Space Science Reviews

, 214:66 | Cite as

Very Long Baseline Interferometry: Dependencies on Frequency Stability

  • Axel Nothnagel
  • Tobias Nilsson
  • Harald Schuh
Part of the following topical collections:
  1. High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System


Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.


VLBI Technical realization Station clock requirements Artificial signal generation 



We are very grateful to the reviewer of this article for providing many very detailed comments and suggestions beyond the normal level of a review. These helped us to significantly improve the quality of the paper.


  1. Z. Altamimi, P. Rebischung, L. Métivier, X. Collilieux, ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J. Geophys. Res. 121, 6109–6131 (2016). ADSCrossRefGoogle Scholar
  2. J.M. Anderson, G. Beyerle, S. Glaser, L. Liu, B. Männel, T. Nilsson, R. Heinkelmann, H. Schuh, Simulations of VLBI observations of a geodetic satellite providing co-location in space. J. Geod. 2018, in press.
  3. Y. Bar-Sever, B. Haines, W. Bertiger, S. Desai, S. Wu, Geodetic reference antenna in space (GRASP)—a mission to enhance space-based geodesy, in Proc. 2nd Colloquium Scientific and Fundamental Aspects of the Galileo Programme, Padova, Italy (2009) Google Scholar
  4. R. Biancale, A. Pollet, D. Coulot, M. Mandea, E-GRASP/eratosthenes: a mission proposal for millimetric TRF realization, in EGU General Assembly Conference Abstracts, vol. 19 (2017), p. 8752 Google Scholar
  5. J.S. Border, Innovations in Delta Differential One-way Range: from Viking to Mars Science Laboratory, in Proc. 21st Int. Sym. Space Flight Dynamics, Toulouse, France, 28 Sept.–02 Oct., 2009, http://issfd.or/ISSFD_2009/OrbitDeterminationI/Border.pdf
  6. D.A. Duev, G. Molera Calvés, S.V. Pogrebenko, L.I. Gurvits, G. Cimó, T. Bocanegra Bahamon, Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron. Astrophys. 541, A43 (2012). ADSCrossRefGoogle Scholar
  7. D.A. Duev, S.V. Pogrebenko, G. Cimo, G. Molera Calvés, T.M. Bocanegra T.M. Bahamon, L.I. Gurvits, M.M. Kettenis, J. Kania, V. Tudose, P. Rosenblatt, J.-C. Marty, V. Lainey, P. de Vicente, J. Quick, M. Nickola, A. Neidhardt, G. Kronschnabl, C. Plötz, R. Haas, M. Lindqvist, A. Orlati, A.V. Ipatov, M.A. Kharinov, A.G. Mikhailov, J.E.J. Lovell, J.N. McCallum, J. Stevens, S.A. Gulyaev, T. Natush, S. Weston, W.H. Wang, B. Xia, W.J. Yang, L-F. Hao, J. Kallunki, O. Witasse, Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: a test case of the Mars express phobos y-by. Astron. Astrophys. (2016). Google Scholar
  8. E. Himwich, A. Bertarini, B. Corey, K. Baver, D. Gordon, L. La Porta, Impact of station clocks on UT1-TAI estimates, in Proc. 23rd European VLBI Group for Geodesy and Astrometry Working Meeting, ed. by R. Haas, G. Elgered (Gothenburg, Sweden, 2017), pp. 12–176 Google Scholar
  9. T. Nilsson, R. Haas, Impact of atmospheric turbulence on geodetic very long baseline interferometry. J. Geophys. Res. 115(B03), 407 (2010). Google Scholar
  10. T. Nilsson, B. Soja, M. Karbon, R. Heinkelmann, H. Schuh, Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67, 1–9 (2015) CrossRefGoogle Scholar
  11. A. Pany, J. Böhm, D. MacMillan, H. Schuh, T. Nilsson, J. Wresnik, Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J. Geod. 85, 39–50 (2011). ADSCrossRefGoogle Scholar
