceans. Ceres is an example of relict Ocean world.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. M.F. A’Hearn, P.D. Feldman, Icarus 98, 54–60 (1992)

    ADS  Google Scholar 

  2. C.O.D. Alexander, S.S. Russel, J.W. Arden, R.D. Ash, M.M. Grady, C.T. Pillinger, Meteorit. Planet. Sci. 33(4), 603–622 (1998)

    ADS  Google Scholar 

  3. C.O.D. Alexander, M. Fogel, H. Yabuta, G.D. Cody, Geochim. Cosmochim. Acta 71(17), 4380 (2007)

    ADS  Google Scholar 

  4. C.OD. Alexander, K.T. Howard, R. Bowden, M.L. Fogel, Geochim. Cosmochim. Acta 123, 244–260 (2013)

    ADS  Google Scholar 

  5. E. Ammannito, M.C. De Sanctis, M. Ciarniello, A. Frigeri, F.G. Carrozzo, J.-P. Combe, B. Ehlmann, F.G. Carrozzo, S. Marchi, F. Tosi, F. Zambon, F. Capaccioni, M.T. Capria, S. Fonte, M. Formisano, A. Frigeri, M. Giardino, A. Longobardo, G. Magni, E. Palomba, L.A. McFadden, C.M. Pieters, R. Jaumann, P. Schenk, R. Mugnuolo, C.A. Raymond, C.T. Russell, Science 353, aaf4279 (2016). https://doi.org/10.1126/science.aaf4279

    ADS  Article  Google Scholar 

  6. J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996)

    ADS  Google Scholar 

  7. J.D. Anderson, R.A. Jacobson, T.P. McElrath, W.B. Moore, G. Schubert, P.C. Thomas, Shape, mean radius, gravity field and interior structure of Callisto. Icarus 153(1), 157–161 (2001). https://doi.org/10.1029/2008GL035402.

    ADS  Article  Google Scholar 

  8. C. Béghin, O. Randriamboarison, M. Hamelin, E. Karkoschka, C. Sotin, R.C. Whitten, J.-J. Berthelier, R. Grard, F. Simoes, Icarus 218, 1028–1042 (2012)

    ADS  Google Scholar 

  9. S. Bernard, B. Horsfield, H.-M. Schulz, R. Wirth, A. Schreiber, N. Sherwood, Mar. Pet. Geol. 31, 70 (2012)

    Google Scholar 

  10. M. Beuthe, A. Rivoldini, A. Trinh, Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett. 43(10), 088 (2016). 096

    Google Scholar 

  11. B. Bitsch, M. Lambrechts, A. Johansen, The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 582, A112 (2015)

    ADS  Google Scholar 

  12. M.T. Bland, Predicted crater morphologies on Ceres: probing internal structure and evolution. Icarus (2013). https://doi.org/10.1016/j.icarus.2013.05.037

    Article  Google Scholar 

  13. P.A. Bland, B.J. Travis, Giant convecting mud balls of the early solar system. Sci. Adv. 3, e1602514 (2017)

    ADS  Google Scholar 

  14. M.T. Bland, C.A. Raymond, P.M. Schenk, R.R. Fu, T. Kneissl, J.H. Pasckert et al., Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nat. Geosci. 9(7), 538 (2016)

    ADS  Google Scholar 

  15. M.T. Bland, D.L. Buczkowski, H.G. Sizemore, A.I. Ermakov, S.D. King, M.M. Sori, C.A. Raymond, J.C. Castillo-Rogez, C.T. Russell, Dome formation on Ceres by solid-state flow analogous to terrestrial salt tectonics. Nat. Geosci. 12, 797–801 (2019)

    ADS  Google Scholar 

  16. A. Bouquet, C.R. Glein, D. Wyrick, J.H. Waite, Alternative energy: production of H2 by radiolysis of water in the rocky cores of icy bodies. Astrophys. J. Lett. 840(1), L8 (2017)

    ADS  Google Scholar 

  17. T.J. Bowling, F.J. Ciesla, T.M. Davison, J.E. Scully, J.C. Castillo-Rogez, S. Marchi, B.C. Johnson, Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus 320, 110–118 (2019)

    ADS  Google Scholar 

  18. A.J. Brearley, The action of water, in Meteorites and the Early Solar System II (University of Arizona Press, Tucson, 2006), pp. 587–624

    Google Scholar 

  19. C. Bu, G.R. Lopez, C.A. Dukes, L.A. McFadden, J.Y. Li, O. Ruesch, Stability of hydrated carbonates on Ceres. Icarus 320, 136–149 (2019)

    ADS  Google Scholar 

  20. D.L. Buczkowski, J.E. Scully, L. Quick, J. Castillo-Rogez, P.M. Schenk, R.S. Park et al., Tectonic analysis of fracturing associated with Occator crater. Icarus 320, 49–59 (2019)

    ADS  Google Scholar 

  21. M.P. Callahan, K.E. Smith, H.J. Cleaves, J. Ruzicka, J.C. Stern, D.P. Glavin et al., Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. 108(34), 13995–13998 (2011)

    ADS  Google Scholar 

  22. M.H. Carr, M.J. Belton, C.R. Chapman, M.E. Davies, P. Geissler, R. Greenberg, A.S. McEwen, B.R. Tufts, R. Greeley, R. Sullivan, J.W. Head, R.T. Pappalardo, K.P. Klaasen, T.V. Johnson, J. Kaufman, D. Senske, J. Moore, G. Neukum, G. Schubert, J.A. Burns, P. Thomas, J. Veverka, Evidence for a subsurface ocean on Europa. Nature 22(391), 363–365 (1998)

    ADS  Google Scholar 

  23. F.G. Carrozzo, M.C. De Sanctis, A. Raponi, E. Ammannito, J. Castillo-Rogez, B.L. Ehlmann, S. Marchi, N. Stein, M. Ciarniello, F. Tosi, F. Capaccioni, M.T. Capria, S. Fonte, M. Formisano, A. Frigeri, M. Giardino, A. Longobardo, G. Magni, E. Palomba, F. Zambon, C.A. Raymond, C.T. Russell, Nature, formation, and distribution of carbonates on Ceres. Sci. Adv. 4(3), e1701645 (2018)

    ADS  Google Scholar 

  24. J.C. Castillo-Rogez, Ceres–neither a porous nor salty ball. Icarus 215(2), 599–602 (2011)

    ADS  Google Scholar 

  25. J.C. Castillo-Rogez, J.I. Lunine, Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37(20), L20205 (2010)

    ADS  Google Scholar 

  26. J.C. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010). https://doi.org/10.1016/j.icarus.2009.04.008

    ADS  Article  Google Scholar 

  27. J.C. Castillo-Rogez, M. Neveu, H.Y. McSween, R.R. Fu, M.J. Toplis, T. Prettyman, Insights into Ceres’s evolution from surface composition. Meteorit. Planet. Sci. 53(9), 1820–1843 (2018)

    ADS  Google Scholar 

  28. J.C. Castillo-Rogez, M.A. Hesse, M. Formisano, H. Sizemore, M. Bland, A.I. Ermakov, R.R. Fu, Geophys. Res. Lett. 46, 1963–1972 (2019)

    ADS  Google Scholar 

  29. J.C. Castillo-Rogez, M. Neveu, J.E. Scully, C. House, L.C. Quick, A. Bouquet, K. Miller, M. Bland, M.C. De Sanctis, A.I. Ermakov, T.H. Prettyman, A.R. Hendrix, C.A. Ryamond, C.T. Russell, B.E. Sherwood, E. Young, Ceres: astrobiological target and possible ocean world. Astrobiology 20, 269–291 (2020)

    ADS  Google Scholar 

  30. E.M.A. Chen, F. Nimmo, Implications from Ithaca Chasma for the thermaland orbital history of Tethys. Geophys. Res. Lett. 35, L19203 (2008). https://doi.org/10.1029/2008GL035402

    ADS  Article  Google Scholar 

  31. G.D. Cody, C.M.D. Alexander, NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochim. Cosmochim. Acta 69(4), 1085–1097 (2005)

    ADS  Google Scholar 

  32. J.-P. Combe, T.B. McCord, F. Tosi, A. Raponi, M.C. De Sanctis, S. Byrne, E. Ammannito, G. Carrozo, C.A. Raymond, C.T. Russell, Detection of exposed H2O at the surface of Ceres. Science 353, aaf3010 (2016)

    ADS  Google Scholar 

  33. J.P. Combe, S. Singh, K.E. Johnson, T.B. McCord, M.C. De Sanctis, E. Ammannito et al., The surface composition of Ceres’ Ezinu quadrangle analyzed by the Dawn mission. Icarus 318, 124–146 (2019)

    ADS  Google Scholar 

  34. J.C. Cook, S.J. Desch, T.L. Roush, C.A. Trujillo, T.R. Geballe, Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper belt objects. Astrophys. J. 663(2), 1406 (2007)

    ADS  Google Scholar 

  35. J.R. Cronin, S. Pizzarello, D.P. Cruikshank, Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets, in Meteorites and the Early Solar System (1988), pp. 819–857

    Google Scholar 

  36. D.A. Crown, H.G. Sizemore, R.A. Yingst, S.C. Mest, T. Platz, D.C. Berman et al., Geologic mapping of the Urvara and Yalode Quadrangles of Ceres. Icarus (2017). https://doi.org/10.1016/j.icarus.2017.08.004

    Article  Google Scholar 

  37. E. Dartois, T.R. Geballe, T. Pino, A.-T. Cao, A. Jones, D. Deboffle, V. Guerrini, Ph. Bréchigna, L. d’Hendecourt, IRAS 08572+3915: constraining the aromatic versus aliphatic content. Astron. Astrophys. 463, 635–640 (2007)

    ADS  Google Scholar 

  38. S. De Angelis, P. Manzari, M.C. De Sanctis, E. Ammannito, T. Di Iorio, VIS-IR study of brucite–clay–carbonate mixtures: implications for Ceres surface composition. Icarus 280, 315–327 (2016). https://doi.org/10.1016/j.icarus.2016.07.002

    ADS  Article  Google Scholar 

  39. M.C. De Sanctis, E. Ammannito, A. Raponi, S. Marchi, T.B. McCord, H.Y. McSween, F. Capaccioni, M.T. Capria, F.G. Carrozzo, M. Ciarniello, M. Fonte, A. Formisano, M. Frigeri, G. Giardino, E. Magni, D. Palomba, F. Turrini, J.-Ph. Zambon, W. Combe, R. Feldman, M.L.A. Jaumann, C.M. Pieters, T. Prettyman, C.A. Raymond, C.T. Russell, Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature 528, 241–244 (2015)

    ADS  Google Scholar 

  40. M.C. De Sanctis, A. Raponi, E. Ammannito, M. Ciarniello, M.J. Toplis, H.Y. McSween, J.C. Castillo-Rogez, B.L. Ehlmann, F.G. Carrozzo, S. Marchi, F. Tosi, F. Zambon, F. Capaccioni, M.T. Capria, S. Fonte, M. Formisano, A. Frigeri, M. Giardino, A. Longobardo, G. Magni, E. Palomba, L.A. McFadden, C.M. Pieters, R. Jaumann, P. Schenk, R. Mugnuolo, C.A. Raymond, C.T. Russell, Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature (2016). https://doi.org/10.1038/nature18290

    Article  Google Scholar 

  41. M.C. De Sanctis, E. Ammannito, H.Y. McSween, A. Raponi, S. Marchi, F. Capaccioni, M.T. Capria, G. Carrozzo, M. Ciarneillo, S. Fonte, M. Formisano, A. Frigeri, M. Giardino, A. Longobardo, G. Magni, L.A. McFadden, E. Palomba, C.M. Pieters, F. Tosi, F. Zambon, C.A. Raymond, C.T. Russell, Localized aliphatic organic material on the surface of Ceres. Science 355, 719–722 (2017)

    ADS  Google Scholar 

  42. M.C. De Sanctis, E. Ammannito, F.G. Carrozzo, M. Ciarniello, M. Giardino, A. Frigeri, S. Fonte, H.Y. McSween, A. Raponi, F. Tosi, F. Zambon, C.A. Raymond, C.T. Russell, Ceres’s global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteorit. Planet. Sci. 53(9), 1844–1865 (2018). https://doi.org/10.1111/maps.13104

    ADS  Article  Google Scholar 

  43. M.C. De Sanctis, V. Vinogradoff, A. Raponi, E. Ammannito, M. Ciarniello, F.G. Carrozzo, S. De Angelis, C.A. Raymond, C.T. Russell, Mon. Not. R. Astron. Soc. 482, 2407–2421 (2019)

    ADS  Google Scholar 

  44. M.C. De Sanctis, E. Ammannito, A. Raponi, A. Frigeri, M. Ferrari, G. Carrozzo, M. Ciarniello, M. Formisano, B. Rousseau, F. Tosi, F. Zambon, Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nat. Astron. (2020, in press)

  45. L. Dela Rosa, M. Pruski, D. Lang, B. Gerstein, P. Solomon, Energy Fuels 6, 460 (1992)

    Google Scholar 

  46. B.W. Denevi, D.T. Blewett, D.L. Buczkowski, F. Capaccioni, M.T. Capria, M.C. De Sanctis, W.B. Garry, R.W. Gaskell, L. Le Corre, J.-Y. Li, S. Marchi, T.J. McCoy, A. Nathues, D.P. O’Brien, N.E. Petro, C.M. Pieters, F. Preusker, C.A. Raymond, V. Reddy, C.T. Russell, P. Schenk, J.E.C. Scully, J.M.S. Tosi, D.A. Williams, D. Wyrick, Science 246, 338 (2012). https://doi.org/10.1126/science.1225374

    Article  Google Scholar 

  47. D. Durante, D.J. Hemingway, P. Racioppa, L. Iess, D.J. Stevenson, Titan’s gravity field and interior structure after Cassini. Icarus 326, 123–132 (2019)

    ADS  Google Scholar 

  48. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, J.-P. Bibring, A. Meunier, A.A. Fraeman, Y. Langevin, Nature 479, 53 (2011)

    ADS  Google Scholar 

  49. B.L. Ehlmann, R. Hodyss, T.F. Bristow, G.R. Rossman, E. Ammannito, M.C. De Sanctis, C.A. Raymond, Meteorit. Planet. Sci. 53(9), 1884 (2018)

    ADS  Google Scholar 

  50. P. Ehrenfreund, D.P. Glavin, O. Botta, G. Cooper, J.L. Bada, Extraterrestrial amino acids in Orgueil and Ivuna: tracing the parent body of CI type carbonaceous chondrites. Proc. Natl. Acad. Sci. 98(5), 2138–2141 (2001)

    ADS  Google Scholar 

  51. J.E. Elsila, J.C. Aponte, D.G. Blackmond, A.S. Burton, J.P. Dworkin, D.P. Glavin, Meteoritic amino acids: diversity in compositions reflects parent body histories. ACS Central Sci. 2(6), 370–379 (2016)

    Google Scholar 

  52. A.I. Ermakov et al., Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. J. Geophys. Res., Planets 122(11), 2267–2293 (2017)

    ADS  Google Scholar 

  53. G. Ertem, J.P. Ferris, Synthesis of RNA oligomers on heterogeneous templates. Nature 379(6562), 238 (1996)

    ADS  Google Scholar 

  54. M. Ferrari, S. De Angelis, M.C. De Sanctis, E. Ammannito, S. Stefani, G. Piccioni, Reflectance spectroscopy of ammonium-bearing phyllosilicates. Icarus 321, 522–530 (2019)

    ADS  Google Scholar 

  55. A.D. Fortes, Titan’s internal structure and the evolutionary consequences. Planet. Space Sci. 60(1), 10–17 (2012)

    ADS  Google Scholar 

  56. R. Fu et al., The interior structure of Ceres as revealed by surface topography. Earth Planet. Sci. Lett. 476, 153–164 (2017)

    ADS  Google Scholar 

  57. K. Fukushi, Y. Sekine, H. Sakuma, K. Morida, R. Wordsworth, Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale. Nat. Commun. 10, 4896 (2019). 1–11. https://doi.org/10.1038/s41467-019-12871-6

    ADS  Article  Google Scholar 

  58. K. Furuya, Y. Aikawa, H. Nomura, F. Hersant, V. Wakelam, Water in protoplanetary disks: deuteration and turbulent mixing. Astrophys. J. 779, 11 (2013)

    ADS  Google Scholar 

  59. E.C. Gaucher et al., A robust model for pore-water chemistry of clayrock. Geochim. Cosmochim. Acta 73, 6470–6487 (2009)

    ADS  Google Scholar 

  60. K.H. Glassmeier, H. Boehnhardt, D. Koschny, E. Kührt, I. Richter, The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128(1–4), 1–21 (2007)

    ADS  Google Scholar 

  61. D.P. Glavin, C.M.D. Alexander, J.C. Aponte, J.P. Dworkin, J.E. Elsila, H. Yabuta, The origin and evolution of organic matter in carbonaceous chondrites and links to their parent bodies, in Primitive Meteorites and Asteroids (Elsevier, Amsterdam, 2018), pp. 205–271

    Google Scholar 

  62. C.R. Glein, J.A. Baross, J.H. Waite, The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015)

    ADS  Google Scholar 

  63. C.R. Glein, F. Postberg, S.D. Vance, The geochemistry of Enceladus: composition and controls, in Enceladus and the Icy Moons of Saturn, ed. by P.M. Schenk, R.N. Clark, C.J.A. Howett, A.J. Verbiscer, J.H. Waite (University of Arizona Press, Tucson, AZ, 2018), pp. 39–56

    Google Scholar 

  64. K.P. Hand, C.F. Chyba, R.W. Carlson, J.F. Cooper, Clathrate Hydrates of Oxidants in the Ice Shell of Europa. Astrobiology 6 (2006). https://doi.org/10.1089/ast.2006.6.463

  65. O. Hartkorn, J. Saur, Induction signals from Callisto’s ionosphere and their implications on a possible subsurface ocean. J. Geophys. Res. A 122, 11,677–11,697 (2017)

    Google Scholar 

  66. A.R. Hendrix, T.A. Hurford, L.M. Barge, M.T. Bland, J.S. Bowman, W. Brinckerhoff, B.J. Buratti, M.L. Cable, J. Castillo-Rogez, G.C. Collins, S. Diniega, C.R. German, A.G. Hayes, T. Hoehler, S. Hosseini, C.J.A. Howett, A.S. McEwen, C.D. Neish, M. Neveu, T.A. Nordheim, G.W. Patterson, A. Patthoff, C. Phillips, A. Rhoden, B.E. Schmidt, K.N. Singer, J.M. Soderblom, S.D. Vance, The NASA roadmap to ocean worlds. Astrobiology 19, 1–27 (2019)

    ADS  Google Scholar 

  67. C.D. Herd, A. Blinova, D.N. Simkus, Y. Huang, R. Tarozo, C.M.D. Alexander et al., Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 332(6035), 1304–1307 (2011)

    ADS  Google Scholar 

  68. M.A. Hesse, J.C. Castillo-Rogez, Thermal evolution of the impact-induced cryomagma chamber beneath Occator crater on Ceres. Geophys. Res. Lett. 46(3), 1213–1221 (2019)

    ADS  Google Scholar 

  69. H. Hiesinger et al., Cratering on Ceres: implications for its crust and evolution. Science 353, aaf4759 (2016)

    ADS  Google Scholar 

  70. N.G. Holm, C. Oze, O. Mousis, J.H. Waite, A. Guilbert-Lepoutre, Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology 15(7), 587–600 (2015)

    ADS  Google Scholar 

  71. J.M. Houtkooper, Glaciopanspermia: seeding the terrestrial planets with life Planet. Space Sci. 59(10), 1107–1111 (2011)

    ADS  Google Scholar 

  72. L. Iess, N.J. Rappaport, R.A. Jacobson, P. Racioppa, D.J. Stevenson, P. Tortora, J.W. Armstrong, S.W. Asmar, Gravity field, shape, and moment of inertia of Titan. Science 327, 1367 (2010). https://doi.org/10.1126/science.1182583

    ADS  Article  Google Scholar 

  73. L. Iess, R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, J.W. Armstrong, S.W. Asmar, P. Racioppa, N.J. Rappaport, P. Tortora, The tides of Titan. Science 337, 457 (2012). https://doi.org/10.1126/science.1219631

    ADS  Article  Google Scholar 

  74. L. Iess, D.J. Stevenson, M. Parisi, D. Hemingway, R.A. Jacobson, J.I. Lunine et al., The gravity field and interior structure of Enceladus. Science 344(6179), 78–80 (2014)

    ADS  Google Scholar 

  75. D.C. Jewitt, J. Luu, Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature 432(7018), 731 (2004)

    ADS  Google Scholar 

  76. S. Kamata, F. Nimmo, Y. Sekine, K. Kuramoto, N. Noguchi, J. Kimura, A. Tani, Pluto’s ocean is capped and insulated by gas hydrates. Nat. Geosci. 12, 407–412 (2019). https://doi.org/10.1038/s41561-019-0369-8

    ADS  Article  Google Scholar 

  77. H.H. Kaplan, R.E. Milliken, C.M.O.D. Alexander, New constraints on the abundance and composition of organic matter on Ceres. Geophys. Res. Lett. 45(11), 5274–5282 (2018)

    ADS  Google Scholar 

  78. Y. Kebukawa, G.D. Cody, A kinetic study of the formation of organic solids from formaldehyde: implications for the origin of extraterrestrial organic solids in primitive solar system objects. Icarus 248, 412–423 (2015)

    ADS  Google Scholar 

  79. J.F. Kerridge, Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundaces and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985)

    ADS  Google Scholar 

  80. J.F. Kerridge, Formation and processing of organics in the early solar system, in Composition and Origin of Cometary Materials (Springer, Dordrecht, 1999), pp. 275–288

    Google Scholar 

  81. K.K. Khurana, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395(6704), 777 (1998)

    ADS  Google Scholar 

  82. T.V. King, R.N. Clark, W.M. Calvin, D.M. Sherman, R.H. Brown, Evidence for ammonium-bearing minerals on Ceres. Science 255, 1551–1553 (1992)

    ADS  Google Scholar 

  83. S.D. King, J.C. Castillo-Rogez, M.J. Toplis, M.T. Bland, C.A. Raymond, C.T. Russell, Ceres internal structure from geophysical constraints. Meteorit. Planet. Sci. 53(9), 1999–2007 (2018)

    ADS  Google Scholar 

  84. M.G. Kivelson, K. Khurana, D.J. Stevenson, L. Bennett, S. Joy, C.T. Russell, R.J. Walker, C. Zimmer, C. Polanskey, Europa and Callisto: induced or intrinsic fields in a periodically varying plasma environment. J. Geophys. Res. 104, 4609–4629 (1999)

    ADS  Google Scholar 

  85. M.G. Kivelson, K.K. Khurana, C.T. Russell, M. Volwerk, R.J. Walker, C. Zimmer, Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289(5483), 1340–1343 (2000)

    ADS  Google Scholar 

  86. M.G. Kivelson, K.K. Khurana, M. Volwerk, The permanent and inductive magnetic moments of Ganymede. Icarus 157(2), 507–522 (2002)

    ADS  Google Scholar 

  87. A.S. Konopliv, R.S. Park, A.T. Vaughan, B.G. Bills, S.W. Asmar, A.I. Ermakov, N. Rambaux, C.A. Raymond, J.C. Castillo-Rogez, C.T. Russell, D.E. Smith, M.T. Zuber, The Ceres gravity field, spin pole, rotation period and orbit from the dawn radiometric tracking and optical data. Icarus 200, 411–429 (2018)

    ADS  Google Scholar 

  88. K.A. Kretke, W. Bottke, D.A. Kring, H.F. Levison, Effect of giant planet formation on the compositional mixture of the asteroid belt, in AAS/Division of Dynamical Astronomy Meeting, vol. 48 (2017)

    Google Scholar 

  89. K. Krohn, R. Jaumann, K. Stephan, K.A. Otto, N. Schmedemann, R.J. Wagner et al., Cryogenic flow features on Ceres: implications for crater-related cryovolcanism. Geophys. Res. Lett. 43(23), 11994–12003 (2016)

    ADS  Google Scholar 

  90. M. Kueppers, L. O’Rourke, D. Bodkelee-Morvan, V. Zakharov, S. Lee, P. von Allmen, B. Carry, D. Teyssier, A. Marston, T. Muller, J. Crovisier, M.A. Barucci, R. Moreno, Localized sources of water vapour on the dwarf planet (1) Ceres. Nature 505, 525–527 (2014)

    ADS  Google Scholar 

  91. D.S. Lauretta, S.S. Balram-Knutson, E. Beshore, W.V. Boynton, C.D. d’Aubigny, D.N. DellaGiustina et al., OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Sci. Rev. 212(1–2), 925–984 (2017)

    ADS  Google Scholar 

  92. L.A. Lebofsky, Asteroid 1 Ceres: evidence for water of hydration. Mon. Not. R. Astron. Soc. 182(1), 17P–21P (1978)

    ADS  Google Scholar 

  93. L.A. Lebofsky, M.A. Feierberg, A.T. Tokunaga, H.P. Larson, J.R. Johnson, The 1.7-to 4.2- μm spectrum of asteroid 1 Ceres: evidence for structural water in clay minerals. Icarus 48(3), 453–459 (1981)

    ADS  Google Scholar 

  94. M.A. Leitner, J.I. Lunine, Modeling early Titan’s ocean composition. Icarus 333, 61–70 (2019)

    ADS  Google Scholar 

  95. H.F. Levison, W.F. Bottke, M. Gounelle, A. Morbidelli, D. Nesvorný, K. Tsiganis, Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460(7253), 364 (2009)

    ADS  Google Scholar 

  96. R.D. Lorenz, J.I. Lunine, W. Zimmerman, Post-Cassini exploration of Titan: science goals, instrumentation and mission concepts. Adv. Space Res. 36(2), 281–285 (2005)

    ADS  Google Scholar 

  97. J.I. Lunine, D.J. Stevenson, Clathrate and ammonia hydrates at high pressure: application to the origin of methane on Titan. Icarus 70, 61–77 (1987)

    ADS  Google Scholar 

  98. X. Mao, W.B. McKinnon, Faster paleospin and deep-seated uncompensated mass as possible explanations for Ceres’ present-day shape and gravity. Icarus 299, 430–442 (2018)

    ADS  Google Scholar 

  99. S. Marchi, W.F. Bottke, B.A. Cohen, K. Wuennemann, D.A. Kring, H.Y. McSween, M.C. De Sanctis, D.P. O’Brien, P. Schenk, C.A. Raymond, C.T.R. High, Velocity Collisions from the Lunar Cataclysm Recorded in Asteroidal Meteorites. Nat. Geosci. 6, 303–307 (2013)

    ADS  Google Scholar 

  100. S. Marchi, A.I. Ermakov, C.A. Raymond, R.R. Fu, D.P. O’Brien, M.T. Bland, E. Ammannito, M.C. De Sanctis, T. Bowling, P. Schenk, J.E.C. Scully, D.L. Buczkowski, D.A. Williams, H. Hiesinger, C.T. Russell, The missing large impact craters on Ceres. Nat. Commun. 7, 12257 (2016)

    ADS  Google Scholar 

  101. S. Marchi, A. Raponi, T.H. Prettyman, M.C. De Sanctis, J. Castillo-Rogez, C.A. Raymond et al., An aqueously altered carbon-rich Ceres. Nat. Astron. 3, 140–145 (2019)

    ADS  Google Scholar 

  102. G.M. Marion, Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system. Geochim. Cosmochim. Acta 65(12), 1883–1896 (2001)

    ADS  Google Scholar 

  103. B. Marty et al., Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: evidence for large scale isotope heterogeneity in the early solar system. Geochim. Cosmochim. Acta 74, 340–355 (2010)

    ADS  Google Scholar 

  104. C.N. Matthews, R.D. Minard, Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss. 133, 393–401 (2006)

    ADS  Google Scholar 

  105. T.B. McCord, C. Sotin, Ceres: evolution and curent state. J. Geophys. Res. 110, E05009 (2005)

    ADS  Google Scholar 

  106. T.B. McCord, J. Castillo-Rogez, A. Rivkin, Ceres: its origin, evolution and structure and dawn’s potential contribution, in The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres, ed. by C. Russell, C. Raymond (Springer, New York, 2011). https://doi.org/10.1007/978-1-4614-4903-4_5

    Google Scholar 

  107. H.Y. McSween Jr., J.P. Emery, A.S. Rivkin, M.J. Toplis, J.C. Castillo-Rogez, T.H. Prettyman et al., Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteorit. Planet. Sci. 53(9), 1793–1804 (2018)

    ADS  Google Scholar 

  108. R.E. Milliken, A.S. Rivkin, Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nat. Geosci. 2(4), 258 (2009)

    ADS  Google Scholar 

  109. G. Mitri, R. Meriggiola, A. Hayes, A. Lefevre, G. Tobie, A. Genova, J.I. Lunine, H. Zebker, Shape, topography, gravity anomalies and tidal deformation of titan. Icarus 236, 169–177 (2014)

    ADS  Google Scholar 

  110. L.V. Moroz, G. Arnold, A.V. Korochantsev, R. Wäsch, Natural solid bitumens as possible analogs for cometary and asteroid organics. 1. Reflectance spectroscopy of pure bitumens. Icarus 134(2), 253–268 (1998)

    ADS  Google Scholar 

  111. M.J. Mumma, S.B. Charnley, The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011)

    ADS  Google Scholar 

  112. A. Nathues, T. Platz, G. Thangjam, M. Hoffmann, K. Mengel, E.A. Cloutis et al., Evolution of Occator crater on (1) Ceres. Astron. J. 153(3), 112 (2017)

    ADS  Google Scholar 

  113. A. Neesemann, S. van Gasselt, N. Schmedemann, S. Marchi, S.H.G. Walter, F. Preusker, G.G. Michael, T. Kneissl, H. Hiesinger, R. Jaumann, T. Roatsch, C.A. Raymond, C.T. Russell, The various ages of Occator crater, Ceres: results of a comprehensive synthesis approach. Icarus 320, 60–82 (2019). https://doi.org/10.1016/j.icarus.2018.09.006

    ADS  Article  Google Scholar 

  114. W. Neumann, D. Breuer, T. Spohn, Modelling the internal structure of Ceres: coupling of accretion with compaction by creep and implications for the water-rock differentiation. Astron. Astrophys. 584, A117 (2015)

    ADS  Google Scholar 

  115. M. Neveu, S.J. Desch, Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophys. Res. Lett. 42, 10197–10206 (2015)

    ADS  Google Scholar 

  116. M. Neveu, S.J. Desch, J.C. Castillo-Rogez, Aqueous geochemistry in icy world interiors: equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochim. Cosmochim. Acta 212, 324–371 (2017)

    ADS  Google Scholar 

  117. F.R. Orthous-Daunay, E. Quirico, P. Beck, O. Brissaud, E. Dartois, T. Pino, B. Schmitt, Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites. Icarus 223(1), 534–543 (2013)

    ADS  Google Scholar 

  118. R.S. Park, A.S. Konopliv, B.G. Bills, N. Rambaux, J.C. Castillo-Rogez, C.A. Raymond, T. Vaughan, A.I. Ermakov, M.T. Zuber, R.R. Fu, M.J. Toplis, C.T. Russell, A. Nathues, F. Preusker, A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016)

    ADS  Google Scholar 

  119. R.S. Park, A.T. Vaughan, A.S. Konopliv, A.I. Ermakov, N. Mastrodemos, J.C. Castillo-Rogez, S.P. Joy, A. Nathues, C.A. Polnskey, M.D. Rayman, J.E. Riedel, C.A. Raymond, C.T. Russell, M.T. Zuberd, High-resolution shape model of ceres from stereophotoclinometry using dawn imaging data. Icarus (2019). https://doi.org/10.1016/j.icarus.2018.10.024

    Article  Google Scholar 

  120. V.K. Pearson, M.A. Sephton, A.T. Kearsley, P.A. Bland, I.A. Franchi, I. Gilmour, Clay mineral-organic matter relationships in the early solar system. Meteorit. Planet. Sci. 37(12), 1829–1833 (2002)

    ADS  Google Scholar 

  121. C.M. Pieters, A. Nathues, G. Thangjam, M. Hoffmann, T. Platz, M.C. De Sanctis et al., Geologic constraints on the origin of red organic-rich material on Ceres. Meteorit. Planet. Sci. 53(9), 1983–1998 (2018)

    ADS  Google Scholar 

  122. S. Pizzarello, L.B. Williams, Ammonia in the early solar system: an account from carbonaceous meteorites. Astrophys. J. 749, 161 (2012)

    ADS  Google Scholar 

  123. F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel et al., Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459(7250), 1098 (2009)

    ADS  Google Scholar 

  124. F. Postberg, J. Schmidt, J. Hillier, S. Kempf, R. Srama, A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011). https://doi.org/10.1038/nature10175. pmid: 21697830

    ADS  Article  Google Scholar 

  125. T.H. Prettyman, N. Yamashita, M.J. Toplis, H.Y. McSween, N. Schörghofer, S. Marchi et al., Extensive water ice within Ceres’ aqueously altered regolith: evidence from nuclear spectroscopy. Science 355(6320), 55–59 (2017)

    ADS  Google Scholar 

  126. L.C. Quick, D.L. Buczkowski, O. Ruesch, J.E. Scully, J. Castillo-Rogez, C.A. Raymond et al., A possible brine reservoir beneath occator crater: thermal and compositional evolution and formation of the Cerealia Dome and Vinalia Faculae. Icarus 320, 119–135 (2019)

    ADS  Google Scholar 

  127. G.A. Ransford, A.A. Finnerty, K.D. Collerson, Europa’s petrological thermal history. Nature 289(5793), 21 (1981)

    ADS  Google Scholar 

  128. A. Raponi, M.C. De Sanctis, F.G. Carrozzo, M. Ciarniello, J.C. Castillo-Rogez, E. Ammannito, A. Frigeri, A. Longobardo, E. Palomba, F. Tosi, F. Zambon, C.A. Raymond, C.T. Russell, Mineralogy of occator crater on Ceres. Icarus 320, 83–96 (2019)

    ADS  Google Scholar 

  129. A. Raponi, M. Ciarniello, F. Capaccioni et al., Infrared detection of aliphatic organics on a cometary nucleus. Nat. Astron. (2020). https://doi.org/10.1038/s41550-019-0992-8

    Article  Google Scholar 

  130. S.N. Raymond, A. Izidoro, Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017)

    ADS  Google Scholar 

  131. C.A. Raymond, A.I. Ermakov, J.C. Castillo-Rogez, S. Marchi, B. Johnson, M.A. Hesse, J.E.C. Scully, D.L. Buczkowski, H.G. Sizemore, P.M. Schenk, A. Nathues, R.S. Park, T.H. Prettyman, L.C. Quick, J.T. Keane, M.D. Rayman, C.T. Russell, Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nat. Astron. (2020, accepted)

  132. Th. Roatsch, E. Kersten, K.-D. Matz, F. Preusker, F. Scholten, R. Jaumann, C.A. Raymond, C.T. Russell, High-resolution ceres high altitude mapping orbit atlas derived from dawn framing camera images. Planet. Space Sci. 129, 103–107 (2016). https://doi.org/10.1016/j.pss.2016.05.011. http://www.sciencedirect.com/science/article/pii/S0032063316300939

    ADS  Article  Google Scholar 

  133. A.S. Rivkin, E.L. Volquardsen, Rotationally-resolved spectra of Ceres in the 3-μm region. Icarus 206, 327–333 (2009)

    ADS  Google Scholar 

  134. E. Rognini, M.T. Capria, F. Tosi, M.C. De Sanctis, M. Ciarniello, A. Longobardo, F.G. Carrozzo, A. Raponi, A. Frigeri, E. Palomba, S. Fonte, M. Giardino, E. Ammannito, C.A. Raymond, C.T. Russell, High thermal inertia zones on Ceres from dawn data. J. Geophys. Res., Planets (2019). https://doi.org/10.1029/2018JE005733

    Article  Google Scholar 

  135. O. Ruesch, T. Platz, P. Schenk, L.A. McFadden, J.C. Castillo-Rogez, L.C. Quick et al., Cryovolcanism on Ceres. Science 353(6303), aaf4286 (2016). https://doi.org/10.1126/science.aaf4286

    ADS  Article  Google Scholar 

  136. O. Ruesch, A. Genova, W. Neumann, J.C. Castillo-Rogez, C.A. Raymond, C.T. Russell, Slurry extrusion on Ceres triggered by a mantle plume. Nat. Geosci. 12(7), 1–5 (2019a)

    Google Scholar 

  137. O. Ruesch, L.C. Quick, M.E. Landis, M.M. Sori, O. Čadek, P. Brož, K.A. Otto, M.T. Bland, S. Byrne, J.C. Castillo-Rogez, H. Hiesinger, R. Jaumann, K. Krohn, L.A. McFadden, A. Nathues, A. Neesemann, F. Preusker, T. Roatsch, P.M. Schenk, J.E.C. Scully, M.V. Sykes, D.A. Williams, C.A. Raymond, C.T. Russell, Icarus (2019b). https://doi.org/10.1016/j.icarus.2018.01.022

    Article  Google Scholar 

  138. C.T. Russell, C.A. Raymond, E. Ammannito, D.L. Buczkowski, M.C. De Sanctis, H. Hiesinger et al., Dawn arrives at Ceres: exploration of a small, volatile-rich world. Science 353(6303), 1008–1010 (2016)

    ADS  Google Scholar 

  139. R. Saladino, C. Crestini, S. Pino, G. Costanzo, E. Di Mauro, Formamide and the origin of life. Phys. Life Rev. 9(1), 84–104 (2012)

    ADS  Google Scholar 

  140. S.E. Schröder, S. Mottola, U. Carsenty et al., Icarus 288, 201 (2017)

    ADS  Google Scholar 

  141. S. Schröder, J-Y. Li, M.D. Rayman, S.P. Joy, C-A. Polanskey, U. Carsenty, J.C. Castillo-Rogez, M. Ciarniello, R. Jaumann, A. Longobardo, L.A. McFadden, S. Mottola, M. Sykes, C.A. Raymond, C.T. Russell, Astron. Astrophys. 620, A201 (2018)

    Google Scholar 

  142. J.E. Scully, D.L. Buczkowski, C.A. Raymond, T. Bowling, D.A. Williams, A. Neesemann et al., Ceres’ Occator crater and its faculae explored through geologic mapping. Icarus 320, 7–23 (2019)

    ADS  Google Scholar 

  143. J.E.C. Scully, P.M. Schenk, J.C. Castillo-Rogez, D.L. Buczkowski, D.A. Williams, J.H. Pasckert, K.D. Duarte, V.N. Romero, L.C. Quick, M.M. Sori, M.E. Landis, C.A. Raymond, A. Neesemann, B.E. Schmidt, H.G. Sizemore, C.T. Russell, View of Occator (focus on faculae) using new geologic mapping as a basis. Nat. Commun. (2020, accepted)

  144. Y. Sekine et al., High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 2, 502 (2015). https://doi.org/10.1038/ncomms1507

    ADS  Article  Google Scholar 

  145. B. Sherwood-Lollar, T.D. Westgate, J.A. Ward, G.F. Slater, G. Lacrampe-Couloume, Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416(6880), 522 (2002)

    ADS  Google Scholar 

  146. Y. Shinnaka, H. Kawakita, H. Kobayashi, M. Nagashima, D.C. Boice, 14NH2/15NH2 ratio in Comet C/2012 S1 (ISON) observed during its outburst in 2013 November. Astrophys. J. Lett. 782, L16 (2014)

    ADS  Google Scholar 

  147. H.G. Sizemore, T. Platz, N. Schorghofer, T.H. Prettyman, M.C. De Sanctis, D.A. Crown et al., Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. Geophys. Res. Lett. 44(13), 6570–6578 (2017)

    ADS  Google Scholar 

  148. H.G. Sizemore, B.E. Schmidt, M.M. Sori, D.L. Buczkowski, J.C. Castillo-Rogez et al., A global inventory of ice-related morphological features on dwarf planet Ceres: implications for the evolution and current state of the cryosphere. J. Geophys. Res. 124(7), 1650–1689 (2019)

    Google Scholar 

  149. M.M. Sori, H.G. Sizemore, S. Byrne, A.M. Bramson, M.T. Bland, N.T. Stein, C.T. Russell, Cryovolcanic rates on Ceres revealed by topography. Nat. Astron. 2(12), 946–950 (2018). https://doi.org/10.1038/s41550-018-0574-1

    ADS  Article  Google Scholar 

  150. G. Soulet et al., Glacial hydrologic conditions in the Black Sea reconstructed using geochemical pore water profiles. Earth Planet. Sci. Lett. 296, 57–66 (2010)

    ADS  Google Scholar 

  151. N.T. Stein, B.L. Ehlmann, E. Palomba, M.C. De Sanctis, A. Nathues, H. Hiesinger et al., The formation and evolution of bright spots on Ceres. Icarus 320, 188–201 (2019)

    ADS  Google Scholar 

  152. K. Stephan, R. Jaumann, R. Wagner, M.C. De Sanctis, E. Palomba, A. Longobardo, D.A. Williams, K. Krohn, F. Tosi, L.A. McFadden, F.G. Carrozzo, F. Zambon, E. Ammannito, J.-P. Combe, K.-D. Matz, F. Schulzeck, I. von der Gathen, T. Roatsch, C.A. Raymond, C.T. Russell, Meteorit. Planet. Sci. (2018). https://doi.org/10.1111/maps.13126

    Article  Google Scholar 

  153. S.A. Stern, W.M. Grundy, W.B. McKinnon, H.A. Weaver, L.A. Young, The pluto system after new horizons. Annu. Rev. Astron. Astrophys. 56, 357–392 (2018)

    ADS  Google Scholar 

  154. D.A. Stopler, M. Lawson, C.L. Davis, A.A. Ferreira, E.V. Santos Neto, G.S. Ellis, M.D. Lewan, A.M. Martini, Y. Tang, M. Schoell, A.L. Sessions, J.M. Eiler, Formation temperatures of thermogenic and biogenic methane. Science 344, 1500–1503 (2014)

    ADS  Google Scholar 

  155. D. Takir et al., Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites. Meteorit. Planet. Sci. 48, 1618–1637 (2013)

    ADS  Google Scholar 

  156. J.D. Tarnas, J.F. Mustard, B.S. Lollar, M.S. Bramble, K.M. Cannon, A.M. Palumbo, A.C. Plesa, Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018)

    ADS  Google Scholar 

  157. G. Thangjam, A. Nathues, T. Platz, M. Hoffmann, E.A. Cloutis, K. Mengel, M.R.M. Izawa, D.M. Applin, Spectral properties and geology of bright and dark material on dwarf planet Ceres. Meteorit. Planet. Sci. 53, 1961–1982 (2018)

    ADS  Google Scholar 

  158. P.C. Thomas, R. Tajeddine, M.S. Tiscareno, J.A. Burns, J. Joseph, T.J. Loredo, P. Helfenstein, C. Porco, Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016)

    ADS  Google Scholar 

  159. E.C. Thomas, T.H. Vu, R. Hodyss, P.V. Johnson, M. Choukroun, Kinetic effect on the freezing of ammonium-sodium-carbonate-chloride brines and implications for the origin of Ceres’ bright spots. Icarus 320, 150–158 (2019)

    ADS  Google Scholar 

  160. G. Tobie, J. Lunine, C. Sotin, Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440, 61–64 (2006)

    ADS  Google Scholar 

  161. L.L. Tornabene, G.R. Osinski, A.S. McEwen, J.M. Boyc, V.J. Bray, C. y, M. Caudill, J.A. Grant, C.W. Hamilton, S. Mattson, P.J. Mouginis-Mark, Icarus 220, 348–368 (2012)

    ADS  Google Scholar 

  162. B.J. Travis, P.A. Bland, W.C. Feldman, M.V. Syke, Hydrothermal dynamics in a CM-based model of Ceres. Meteorit. Planet. Sci. 53(9), 2008–2032 (2018)

    ADS  Google Scholar 

  163. P. Tricarico, True polar wander of Ceres due to heterogeneous crustal density. Nat. Geosci. (2018). https://doi.org/10.1038/s41561-018-0232-3

    Article  Google Scholar 

  164. S. Vance, J. Harnmeijer, J. Kimura, H. Hussmann, B. DeMartin, J.M. Brown, Hydrothermal systems in small ocean planets. Astrobiology 7(6), 987–1005 (2007)

    ADS  Google Scholar 

  165. S. Vance, B.G. Bills, C. Sotin, B. Journaux, J.M. Brown, K.M. Soderlund, Sensing the Endgame for Callisto’s Ocean, American Geophysical Union (2019) Fall Meeting 2019, abstract #P53D-3477

  166. D.T. Vaniman et al., Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343, 1243480 (2014). https://doi.org/10.1126/science.1243480

    Article  Google Scholar 

  167. P.T. Vernazza, M.A. Mothé-Diniz, M. Barucci, J.M. Birlan, G. Carvano, M. Strazzulla, A. Fulchignoni, A. Migliorini, Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astron. Astrophys. 436, 1113–1121 (2005)

    ADS  Google Scholar 

  168. P. Vernazza, J. Castillo-Rogez, P. Beck, J. Emery, R. Brunetto, M. Delbo et al., Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. Astron. J. 153(2), 72 (2017)

    ADS  Google Scholar 

  169. M.N. Villarreal, C.T. Russell, J.G. Luhmann, W.T. Thompson, T.H. Prettyman, M.F. A’Hearn et al., The dependence of the Cerean exosphere on solar energetic particle events. Astrophys. J. Lett. 838(1), L8 (2017)

    ADS  Google Scholar 

  170. V. Vinogradoff, C. Le Guillou, S. Bernard, L. Binet, P. Cartigny, A.J. Brearley, L. Remusat, Paris vs. Murchison: impact of hydrothermal alteration on organic matter in CM chondrites. Geochim. Cosmochim. Acta 212, 234–252 (2017)

    ADS  Google Scholar 

  171. D. Vokrouhlický, W.F. Bottke, D. Nesvorný, Capture of trans-neptunian planetesimals in the main asteroid belt. Astron. J. 152(2), 39 (2016)

    ADS  Google Scholar 

  172. T.H. Vu, R. Hodyss, P.V. Johnson, M. Choukroun, Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines–implications for Ceres’ bright spots. Planet. Space Sci. 141, 73–77 (2017)

    ADS  Google Scholar 

  173. K. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    ADS  Google Scholar 

  174. J.H. Waite, C.R. Glein, R.S. Perryman, B.D. Teolis, B.A. Magee, G. Miller, J. Grimes, M.E. Perry, K.E. Miller, A. Bouquet, J.I. Lunine, Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017)

    ADS  Google Scholar 

  175. S.I. Watanabe, Y. Tsuda, M. Yoshikawa, S. Tanaka, T. Saiki, S. Nakazawa, Hayabusa2 mission overview. Space Sci. Rev. 208(1–4), 3–16 (2017)

    ADS  Google Scholar 

  176. D.A. Williams, D.L. Buczkowski, S.C. Mest, J.E.C. Scully, T. Platz, T. Kneissl, Icarus 316, 1–13 (2018)

    ADS  Google Scholar 

  177. F. Zambon, A. Raponi, F. Tosi, M.C. De Sanctis, L.A. McFadden, F.G. Carrozzo, A. Longobardo, M. Ciarniello, K. Krohn, K. Stephan, E. Palomba, C.M. Pieters, E. Ammannito, C.A. Raymond, C.T. Russell, Spectral analysis of Ahuna Mons mission’s visible-infrared spectrometer. Geophys. Res. Lett. 44, 97–104 (2017)

    ADS  Google Scholar 

  178. C. Zimmer, K.K. Khurana, M.G. Kivelson, Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations. Icarus 147, 329–347 (2000)

    ADS  Google Scholar 

  179. M.Y. Zolotov, On the composition and differentiation of Ceres. Icarus 204, 183–193 (2009)

    ADS  Google Scholar 

  180. M.Y. Zolotov, Aqueous fluid composition in CI chondritic materials: chemical equilibrium assessments in closed systems. Icarus 220, 713–729 (2012)

    ADS  Google Scholar 

  181. M.Y. Zolotov, Aqueous origins of bright salt deposits on Ceres. Icarus 296, 289–304 (2017)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina De Sanctis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ocean Worlds

Edited by Athena Coustenis, Tilman Spohn, Rafael Rodrigo, Kevin P. Hand, Alexander Hayes, Karen Olsson-Francis, Frank Postberg, Christophe Sotin, Gabriel Tobie, Francois Raulin and Nicolas Walter

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Sanctis, M.C., Mitri, G., Castillo-Rogez, J. et al. Relict Ocean Worlds: Ceres. Space Sci Rev 216, 60 (2020). https://doi.org/10.1007/s11214-020-00683-w

Download citation

Keywords

  • Ceres
  • Exocean worlds
  • Astrobiology
  • asteroids, icy satellites
  • dwarf planets