Outstanding Challenges of Exoplanet Atmospheric Retrievals

Abstract

Spectral retrieval has long been a powerful tool for interpreting planetary remote sensing observations. Flexible, parameterised, agnostic models are coupled with inversion algorithms in order to infer atmospheric properties directly from observations, with minimal reliance on physical assumptions. This approach, originally developed for application to Earth satellite data and subsequently observations of other Solar System planets, has been recently and successfully applied to transit, eclipse and phase curve spectra of transiting exoplanets. In this review, we present the current state-of-the-art in terms of our ability to accurately retrieve information about atmospheric chemistry, temperature, clouds and spatial variability; we discuss the limitations of this, both in the available data and modelling strategies used; and we recommend approaches for future improvement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. A.S. Ackerman, M.S. Marley, Precipitating condensation clouds in substellar atmospheres. Astrophys. J. 556, 872–884 (2001). https://doi.org/10.1086/321540

    ADS  Article  Google Scholar 

  2. D.S. Amundsen, N.J. Mayne, I. Baraffe, J. Manners, P. Tremblin, B. Drummond, C. Smith, D.M. Acreman, D. Homeier, The UK Met Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458b. Astron. Astrophys. 595, 36 (2016). https://doi.org/10.1051/0004-6361/201629183

    ADS  Article  Google Scholar 

  3. J. Arcangeli, J.-M. Désert, V. Parmentier, K.B. Stevenson, M.R. Line, L. Kreidberg, J.J. Fortney, A.P. Showman, Climate of an ultra hot Jupiter. Spectroscopic phase curve of WASP-18b with HST/WFC3 Astron. Astrophys. 625, 136 (2019). https://doi.org/10.1051/0004-6361/201834891

    Article  Google Scholar 

  4. T. Barman, Identification of absorption features in an extrasolar planet atmosphere. Astrophys. J. 661(2), 191–194 (2007). https://doi.org/10.1086/518736

    ADS  Article  Google Scholar 

  5. J.K. Barstow, P.G.J. Irwin, Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? Mon. Not. R. Astron. Soc. 461, 92–96 (2016). https://doi.org/10.1093/mnrasl/slw109

    ADS  Article  Google Scholar 

  6. J.K. Barstow, S. Aigrain, P.G.J. Irwin, T. Hackler, L.N. Fletcher, J.M. Lee, N.P. Gibson, Clouds on the hot Jupiter HD189733b: constraints from the reflection spectrum. Astrophys. J. 786, 154 (2014). https://doi.org/10.1088/0004-637X/786/2/154

    ADS  Article  Google Scholar 

  7. J.K. Barstow, S. Aigrain, P.G.J. Irwin, S. Kendrew, L.N. Fletcher, Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching. Mon. Not. R. Astron. Soc. 448(3), 2546–2561 (2015). https://doi.org/10.1093/mnras/stv186

    ADS  Article  Google Scholar 

  8. J.K. Barstow, S. Aigrain, P.G.J. Irwin, D.K. Sing, A consistent retrieval analysis of 10 hot Jupiters observed in transmission. Astrophys. J. 834, 50 (2017). https://doi.org/10.3847/1538-4357/834/1/50

    ADS  Article  Google Scholar 

  9. N. Batalha, J. Bean, K. Stevenson, M. Alam, N. Batalha, B. Benneke, Z. Berta-Thompson, J. Blecic, G. Bruno, A. Carter, J. Chapman, I. Crossfield, N. Crouzet, L. Decin, B. Demory, J. Desert, D. Dragomir, T. Evans, J. Fortney, J. Fraine, P. Gao, A. Garcia Munoz, N. Gibson, J. Goyal, J. Harrington, K. Heng, R. Hu, E. Kempton, S. Kendrew, B. Kilpatrick, H. Knutson, L. Kreidberg, J. Krick, P. Lagage, M. Lendl, M. Line, M. Lopez-Morales, T. Louden, N. Madhusudhan, A. Mandell, M. Mansfield, E. May, G. Morello, C. Morley, J. Moses, N. Nikolov, V. Parmentier, S. Redfield, J. Roberts, E. Schlawin, A. Showman, D. Sing, J. Spake, M. Swain, K. Todorov, A. Tsiaras, O. Venot, W. Waalkes, H. Wakeford, P. Wheatley, R. Zellem, The transiting exoplanet community early release science program, JWST Proposal ID 1366. Cycle 0 Early Release Science, 2017

  10. B. Benneke, S. Seager, Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753(2), 100 (2012). https://doi.org/10.1088/0004-637X/753/2/100

    ADS  Article  Google Scholar 

  11. S. Birkmann, P. Ferruit, J.A. Valenti, Transiting exoplanet characterization with JWST/NIRSPEC, JWST Proposal ID 1224. Cycle 1 GTO, 2017

  12. J. Blecic, I. Dobbs-Dixon, T. Greene, The implications of 3D thermal structure on 1D atmospheric retrieval. Astrophys. J. 848, 127 (2017). https://doi.org/10.3847/1538-4357/aa8171

    ADS  Article  Google Scholar 

  13. M. Bonnefoy, A. Zurlo, J.L. Baudino, P. Lucas, D. Mesa, A.-L. Maire, A. Vigan, R. Galicher, D. Homeier, F. Marocco, First light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR8799. Astron. Astrophys. 587, 58 (2016). https://doi.org/10.1051/0004-6361/201526906

    Article  Google Scholar 

  14. M. Brogi, M.R. Line, Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J. 157(3), 114 (2019). https://doi.org/10.3847/1538-3881/aaffd3

    ADS  Article  Google Scholar 

  15. B. Charnay, V. Meadows, J. Leconte, 3D modeling of GJ1214b’s atmosphere: vertical mixing driven by an anti-Hadley circulation. Astrophys. J. 813(1), 15 (2015). https://doi.org/10.1088/0004-637X/813/1/15

    ADS  Article  Google Scholar 

  16. E.J.W. de Mooij, I.A.G. Snellen, Ground-based K-band detection of thermal emission from the exoplanet TrES-3b. Astron. Astrophys. 493(2), 35–38 (2009). https://doi.org/10.1051/0004-6361:200811239

    Article  Google Scholar 

  17. T.M. Evans, F. Pont, D.K. Sing, S. Aigrain, J.K. Barstow, J.-M. Désert, N. Gibson, K. Heng, H.A. Knutson, A. Lecavelier des Etangs, The deep blue color of HD 189733b: albedo measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at visible wavelengths. Astrophys. J. Lett. 772, 16 (2013). https://doi.org/10.1088/2041-8205/772/2/L16

    ADS  Article  Google Scholar 

  18. T.M. Evans, D.K. Sing, T. Kataria, J. Goyal, N. Nikolov, H.R. Wakeford, D. Deming, M.S. Marley, D.S. Amundsen, G.E. Ballester, J.K. Barstow, L. Ben-Jaffel, V. Bourrier, L.A. Buchhave, O. Cohen, D. Ehrenreich, A. García Muñoz, G.W. Henry, H. Knutson, P. Lavvas, A. Lecavelier Des Etangs, N.K. Lewis, M. López-Morales, A.M. Mandell, J. Sanz-Forcada, P. Tremblin, R. Lupu, An ultrahot gas-giant exoplanet with a stratosphere. Nature 548, 58–61 (2017). https://doi.org/10.1038/nature23266

    ADS  Article  Google Scholar 

  19. T.M. Evans, D.K. Sing, J.M. Goyal, N. Nikolov, M.S. Marley, K. Zahnle, G.W. Henry, J.K. Barstow, M.K. Alam, J. Sanz-Forcada, T. Kataria, N.K. Lewis, P. Lavvas, G.E. Ballester, L. Ben-Jaffel, S.D. Blumenthal, V. Bourrier, B. Drummond, A. García Muñoz, M. López-Morales, P. Tremblin, D. Ehrenreich, H.R. Wakeford, L.A. Buchhave, A. Lecavelier des Etangs, É. Hébrard, M.H. Williamson, An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J. 156, 283 (2018). https://doi.org/10.3847/1538-3881/aaebff

    ADS  Article  Google Scholar 

  20. Y.K. Feng, M.R. Line, J.J. Fortney, K.B. Stevenson, J. Bean, L. Kreidberg, V. Parmentier, The impact of non-uniform thermal structure on the interpretation of exoplanet emission spectra. Astrophys. J. 829(1), 52 (2016). https://doi.org/10.3847/0004-637X/829/1/52

    ADS  Article  Google Scholar 

  21. F. Feroz, M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008). https://doi.org/10.1111/j.1365-2966.2007.12353.x

    ADS  Article  Google Scholar 

  22. F. Feroz, M.P. Hobson, M. Bridges, MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009). https://doi.org/10.1111/j.1365-2966.2009.14548.x

    ADS  Article  Google Scholar 

  23. F. Feroz, M.P. Hobson, E. Cameron, A.N. Pettitt, Importance nested sampling and the MultiNest algorithm. ArXiv e-prints (2013)

  24. C. Fisher, K. Heng, Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalization degeneracy. Mon. Not. R. Astron. Soc. 481, 4698–4727 (2018). https://doi.org/10.1093/mnras/sty2550

    ADS  Article  Google Scholar 

  25. L.N. Fletcher, G.S. Orton, N.A. Teanby, P.G.J. Irwin, Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus 202, 543–564 (2009). https://doi.org/10.1016/j.icarus.2009.03.023

    ADS  Article  Google Scholar 

  26. J.J. Fortney, K. Lodders, M.S. Marley, R.S. Freedman, A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678(2), 1419–1435 (2008). https://doi.org/10.1086/528370

    ADS  Article  Google Scholar 

  27. S. Fromang, J. Leconte, K. Heng, Shear-driven instabilities and shocks in the atmospheres of hot Jupiters. Astron. Astrophys. 591, 144 (2016). https://doi.org/10.1051/0004-6361/201527600

    ADS  Article  Google Scholar 

  28. J. Goodman, Thermodynamics of atmospheric circulation on hot Jupiters. Astrophys. J. 693(2), 1645–1649 (2009). https://doi.org/10.1088/0004-637X/693/2/1645

    ADS  Article  Google Scholar 

  29. T.P. Greene, M.R. Line, C. Montero, J.J. Fortney, J. Lustig-Yaeger, K. Luther, Characterizing transiting exoplanet atmospheres with JWST. Astrophys. J. 817, 17 (2016). https://doi.org/10.3847/0004-637X/817/1/17

    ADS  Article  Google Scholar 

  30. C.A. Griffith, Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets. Philos. Trans. R. Soc. Lond. Ser. A 372(2014), 20130086 (2014). https://doi.org/10.1098/rsta.2013.0086

    ADS  Article  Google Scholar 

  31. T. Guillot, On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, 27 (2010). https://doi.org/10.1051/0004-6361/200913396

    ADS  Article  MATH  Google Scholar 

  32. K. Haynes, A.M. Mandell, N. Madhusudhan, D. Deming, H. Knutson, Spectroscopic evidence for a temperature inversion in the dayside atmosphere of hot Jupiter WASP-33b. Astrophys. J. 806(2), 146 (2015). https://doi.org/10.1088/0004-637X/806/2/146

    ADS  Article  Google Scholar 

  33. C. Helling, P. Woitke, W.-F. Thi, Dust in brown dwarfs and extra-solar planets. I. Chemical composition and spectral appearance of quasi-static cloud layers. Astron. Astrophys. 485, 547–560 (2008). https://doi.org/10.1051/0004-6361:20078220

    ADS  Article  Google Scholar 

  34. K. Heng, D. Kitzmann, The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge. Mon. Not. R. Astron. Soc. 470(3), 2972–2981 (2017). https://doi.org/10.1093/mnras/stx1453

    ADS  Article  Google Scholar 

  35. K. Heng, J.R. Lyons, Carbon dioxide in exoplanetary atmospheres: rarely dominant compared to carbon monoxide and water in hot, hydrogen-dominated atmospheres. Astrophys. J. 817(2), 149 (2016). https://doi.org/10.3847/0004-637X/817/2/149

    ADS  Article  Google Scholar 

  36. K. Heng, K. Menou, P.J. Phillipps, Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers. Mon. Not. R. Astron. Soc. 413(4), 2380–2402 (2011). https://doi.org/10.1111/j.1365-2966.2011.18315.x

    ADS  Article  Google Scholar 

  37. K. Heng, W. Hayek, F. Pont, D.K. Sing, On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi-analytical temperature-pressure profiles. Mon. Not. R. Astron. Soc. 420(1), 20–36 (2012). https://doi.org/10.1111/j.1365-2966.2011.19943.x

    ADS  Article  Google Scholar 

  38. K. Heng, J.M. Mendonça, J.-M. Lee, Analytical models of exoplanetary atmospheres. II. Radiative transfer via the two-stream approximation. Astrophys. J. Suppl. 215(1), 4 (2014). https://doi.org/10.1088/0067-0049/215/1/4

    ADS  Article  Google Scholar 

  39. H.J. Hoeijmakers, D. Ehrenreich, K. Heng, D. Kitzmann, S.L. Grimm, R. Allart, R. Deitrick, A. Wyttenbach, M. Oreshenko, L. Pino, Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b. Nature 560(7719), 453–455 (2018). https://doi.org/10.1038/s41586-018-0401-y

    ADS  Article  Google Scholar 

  40. A.R. Howe, A. Burrows, D. Deming, An information-theoretic approach to optimize JWST observations and retrievals of transiting exoplanet atmospheres. Astrophys. J. 835(1), 96 (2017). https://doi.org/10.3847/1538-4357/835/1/96

    ADS  Article  Google Scholar 

  41. T.-O. Husser, S. Wende-von Berg, S. Dreizler, D. Homeier, A. Reiners, T. Barman, P.H. Hauschildt, A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, 6 (2013). https://doi.org/10.1051/0004-6361/201219058

    Article  Google Scholar 

  42. P.G.J. Irwin, N.A. Teanby, R. de Kok, L.N. Fletcher, C.J.A. Howett, C.C.C. Tsang, C.F. Wilson, S.B. Calcutt, C.A. Nixon, P.D. Parrish, The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Transf. 109, 1136–1150 (2008). https://doi.org/10.1016/j.jqsrt.2007.11.006

    ADS  Article  Google Scholar 

  43. P.G.J. Irwin, V. Parmentier, J. Taylor, J.K. Barstow, S. Aigrain, G.K.H. Lee, R. Garland, 2.5D retrieval of atmospheric properties from exoplanet phase curves: application to WASP-43b observations. Mon. Not. R. Astron. Soc. 493, 106–125 (2020). https://doi.org/10.1093/mnras/staa238

    ADS  Article  Google Scholar 

  44. D. Kitzmann, K. Heng, Optical properties of potential condensates in exoplanetary atmospheres. Mon. Not. R. Astron. Soc. 475(1), 94–107 (2018). https://doi.org/10.1093/mnras/stx3141

    ADS  Article  Google Scholar 

  45. L. Kreidberg, J.L. Bean, J.-M. Désert, B. Benneke, D. Deming, K.B. Stevenson, S. Seager, Z. Berta-Thompson, A. Seifahrt, D. Homeier, Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014). https://doi.org/10.1038/nature12888

    ADS  Article  Google Scholar 

  46. L. Kreidberg, M.R. Line, J.L. Bean, K.B. Stevenson, J.-M. Désert, N. Madhusudhan, J.J. Fortney, J.K. Barstow, G.W. Henry, M.H. Williamson, A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. Astrophys. J. 814(1), 66 (2015). https://doi.org/10.1088/0004-637X/814/1/66

    ADS  Article  Google Scholar 

  47. L. Kreidberg, M.R. Line, V. Parmentier, K.B. Stevenson, T. Louden, M. Bonnefoy, J.K. Faherty, K. Stassun, T.G. Beatty, J.L. Bean, J.J. Fortney, A.P. Showman, J.-M. Désert, J. Arcangeli, Global climate and atmospheric composition of the ultra-hot Jupiter WASP-103b from HST and Spitzer phase curve observations. Astron. J. 156(1), 17 (2018). https://doi.org/10.3847/1538-3881/aac3df

    ADS  Article  Google Scholar 

  48. J. Krissansen-Totton, R. Garland, P. Irwin, D.C. Catling, Detectability of biosignatures in anoxic atmospheres with the James Webb Space Telescope: a TRAPPIST-1e case study. Astron. J. 156, 114 (2018). https://doi.org/10.3847/1538-3881/aad564

    ADS  Article  Google Scholar 

  49. Gravity Collaboration, S. Lacour, M. Nowak, J. Wang, O. Pfuhl, F. Eisenhauer, R. Abuter, A. Amorim, N. Anugu, M. Benisty, First direct detection of an exoplanet by optical interferometry. Astrometry and K-band spectroscopy of HR 8799 e. Astron. Astrophys. 623, 11 (2019). https://doi.org/10.1051/0004-6361/201935253

    Article  Google Scholar 

  50. J.-M. Lee, L.N. Fletcher, P.G.J. Irwin, Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy. Mon. Not. R. Astron. Soc. 420, 170–182 (2012). https://doi.org/10.1111/j.1365-2966.2011.20013.x

    ADS  Article  Google Scholar 

  51. G. Lee, I. Dobbs-Dixon, C. Helling, K. Bognar, P. Woitke, Dynamic mineral clouds on HD 189733b. I. 3D RHD with kinetic, non-equilibrium cloud formation. Astron. Astrophys. 594, 48 (2016). https://doi.org/10.1051/0004-6361/201628606

    ADS  Article  Google Scholar 

  52. G.K.H. Lee, K. Wood, I. Dobbs-Dixon, A. Rice, C. Helling, Dynamic mineral clouds on HD 189733b. II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: combining scattering and emission spectra. Astron. Astrophys. 601, 22 (2017). https://doi.org/10.1051/0004-6361/201629804

    ADS  Article  Google Scholar 

  53. C. Li, A. Ingersoll, S. Bolton, S. Levin, M. Janssen, S. Atreya, J. Lunine, P. Steffes, S. Brown, T. Guillot, M. Allison, J. Arballo, A. Bellotti, V. Adumitroaie, S. Gulkis, A. Hodges, L. Li, S. Misra, G. Orton, F. Oyafuso, D. Santos-Costa, H. Waite, Z. Zhang, The water abundance in Jupiter’s equatorial zone. Nat. Astron. (2020). https://doi.org/10.1038/s41550-020-1009-3

    Article  Google Scholar 

  54. M.R. Line, V. Parmentier, The influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016). https://doi.org/10.3847/0004-637X/820/1/78

    ADS  Article  Google Scholar 

  55. M.R. Line, X. Zhang, G. Vasisht, V. Natraj, P. Chen, Y.L. Yung, Information content of exoplanetary transit spectra: an initial look. Astrophys. J. 749, 93 (2012). https://doi.org/10.1088/0004-637X/749/1/93

    ADS  Article  Google Scholar 

  56. M.R. Line, A.S. Wolf, X. Zhang, H. Knutson, J.A. Kammer, E. Ellison, P. Deroo, D. Crisp, Y.L. Yung, A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013). https://doi.org/10.1088/0004-637X/775/2/137

    ADS  Article  Google Scholar 

  57. M.R. Line, H. Knutson, A.S. Wolf, Y.L. Yung, A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios. Astrophys. J. 783, 70 (2014). https://doi.org/10.1088/0004-637X/783/2/70

    ADS  Article  Google Scholar 

  58. S. Lines, J. Manners, N.J. Mayne, J. Goyal, A.L. Carter, I.A. Boutle, G.K.H. Lee, C. Helling, B. Drummond, D.M. Acreman, D.K. Sing, Exonephology: transmission spectra from a 3D simulated cloudy atmosphere of HD 209458b. Mon. Not. R. Astron. Soc. 481, 194–205 (2018). https://doi.org/10.1093/mnras/sty2275

    ADS  Article  Google Scholar 

  59. R.J. MacDonald, N. Madhusudhan, Signatures of nitrogen chemistry in hot Jupiter atmospheres. Astrophys. J. Lett. 850, 15 (2017). https://doi.org/10.3847/2041-8213/aa97d4

    ADS  Article  Google Scholar 

  60. B. Macintosh, J.R. Graham, T. Barman, R.J. De Rosa, Q. Konopacky, M.S. Marley, C. Marois, E.L. Nielsen, L. Pueyo, A. Rajan, Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager. Science 350(6256), 64–67 (2015). https://doi.org/10.1126/science.aac5891

    ADS  Article  Google Scholar 

  61. N. Madhusudhan, S. Seager, A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707(1), 24 (2009). http://stacks.iop.org/0004-637X/707/i=1/a=24

    ADS  Article  Google Scholar 

  62. P. Márquez-Neila, C. Fisher, R. Sznitman, K. Heng, Supervised machine learning for analysing spectra of exoplanetary atmospheres. Nat. Astron. 2, 719–724 (2018). https://doi.org/10.1038/s41550-018-0504-2

    ADS  Article  Google Scholar 

  63. J.M. Mendonça, M. Malik, B.-O. Demory, K. Heng, Revisiting the phase curves of WASP-43b: confronting re-analyzed spitzer data with cloudy atmospheres. Astron. J. 155, 150 (2018). https://doi.org/10.3847/1538-3881/aaaebc

    ADS  Article  Google Scholar 

  64. K.I. Öberg, R. Murray-Clay, E.A. Bergin, The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, 16 (2011). https://doi.org/10.1088/2041-8205/743/1/L16

    ADS  Article  Google Scholar 

  65. M. Oreshenko, B. Lavie, S.L. Grimm, S.-M. Tsai, M. Malik, B.-O. Demory, C. Mordasini, Y. Alibert, W. Benz, S.P. Quanz, R. Trotta, K. Heng, Retrieval analysis of the emission spectrum of WASP-12b: sensitivity of outcomes to prior assumptions and implications for formation history. Astrophys. J. Lett. 847, 3 (2017). https://doi.org/10.3847/2041-8213/aa8acf

    ADS  Article  Google Scholar 

  66. V. Parmentier, T. Guillot, A non-grey analytical model for irradiated atmospheres. I. Derivation. Astron. Astrophys. 562, 133 (2014). https://doi.org/10.1051/0004-6361/201322342

    ADS  Article  Google Scholar 

  67. V. Parmentier, J.J. Fortney, A.P. Showman, C. Morley, M.S. Marley, Transitions in the cloud composition of hot Jupiters. Astrophys. J. 828(1), 22 (2016). https://doi.org/10.3847/0004-637X/828/1/22

    ADS  Article  Google Scholar 

  68. A. Pinhas, B.V. Rackham, N. Madhusudhan, D. Apai, Retrieval of planetary and stellar properties in transmission spectroscopy with AURA. Mon. Not. R. Astron. Soc. 480(4), 5314–5331 (2018). https://doi.org/10.1093/mnras/sty2209

    ADS  Article  Google Scholar 

  69. A. Pinhas, N. Madhusudhan, S. Gandhi, R. MacDonald, H2O abundances and cloud properties in ten hot giant exoplanets. Mon. Not. R. Astron. Soc. 482, 1485–1498 (2019). https://doi.org/10.1093/mnras/sty2544

    ADS  Article  Google Scholar 

  70. B. Rackham, N. Espinoza, D. Apai, M. López-Morales, A. Jordán, D.J. Osip, N.K. Lewis, F. Rodler, J.D. Fraine, C.V. Morley, J.J. Fortney, ACCESS I: an optical transmission spectrum of GJ 1214b reveals a heterogeneous stellar photosphere. Astrophys. J. 834(2), 151 (2017). https://doi.org/10.3847/1538-4357/aa4f6c

    ADS  Article  Google Scholar 

  71. B.V. Rackham, D. Apai, M.S. Giampapa, The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018). https://doi.org/10.3847/1538-4357/aaa08c

    ADS  Article  Google Scholar 

  72. E. Rauscher, K. Menou, A general circulation model for gaseous exoplanets with double-gray radiative transfer. Astrophys. J. 750(2), 96 (2012). https://doi.org/10.1088/0004-637X/750/2/96

    ADS  Article  Google Scholar 

  73. M. Rocchetto, I.P. Waldmann, O. Venot, P.-O. Lagage, G. Tinetti, Exploring biases of atmospheric retrievals in simulated JWST transmission spectra of hot Jupiters. Astrophys. J. 833, 120 (2016). https://doi.org/10.3847/1538-4357/833/1/120

    ADS  Article  Google Scholar 

  74. C.D. Rodgers, Inverse Methods for Atmospheric Sounding (World Scientific, Singapore, 2000)

    Google Scholar 

  75. H. Schwarz, M. Brogi, R. de Kok, J. Birkby, I. Snellen, Evidence against a strong thermal inversion in HD 209458b from high-dispersion spectroscopy. Astron. Astrophys. 576, 111 (2015). https://doi.org/10.1051/0004-6361/201425170

    Article  Google Scholar 

  76. F. Selsis, R.D. Wordsworth, F. Forget, Thermal phase curves of nontransiting terrestrial exoplanets. I. Characterizing atmospheres. Astron. Astrophys. 532, 1 (2011). https://doi.org/10.1051/0004-6361/201116654

    ADS  Article  Google Scholar 

  77. K.B. Sheppard, A.M. Mandell, P. Tamburo, S. Gand hi, A. Pinhas, N. Madhusudhan, D. Deming, Evidence for a dayside thermal inversion and high metallicity for the hot Jupiter WASP-18b. Astrophys. J. 850(2), 32 (2017). https://doi.org/10.3847/2041-8213/aa9ae9

    ADS  Article  Google Scholar 

  78. D.K. Sing, J.J. Fortney, N. Nikolov, H.R. Wakeford, T. Kataria, T.M. Evans, S. Aigrain, G.E. Ballester, A.S. Burrows, D. Deming, J.-M. Désert, N.P. Gibson, G.W. Henry, C.M. Huitson, H.A. Knutson, A. Lecavelier Des Etangs, F. Pont, A.P. Showman, A. Vidal-Madjar, M.H. Williamson, P.A. Wilson, A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016). https://doi.org/10.1038/nature16068

    ADS  Article  Google Scholar 

  79. J. Skilling, Nested sampling for general Bayesian computation. Bayesian Anal. 1(4), 833–859 (2006). https://doi.org/10.1214/06-BA127

    MathSciNet  Article  MATH  Google Scholar 

  80. K.B. Stevenson, J.L. Bean, N. Madhusudhan, J. Harrington, Deciphering the atmospheric composition of WASP-12b: a comprehensive analysis of its dayside emission. Astrophys. J. 791, 36 (2014a). https://doi.org/10.1088/0004-637X/791/1/36

    ADS  Article  Google Scholar 

  81. K.B. Stevenson, J.-M. Désert, M.R. Line, J.L. Bean, J.J. Fortney, A.P. Showman, T. Kataria, L. Kreidberg, P.R. McCullough, G.W. Henry, D. Charbonneau, A. Burrows, S. Seager, N. Madhusudhan, M.H. Williamson, D. Homeier, Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346, 838–841 (2014b). https://doi.org/10.1126/science.1256758

    ADS  Article  Google Scholar 

  82. J. Tennyson, S. Yurchenko, The ExoMol atlas of molecular opacities. Atoms 6(2), 26 (2018). https://doi.org/10.3390/atoms6020026

    ADS  Article  Google Scholar 

  83. G. Tinetti, A. Vidal-Madjar, M.-C. Liang, J.-P. Beaulieu, Y. Yung, S. Carey, R.J. Barber, J. Tennyson, I. Ribas, N. Allard, G.E. Ballester, D.K. Sing, F. Selsis, Water vapour in the atmosphere of a transiting extrasolar planet. Nature 448, 169–171 (2007). https://doi.org/10.1038/nature06002

    ADS  Article  Google Scholar 

  84. A. Tsiaras, I.P. Waldmann, T. Zingales, M. Rocchetto, G. Morello, M. Damiano, K. Karpouzas, G. Tinetti, L.K. McKemmish, J. Tennyson, S.N. Yurchenko, A population study of gaseous exoplanets. Astron. J. 155, 156 (2018). https://doi.org/10.3847/1538-3881/aaaf75

    ADS  Article  Google Scholar 

  85. T. Zingales, I.P. Waldmann, ExoGAN: retrieving exoplanetary atmospheres using deep convolutional generative adversarial networks. Astron. J. 156(6), 268 (2018). https://doi.org/10.3847/1538-3881/aae77c

    ADS  Article  Google Scholar 

Download references

Acknowledgements

JKB was supported by a Royal Astronomical Society Research Fellowship during this work. KH thanks the Swiss National Science Foundation, PlanetS National Center of Competence in Research, European Research Council via Consolider Grant number 71620 and MERAC Foundation for partial financial support. We thank the two anonymous reviewers whose comments improved the clarity of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joanna K. Barstow.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Understanding the Diversity of Planetary Atmospheres

Edited by François Forget, Oleg Korablev, Julia Venturini, Takeshi Imamura, Helmut Lammer and Michel Blanc

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barstow, J.K., Heng, K. Outstanding Challenges of Exoplanet Atmospheric Retrievals. Space Sci Rev 216, 82 (2020). https://doi.org/10.1007/s11214-020-00666-x

Download citation

Keywords

  • Exoplanets
  • Retrieval
  • Atmospheres