  12. B. Petrachenko, A. Niell, D. Behrend, B. Corey, J. Böhm, P. Charlot, A. Collioud, J. Gipson, R. Haas, T. Hobiger, Y. Koyama, D. MacMillan, T. Nilsson, A. Pany, G. Tuccari, A. Whitney, J. Wresnik, Design Aspects of the VLBI2010 System. Progress Report of the VLBI2010 Committee. NASA Technical Memorandum, NASA/TM-2009-214180, 58 pp. (June 2009) Google Scholar
  13. W.T. Petrachenko, A.E. Niell, B.E. Corey, D. Behrend, H. Schuh, J. Wresnik, VLBI2010: next generation VLBI system for geodesy and astrometry, in Geodesy for Planet Earth, International Association of Geodesy Symposia, vol. 136, ed. by S. Kenyon, M.C. Pacino, U. Marti (Springer, Berlin, 2012), pp. 999–1006. ISBN 978-3-642-20337-4 CrossRefGoogle Scholar
  14. L. Plank, VLBI satellite tracking for the realization of frame ties. PhD Thesis, Technische Universität Wien, Vienna, Austria (2013) Google Scholar
  15. L. Plank, J. Böhm, H. Schuh, Precise station positions from VLBI observations to satellites: a simulation study. J. Geod. 88(7), 659–673 (2014). ADSCrossRefGoogle Scholar
  16. L. Plank, A. Hellerschmied, J. McCallum, J. Böhm, J. Lovell, VLBI observations of GNSS-satellites: from scheduling to analysis. J. Geod. 91(7), 867–880 (2015). ADSCrossRefGoogle Scholar
  17. C. Rieck, R. Haas, P. Jarlemark, K. Jaldehag, VLBI frequency transfer using CONT11, in Proc. of the 26th European Frequency and Time Forum, Gothenburg, Sweden (2012). Google Scholar
  18. A.E.E. Rogers, Very long baseline interferometry with large effective bandwidth for phase-delay measurements. Radio Sci. 5(10), 1239–1247 (1970). ADSCrossRefGoogle Scholar
  19. A.E.E. Rogers, J.M. Moran, Coherence limits for very-long- baseline interferometry. IEEE Trans. Instrum. Meas. IM-30(4), 283–286 (1981) ADSCrossRefGoogle Scholar
  20. O.J. Sovers, J.L. Fanselow, C.S. Jacobs, Astrometry and geodesy with radio interferometry: experiments, models, results. Rev. Mod. Phys. 70(4), 1393–1454 (1998) ADSCrossRefGoogle Scholar
  21. J. Sun, J. Böhm, T. Nilsson, H. Krásná, S. Böhm, H. Schuh, New VLBI2010 scheduling strategies and implications on the terrestrial reference frames. J. Geod. 88(5), 449–461 (2014). ADSCrossRefGoogle Scholar
  22. G. Tang, J. Cao, S. Han, S. Hu, T. Ren, L. Chen, J. Sun, M. Wang, Y. Li, L. Li, Research on lunar radio measurements by Chang’E-3, in IVS 2014 General Meeting Proceedings “VGOS: The New VLBI Network”, ed. by D. Behrend, K.D. Baver, K.L. Armstrong (Science Press, Beijing, 2014), pp. 473–477. Google Scholar
  23. A.R. Thompson, J.M. Moran, G.W. Swenson, Interferometry and Synthesis in Radio Astronomy, 2nd edn. (Wiley, New York, 2007) Google Scholar
  24. O. Titov, Estimation of the subdiurnal UT1-UTC variations by the least squares collocation method. Astron. Astrophys. Trans. 18(6), 779–792 (2000). ADSCrossRefGoogle Scholar
  25. V. Tornatore, R. Haas, S. Casey, D. Duev, S. Pogrebenko, G. Molera Calvés, Direct VLBI observations of global navigation satellite system signals, in International Association of Geodesy Symposia. Proc. IAG General Assembly, Melbourne, 2011, vol. 139 (2014), pp. 247–252. ISBN/ISSN: 978-3-642-37221-6 Google Scholar
  26. A.R. Whitney, Precision Geodesy and Astrometry Via Very-Long-Baseline Interferometry. Ph.D. Thesis, MIT (1974) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  2. 2.GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations