Space Science Reviews

, 214:59 | Cite as

Superluminous Supernovae

  • Takashi J. Moriya
  • Elena I. Sorokina
  • Roger A. Chevalier
Article
Part of the following topical collections:
  1. Supernovae

Abstract

Superluminous supernovae are a new class of supernovae that were recognized about a decade ago. Both observational and theoretical progress has been significant in the last decade. In this review, we first briefly summarize the observational properties of superluminous supernovae. We then introduce the three major suggested luminosity sources to explain the huge luminosities of superluminous supernovae, i.e., the nuclear decay of 56Ni, the interaction between supernova ejecta and dense circumstellar media, and the spin down of magnetars. We compare these models and discuss their strengths and weaknesses.

Keywords

Supernovae Superluminous supernovae Massive stars 

Notes

Acknowledgements

This review made use of the Weizmann interactive supernova data repository—http://wiserep.weizmann.ac.il (Yaron and Gal-Yam 2012) and the Open Supernova Catalog—https://sne.space/ (Guillochon et al. 2017). TJM is supported by the Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (16H07413, 17H02864) and the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence “Origin and Structure of the Universe.” The work of ES (interaction models) is supported by the Russian Scientific Foundation grant 16–12–10519. RAC was supported in part by NASA grant NNX12AF90G.

References

  1. I. Agnoletto, S. Benetti, E. Cappellaro, L. Zampieri, M. Turatto, P. Mazzali, A. Pastorello, M. Della Valle, F. Bufano, A. Harutyunyan, H. Navasardyan, N. Elias-Rosa, S. Taubenberger, S. Spiro, S. Valenti, SN 2006gy: was it really extraordinary? Astrophys. J. 691, 1348–1359 (2009). 0810.0635.  https://doi.org/10.1088/0004-637X/691/2/1348 ADSCrossRefGoogle Scholar
  2. C.R. Angus, A.J. Levan, D.A. Perley, N.R. Tanvir, J.D. Lyman, E.R. Stanway, A.S. Fruchter, A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae. Mon. Not. R. Astron. Soc. 458, 84–104 (2016). 1601.01874.  https://doi.org/10.1093/mnras/stw063 ADSCrossRefGoogle Scholar
  3. I. Arcavi, W.M. Wolf, D.A. Howell, L. Bildsten, G. Leloudas, D. Hardin, S. Prajs, D.A. Perley, G. Svirski, A. Gal-Yam, B. Katz, C. McCully, S.B. Cenko, C. Lidman, M. Sullivan, S. Valenti, P. Astier, C. Balland, R.G. Carlberg, A. Conley, D. Fouchez, J. Guy, R. Pain, N. Palanque-Delabrouille, K. Perrett, C.J. Pritchet, N. Regnault, J. Rich, V. Ruhlmann-Kleider, Rapidly rising transients in the supernova–superluminous supernova gap. Astrophys. J. 819, 35 (2016). 1511.00704.  https://doi.org/10.3847/0004-637X/819/1/35 ADSCrossRefGoogle Scholar
  4. W.D. Arnett, Analytic solutions for light curves of supernovae of Type II. Astrophys. J. 237, 541–549 (1980).  https://doi.org/10.1086/157898 ADSCrossRefGoogle Scholar
  5. W.D. Arnett, Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).  https://doi.org/10.1086/159681 ADSCrossRefGoogle Scholar
  6. D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter from the Big Bang to the Present (Princeton University Press, Princeton, 1996) Google Scholar
  7. T.S. Axelrod, Late time optical spectra from the Ni-56 model for Type 1 supernovae. PhD thesis, California University, Santa Cruz (1980) Google Scholar
  8. K. Barbary, K.S. Dawson, K. Tokita, G. Aldering, R. Amanullah, N.V. Connolly, M. Doi, L. Faccioli, V. Fadeyev, A.S. Fruchter, G. Goldhaber, A. Goobar, A. Gude, X. Huang, Y. Ihara, K. Konishi, M. Kowalski, C. Lidman, J. Meyers, T. Morokuma, P. Nugent, S. Perlmutter, D. Rubin, D. Schlegel, A.L. Spadafora, N. Suzuki, H.K. Swift, N. Takanashi, R.C. Thomas, N. Yasuda, Discovery of an unusual optical transient with the Hubble Space Telescope. Astrophys. J. 690, 1358–1362 (2009). 0809.1648.  https://doi.org/10.1088/0004-637X/690/2/1358 ADSCrossRefGoogle Scholar
  9. Z. Barkat, G. Rakavy, N. Sack, Dynamics of supernova explosion resulting from pair formation. Phys. Rev. Lett. 18, 379–381 (1967).  https://doi.org/10.1103/PhysRevLett.18.379 ADSCrossRefGoogle Scholar
  10. S. Ben-Ami, A. Gal-Yam, P.A. Mazzali, O. Gnat, M. Modjaz, I. Rabinak, M. Sullivan, L. Bildsten, D. Poznanski, O. Yaron, I. Arcavi, J.S. Bloom, A. Horesh, M.M. Kasliwal, S.R. Kulkarni, P.E. Nugent, E.O. Ofek, D. Perley, R. Quimby, D. Xu, SN 2010mb: direct evidence for a supernova interacting with a large amount of hydrogen-free circumstellar material. Astrophys. J. 785, 37 (2014). 1309.6496.  https://doi.org/10.1088/0004-637X/785/1/37 ADSCrossRefGoogle Scholar
  11. S. Benetti, M. Nicholl, E. Cappellaro, A. Pastorello, S.J. Smartt, N. Elias-Rosa, A.J. Drake, L. Tomasella, M. Turatto, A. Harutyunyan, S. Taubenberger, S. Hachinger, A. Morales-Garoffolo, T.W. Chen, S.G. Djorgovski, M. Fraser, A. Gal-Yam, C. Inserra, P. Mazzali, M.L. Pumo, J. Sollerman, S. Valenti, D.R. Young, M. Dennefeld, L. Le Guillou, M. Fleury, P.F. Léget, The supernova CSS121015:004244+132827: a clue for understanding superluminous supernovae. Mon. Not. R. Astron. Soc. 441, 289–303 (2014). arXiv:1310.1311.  https://doi.org/10.1093/mnras/stu538 ADSCrossRefGoogle Scholar
  12. E. Berger, R. Chornock, R. Lunnan, R. Foley, I. Czekala, A. Rest, C. Leibler, A.M. Soderberg, K. Roth, G. Narayan, M.E. Huber, D. Milisavljevic, N.E. Sanders, M. Drout, R. Margutti, R.P. Kirshner, G.H. Marion, P.J. Challis, A.G. Riess, S.J. Smartt, W.S. Burgett, K.W. Hodapp, J.N. Heasley, N. Kaiser, R.P. Kudritzki, E.A. Magnier, M. McCrum, P.A. Price, K. Smith, J.L. Tonry, R.J. Wainscoat, Ultraluminous supernovae as a new probe of the interstellar medium in distant galaxies. Astrophys. J. Lett. 755, L29 (2012). 1206.4050.  https://doi.org/10.1088/2041-8205/755/2/L29 ADSCrossRefGoogle Scholar
  13. M.C. Bersten, O.G. Benvenuto, M. Orellana, K. Nomoto, The unusual super-luminous supernovae SN 2011kl and ASASSN-15lh. Astrophys. J. Lett. 817, L8 (2016). 1601.01021.  https://doi.org/10.3847/2041-8205/817/1/L8 ADSCrossRefGoogle Scholar
  14. P.K. Blanchard, M. Nicholl, E. Berger, J. Guillochon, R. Margutti, R. Chornock, K.D. Alexander, J. Leja, M.R. Drout, PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. Astrophys. J. 843, 106 (2017). 1703.07816.  https://doi.org/10.3847/1538-4357/aa77f7 ADSCrossRefGoogle Scholar
  15. S. Blinnikov, Radiative shock waves and their role in solving puzzles of Superluminous Supernovae. ArXiv e-prints. 1611.00513 (2016)
  16. S.I. Blinnikov, R. Eastman, O.S. Bartunov, V.A. Popolitov, S.E. Woosley, A comparative modeling of supernova 1993J. Astrophys. J. 496, 454–472 (1998). astro-ph/9711055.  https://doi.org/10.1086/305375 ADSCrossRefGoogle Scholar
  17. S.I. Blinnikov, F.K. Röpke, E.I. Sorokina, M. Gieseler, M. Reinecke, C. Travaglio, W. Hillebrandt, M. Stritzinger, Theoretical light curves for deflagration models of type Ia supernova. Astron. Astrophys. 453, 229–240 (2006). astro-ph/0603036.  https://doi.org/10.1051/0004-6361:20054594 ADSCrossRefGoogle Scholar
  18. J.M. Blondin, R.A. Chevalier, Pulsar wind bubble blowout from a supernova. Astrophys. J. 845, 139 (2017). 1707.07021.  https://doi.org/10.3847/1538-4357/aa8267 ADSCrossRefGoogle Scholar
  19. J.M. Blondin, R.A. Chevalier, D.M. Frierson, Pulsar wind nebulae in evolved supernova remnants. Astrophys. J. 563, 806–815 (2001). astro-ph/0107076.  https://doi.org/10.1086/324042 ADSCrossRefGoogle Scholar
  20. S. Bose, S. Dong, A. Pastorello, A.V. Filippenko, C.S. Kochanek, J. Mauerhan, C. Romero-Cañizales, T.G. Brink, P. Chen, J.L. Prieto, R. Post, C. Ashall, D. Grupe, L. Tomasella, S. Benetti, B.J. Shappee, K.Z. Stanek, Z. Cai, E. Falco, P. Lundqvist, S. Mattila, R. Mutel, P. Ochner, D. Pooley, M.D. Stritzinger, S. Villanueva Jr., W. Zheng, R.J. Beswick, P.J. Brown, E. Cappellaro, S. Davis, M. Fraser, T. de Jaeger, N. Elias-Rosa, C. Gall, B.S. Gaudi, G.J. Herczeg, J. Hestenes, T.W.S. Holoien, G. Hosseinzadeh, E.Y. Hsiao, S. Hu, S. Jaejin, B. Jeffers, R.A. Koff, S. Kumar, A. Kurtenkov, M.W. Lau, S. Prentice, T. Reynolds, R.J. Rudy, M. Shahbandeh, A. Somero, K.G. Stassun, T.A. Thompson, S. Valenti, J.H. Woo, S. Yunus, Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a normal, massive, metal-rich spiral galaxy. Astrophys. J. 853, 57 (2018). 1708.00864.  https://doi.org/10.3847/1538-4357/aaa298 ADSCrossRefGoogle Scholar
  21. N. Bucciantini, E. Amato, R. Bandiera, J.M. Blondin, L. Del Zanna, Magnetic Rayleigh-Taylor instability for Pulsar Wind Nebulae in expanding Supernova Remnants. Astron. Astrophys. 423, 253–265 (2004). astro-ph/0405276.  https://doi.org/10.1051/0004-6361:20040360 ADSCrossRefGoogle Scholar
  22. P. Chandra, Circumstellar interaction in supernovae in dense environments—an observational perspective. Space Sci. Rev. 214, 27 (2018). 1712.07405.  https://doi.org/10.1007/s11214-017-0461-6 ADSCrossRefGoogle Scholar
  23. E. Chatzopoulos, J.C. Wheeler, Effects of rotation on the minimum mass of primordial progenitors of pair-instability supernovae. Astrophys. J. 748, 42 (2012). 1201.1328.  https://doi.org/10.1088/0004-637X/748/1/42 ADSCrossRefGoogle Scholar
  24. E. Chatzopoulos, J.C. Wheeler, J. Vinko, Generalized semi-analytical models of supernova light curves. Astrophys. J. 746, 121 (2012). 1111.5237.  https://doi.org/10.1088/0004-637X/746/2/121 ADSCrossRefGoogle Scholar
  25. E. Chatzopoulos, J.C. Wheeler, J. Vinko, Z.L. Horvath, A. Nagy, Analytical light curve models of superluminous supernovae: \(\chi^{2}\)-minimization of parameter fits. Astrophys. J. 773, 76 (2013). 1306.3447.  https://doi.org/10.1088/0004-637X/773/1/76 ADSCrossRefGoogle Scholar
  26. E. Chatzopoulos, D.R. van Rossum, W.J. Craig, D.J. Whalen, J. Smidt, B. Wiggins, Emission from pair-instability supernovae with rotation. Astrophys. J. 799, 18 (2015). 1410.0039.  https://doi.org/10.1088/0004-637X/799/1/18 ADSCrossRefGoogle Scholar
  27. T.W. Chen, S.J. Smartt, F. Bresolin, A. Pastorello, R.P. Kudritzki, R. Kotak, M. McCrum, M. Fraser, S. Valenti, The host galaxy of the super-luminous SN 2010gx and limits on explosive 56Ni production. Astrophys. J. Lett. 763, L28 (2013). 1210.4027.  https://doi.org/10.1088/2041-8205/763/2/L28 ADSCrossRefGoogle Scholar
  28. K.J. Chen, A. Heger, S. Woosley, A. Almgren, D.J. Whalen, Pair instability supernovae of very massive Population III stars. Astrophys. J. 792, 44 (2014). 1402.5960.  https://doi.org/10.1088/0004-637X/792/1/44 ADSCrossRefGoogle Scholar
  29. T.W. Chen, S.J. Smartt, A. Jerkstrand, M. Nicholl, F. Bresolin, R. Kotak, J. Polshaw, A. Rest, R. Kudritzki, Z. Zheng, N. Elias-Rosa, K. Smith, C. Inserra, D. Wright, E. Kankare, T. Kangas, M. Fraser, The host galaxy and late-time evolution of the superluminous supernova PTF12dam. Mon. Not. R. Astron. Soc. 452, 1567–1586 (2015). 1409.7728.  https://doi.org/10.1093/mnras/stv1360 ADSCrossRefGoogle Scholar
  30. K.J. Chen, S.E. Woosley, T. Sukhbold, Magnetar-powered supernovae in two dimensions. I. Superluminous supernovae. Astrophys. J. 832, 73 (2016). 1604.07989.  https://doi.org/10.3847/0004-637X/832/1/73 ADSCrossRefGoogle Scholar
  31. T.W. Chen, M. Nicholl, S.J. Smartt, P.A. Mazzali, R.M. Yates, T.J. Moriya, C. Inserra, N. Langer, T. Krühler, Y.C. Pan, R. Kotak, L. Galbany, P. Schady, P. Wiseman, J. Greiner, S. Schulze, A.W.S. Man, A. Jerkstrand, K.W. Smith, M. Dennefeld, C. Baltay, J. Bolmer, E. Kankare, F. Knust, K. Maguire, D. Rabinowitz, S. Rostami, M. Sullivan, D.R. Young, The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astron. Astrophys. 602, A9 (2017a). 1611.09910.  https://doi.org/10.1051/0004-6361/201630163 CrossRefGoogle Scholar
  32. T.W. Chen, P. Schady, L. Xiao, J.J. Eldridge, T. Schweyer, C.H. Lee, P.C. Yu, S.J. Smartt, C. Inserra, Spatially resolved MaNGA observations of the host galaxy of superluminous supernova 2017egm. Astrophys. J. Lett. 849, L4 (2017b). 1708.04618.  https://doi.org/10.3847/2041-8213/aa8f40 ADSCrossRefGoogle Scholar
  33. T.W. Chen, S.J. Smartt, R.M. Yates, M. Nicholl, T. Krühler, P. Schady, M. Dennefeld, C. Inserra, Superluminous supernova progenitors have a half-solar metallicity threshold. Mon. Not. R. Astron. Soc. 470, 3566–3573 (2017c). 1605.04925.  https://doi.org/10.1093/mnras/stx1428 ADSCrossRefGoogle Scholar
  34. R.A. Chevalier, Was SN 1054 a Type II supernova? in Supernovae. Astrophysics and Space Science Library, vol. 66, ed. by D.N. Schramm (Springer, Berlin, 1977), p. 53.  https://doi.org/10.1007/978-94-010-1229-4_5 CrossRefGoogle Scholar
  35. R.A. Chevalier, Young core-collapse supernova remnants and their supernovae. Astrophys. J. 619, 839–855 (2005). astro-ph/0409013.  https://doi.org/10.1086/426584 ADSCrossRefGoogle Scholar
  36. R.A. Chevalier, C. Fransson, Supernova interaction with a circumstellar medium, in Supernovae and Gamma-Ray Bursters, ed. by K. Weiler. Lecture Notes in Physics, vol. 598 (Springer, Berlin, 2003), pp. 171–194. astro-ph/0110060.  https://doi.org/10.1007/3-540-45863-8_10 CrossRefGoogle Scholar
  37. R.A. Chevalier, C.M. Irwin, Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. Lett. 729, L6 (2011). 1101.1111.  https://doi.org/10.1088/2041-8205/729/1/L6 ADSCrossRefGoogle Scholar
  38. R.A. Chevalier, N. Soker, Asymmetric envelope expansion of supernova 1987A. Astrophys. J. 341, 867–882 (1989).  https://doi.org/10.1086/167545 ADSCrossRefGoogle Scholar
  39. L. Chomiuk, R. Chornock, A.M. Soderberg, E. Berger, R.A. Chevalier, R.J. Foley, M.E. Huber, G. Narayan, A. Rest, S. Gezari, R.P. Kirshner, A. Riess, S.A. Rodney, S.J. Smartt, C.W. Stubbs, J.L. Tonry, W.M. Wood-Vasey, W.S. Burgett, K.C. Chambers, I. Czekala, H. Flewelling, K. Forster, N. Kaiser, R.P. Kudritzki, E.A. Magnier, D.C. Martin, J.S. Morgan, J.D. Neill, P.A. Price, K.C. Roth, N.E. Sanders, R.J. Wainscoat, Pan-STARRS1 discovery of two ultraluminous supernovae at \(z \simeq0.9\). Astrophys. J. 743, 114 (2011). 1107.3552.  https://doi.org/10.1088/0004-637X/743/2/114 ADSCrossRefGoogle Scholar
  40. A. Cikota, A. De Cia, S. Schulze, P.M. Vreeswijk, G. Leloudas, A. Gal-Yam, D.A. Perley, S. Cikota, S. Kim, F. Patat, R. Lunnan, R. Quimby, O. Yaron, L. Yan, P.A. Mazzali, Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. Mon. Not. R. Astron. Soc. 469, 4705–4717 (2017). 1705.01948.  https://doi.org/10.1093/mnras/stx1110 ADSCrossRefGoogle Scholar
  41. J. Cooke, M. Sullivan, A. Gal-Yam, E.J. Barton, R.G. Carlberg, E.V. Ryan-Weber, C. Horst, Y. Omori, C.G. Díaz, Superluminous supernovae at redshifts of 2.05 and 3.90. Nature 491, 228–231 (2012). 1211.2003.  https://doi.org/10.1038/nature11521 ADSCrossRefGoogle Scholar
  42. D.L. Coppejans, R. Margutti, C. Guidorzi, L. Chomiuk, K.D. Alexander, E. Berger, M.F. Bietenholz, P.K. Blanchard, P. Challis, R. Chornock, M. Drout, W. Fong, A. Mac Fadyen, G. Migliori, D. Milisavljevic, M. Nicholl, J.T. Parrent, G. Terreran, B.A. Zauderer, Jets in hydrogen-poor super-luminous supernovae: constraints from a comprehensive analysis of radio observations. ArXiv e-prints. 1711.03428 (2017)
  43. C. Curtin, J. Cooke, T.J. Moriya, S.R. Bernard, L. Galbany, J. Ja, C.H. Lee, K. Maeda, T. Morokuma, K. Nomoto, G. Pignata, T. Pritchard, R.M. Quimby, N. Suzuki, I. Takahashi, M. Tanaka, M. Tanaka, N. Tominaga, M. Yamaguchi, N. Yasuda, First release of high-redshift superluminous supernovae from the Subaru HIgh-Z sUpernova CAmpaign (SHIZUCA). II. Spectroscopic properties. ArXiv e-prints. 1801.08241 (2018)
  44. M.T. da Cruz, Y. Chan, R.M. Larimer, K.T. Lesko, E.B. Norman, R.G. Stokstad, F.E. Wietfeldt, I. Žlimen, Half-life of 56Ni. Phys. Rev. C 46, 1132–1135 (1992).  https://doi.org/10.1103/PhysRevC.46.1132 ADSCrossRefGoogle Scholar
  45. A. De Cia, A. Gal-Yam, A. Rubin, G. Leloudas, P. Vreeswijk, D.A. Perley, R. Quimby, L. Yan, M. Sullivan, A. Flörs, J. Sollerman, D. Bersier, S.B. Cenko, M. Gal-Yam, K. Maguire, E.O. Ofek, S. Prentice, S. Schulze, J. Spyromilio, S. Valenti, I. Arcavi, A. Corsi, A. Howell, P. Mazzali, M.M. Kasliwal, F. Taddia, O. Yaron, Light curves of hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. ArXiv e-prints. 1708.01623 (2017)
  46. L. Dessart, D.J. Hillier, R. Waldman, E. Livne, S. Blondin, Superluminous supernovae: 56Ni power versus magnetar radiation. Mon. Not. R. Astron. Soc. 426, L76–L80 (2012). 1208.1214.  https://doi.org/10.1111/j.1745-3933.2012.01329.x ADSCrossRefGoogle Scholar
  47. L. Dessart, R. Waldman, E. Livne, D.J. Hillier, S. Blondin, Radiative properties of pair-instability supernova explosions. Mon. Not. R. Astron. Soc. 428, 3227–3251 (2013). 1210.6163.  https://doi.org/10.1093/mnras/sts269 ADSCrossRefGoogle Scholar
  48. L. Dessart, E. Audit, D.J. Hillier, Numerical simulations of superluminous supernovae of Type IIn. Mon. Not. R. Astron. Soc. 449, 4304–4325 (2015). 1503.05463.  https://doi.org/10.1093/mnras/stv609 ADSCrossRefGoogle Scholar
  49. J. Dexter, D. Kasen, Supernova light curves powered by fallback accretion. Astrophys. J. 772, 30 (2013). 1210.7240.  https://doi.org/10.1088/0004-637X/772/1/30 ADSCrossRefGoogle Scholar
  50. S. Dong, B.J. Shappee, J.L. Prieto, S.W. Jha, K.Z. Stanek, T.W.S. Holoien, C.S. Kochanek, T.A. Thompson, N. Morrell, I.B. Thompson, U. Basu, J.F. Beacom, D. Bersier, J. Brimacombe, J.S. Brown, F. Bufano, P. Chen, E. Conseil, A.B. Danilet, E. Falco, D. Grupe, S. Kiyota, G. Masi, B. Nicholls, E.F. Olivares, G. Pignata, G. Pojmanski, G.V. Simonian, D.M. Szczygiel, P.R. Woźniak, ASASSN-15lh: a highly super-luminous supernova. Science 351, 257–260 (2016). 1507.03010.  https://doi.org/10.1126/science.aac9613 ADSCrossRefGoogle Scholar
  51. A.J. Drake, S.G. Djorgovski, J.L. Prieto, A. Mahabal, D. Balam, R. Williams, M.J. Graham, M. Catelan, E. Beshore, S. Larson, Discovery of the extremely energetic supernova 2008fz. Astrophys. J. Lett. 718, L127–L131 (2010). 0908.1990.  https://doi.org/10.1088/2041-8205/718/2/L127 ADSCrossRefGoogle Scholar
  52. A.J. Drake, S.G. Djorgovski, A. Mahabal, J. Anderson, R. Roy, V. Mohan, S. Ravindranath, D. Frail, S. Gezari, J.D. Neill, L.C. Ho, J.L. Prieto, D. Thompson, J. Thorstensen, M. Wagner, R. Kowalski, J. Chiang, J.E. Grove, F.K. Schinzel, D.L. Wood, L. Carrasco, E. Recillas, L. Kewley, K.N. Archana, A. Basu, Y. Wadadekar, B. Kumar, A.D. Myers, E.S. Phinney, R. Williams, M.J. Graham, M. Catelan, E. Beshore, S. Larson, E. Christensen, The discovery and nature of the optical transient CSS100217:102913+404220. Astrophys. J. 735, 106 (2011). 1103.5514.  https://doi.org/10.1088/0004-637X/735/2/106 ADSCrossRefGoogle Scholar
  53. M.R. Drout, A.M. Soderberg, A. Gal-Yam, S.B. Cenko, D.B. Fox, D.C. Leonard, D.J. Sand, D.S. Moon, I. Arcavi, Y. Green, The first systematic study of Type Ibc supernova multi-band light curves. Astrophys. J. 741, 97 (2011). 1011.4959.  https://doi.org/10.1088/0004-637X/741/2/97 ADSCrossRefGoogle Scholar
  54. C.M. Espinoza, A.G. Lyne, B.W. Stappers, New long-term braking index measurements for glitching pulsars using a glitch-template method. Mon. Not. R. Astron. Soc. 466, 147–162 (2017). 1611.08314.  https://doi.org/10.1093/mnras/stw3081 ADSCrossRefGoogle Scholar
  55. S.W. Falk, W.D. Arnett, Radiation dynamics, envelope ejection, and supernova light curves. Astrophys. J. Suppl. Ser. 33, 515 (1977).  https://doi.org/10.1086/190440 ADSCrossRefGoogle Scholar
  56. C. Fransson, M. Ergon, P.J. Challis, R.A. Chevalier, K. France, R.P. Kirshner, G.H. Marion, D. Milisavljevic, N. Smith, F. Bufano, A.S. Friedman, T. Kangas, J. Larsson, S. Mattila, S. Benetti, R. Chornock, I. Czekala, A. Soderberg, J. Sollerman, High-density circumstellar interaction in the luminous Type IIn SN 2010jl: the first 1100 days. Astrophys. J. 797, 118 (2014). 1312.6617.  https://doi.org/10.1088/0004-637X/797/2/118 ADSCrossRefGoogle Scholar
  57. E. Funck, U. Schötzig, M.J. Woods, J.P. Sephton, A.S. Munster, J.C.J. Dean, P. Blanchis, B. Chauvenet, 56Co standardization and half-life. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 312, 334–338 (1992).  https://doi.org/10.1016/0168-9002(92)90177-6 ADSCrossRefGoogle Scholar
  58. B. Gaffet, Pulsar theory of supernova light curves. I—Dynamical effect and thermalization of the pulsar strong waves. Astrophys. J. 216, 565–577 (1977).  https://doi.org/10.1086/155498 ADSCrossRefGoogle Scholar
  59. A. Gal-Yam, Luminous supernovae. Science 337, 927 (2012). 1208.3217.  https://doi.org/10.1126/science.1203601 ADSCrossRefGoogle Scholar
  60. A. Gal-Yam, P. Mazzali, E.O. Ofek, P.E. Nugent, S.R. Kulkarni, M.M. Kasliwal, R.M. Quimby, A.V. Filippenko, S.B. Cenko, R. Chornock, R. Waldman, D. Kasen, M. Sullivan, E.C. Beshore, A.J. Drake, R.C. Thomas, J.S. Bloom, D. Poznanski, A.A. Miller, R.J. Foley, J.M. Silverman, I. Arcavi, R.S. Ellis, J. Deng, Supernova 2007bi as a pair-instability explosion. Nature 462, 624–627 (2009). 1001.1156.  https://doi.org/10.1038/nature08579 ADSCrossRefGoogle Scholar
  61. B.T. Gänsicke, A.J. Levan, T.R. Marsh, P.J. Wheatley, SCP 06F6: a carbon-rich extragalactic transient at redshift \(z \sim0.14\)? Astrophys. J. Lett. 697, L129–L132 (2009). 0809.2562.  https://doi.org/10.1088/0004-637X/697/2/L129 ADSCrossRefGoogle Scholar
  62. C. Georgy, G. Meynet, S. Ekström, G.A. Wade, V. Petit, Z. Keszthelyi, R. Hirschi, Possible pair-instability supernovae at solar metallicity from magnetic stellar progenitors. Astron. Astrophys. 599, L5 (2017). 1702.02340.  https://doi.org/10.1051/0004-6361/201730401 ADSCrossRefGoogle Scholar
  63. S. Gezari, J.P. Halpern, D. Grupe, F. Yuan, R. Quimby, T. McKay, D. Chamarro, M.D. Sisson, C. Akerlof, J.C. Wheeler, P.J. Brown, S.B. Cenko, A. Rau, J.O. Djordjevic, D.M. Terndrup, Discovery of the ultra-bright Type II-L supernova 2008es. Astrophys. J. 690, 1313–1321 (2009). 0808.2812.  https://doi.org/10.1088/0004-637X/690/2/1313 ADSCrossRefGoogle Scholar
  64. A. Gilkis, N. Soker, O. Papish, Explaining the most energetic supernovae with an inefficient jet-feedback mechanism. Astrophys. J. 826, 178 (2016). arXiv:1511.01471.  https://doi.org/10.3847/0004-637X/826/2/178 ADSCrossRefGoogle Scholar
  65. M.S. Gilmer, A. Kozyreva, R. Hirschi, C. Fröhlich, N. Yusof, Pair-instability supernova simulations: progenitor evolution, explosion, and light curves. Astrophys. J. 846, 100 (2017). 1706.07454.  https://doi.org/10.3847/1538-4357/aa8461 ADSCrossRefGoogle Scholar
  66. S. Ginzburg, S. Balberg, Superluminous light curves from supernovae exploding in a dense wind. Astrophys. J. 757, 178 (2012). 1205.3455.  https://doi.org/10.1088/0004-637X/757/2/178 ADSCrossRefGoogle Scholar
  67. E.K. Grasberg, D.K. Nadyozhin, The onset of a type II supernova outburst in a circumstellar envelope created by the intense stellar wind from the presupernova. Astron. Zh. 64, 1199–1209 (1987) ADSGoogle Scholar
  68. E.K. Grasberg, V.S. Imshenik, D.K. Nadyozhin, On the theory of the light curves of supernovate. Astrophys. Space Sci. 10, 3 (1971) (in Russian).  https://doi.org/10.1007/BF00654603 ADSCrossRefGoogle Scholar
  69. J. Greiner, P.A. Mazzali, D.A. Kann, T. Krühler, E. Pian, S. Prentice, E.F. Olivares, A. Rossi, S. Klose, S. Taubenberger, F. Knust, P.M.J. Afonso, C. Ashall, J. Bolmer, C. Delvaux, R. Diehl, J. Elliott, R. Filgas, J.P.U. Fynbo, J.F. Graham, A.N. Guelbenzu, S. Kobayashi, G. Leloudas, S. Savaglio, P. Schady, S. Schmidl, T. Schweyer, V. Sudilovsky, M. Tanga, A.C. Updike, H. van Eerten, K. Varela, A very luminous magnetar-powered supernova associated with an ultra-long \(\gamma\)-ray burst. Nature 523, 189–192 (2015). 1509.03279.  https://doi.org/10.1038/nature14579 ADSCrossRefGoogle Scholar
  70. J. Guillochon, J. Parrent, L.Z. Kelley, R. Margutti, An open catalog for supernova data. Astrophys. J. 835, 64 (2017). 1605.01054.  https://doi.org/10.3847/1538-4357/835/1/64 ADSCrossRefGoogle Scholar
  71. A. Heger, S.E. Woosley, The nucleosynthetic signature of population III. Astrophys. J. 567, 532–543 (2002). astro-ph/0107037.  https://doi.org/10.1086/338487 ADSCrossRefGoogle Scholar
  72. D.A. Howell, Superluminous Supernovae (Springer, Cham, 2017), pp. 1–29.  https://doi.org/10.1007/978-3-319-20794-0_41-1 Google Scholar
  73. D.A. Howell, D. Kasen, C. Lidman, M. Sullivan, A. Conley, P. Astier, C. Balland, R.G. Carlberg, D. Fouchez, J. Guy, D. Hardin, R. Pain, N. Palanque-Delabrouille, K. Perrett, C.J. Pritchet, N. Regnault, J. Rich, V. Ruhlmann-Kleider, Two superluminous supernovae from the early universe discovered by the Supernova Legacy Survey. Astrophys. J. 779, 98 (2013). 1310.0470.  https://doi.org/10.1088/0004-637X/779/2/98 ADSCrossRefGoogle Scholar
  74. C. Inserra, S.J. Smartt, Superluminous supernovae as standardizable candles and high-redshift distance probes. Astrophys. J. 796, 87 (2014). 1409.4429.  https://doi.org/10.1088/0004-637X/796/2/87 ADSCrossRefGoogle Scholar
  75. C. Inserra, S.J. Smartt, A. Jerkstrand, S. Valenti, M. Fraser, D. Wright, K. Smith, T.W. Chen, R. Kotak, A. Pastorello, M. Nicholl, F. Bresolin, R.P. Kudritzki, S. Benetti, M.T. Botticella, W.S. Burgett, K.C. Chambers, M. Ergon, H. Flewelling, J.P.U. Fynbo, S. Geier, K.W. Hodapp, D.A. Howell, M. Huber, N. Kaiser, G. Leloudas, L. Magill, E.A. Magnier, M.G. McCrum, N. Metcalfe, P.A. Price, A. Rest, J. Sollerman, W. Sweeney, F. Taddia, S. Taubenberger, J.L. Tonry, R.J. Wainscoat, C. Waters, D. Young, Super-luminous Type Ic supernovae: catching a magnetar by the tail. Astrophys. J. 770, 128 (2013). 1304.3320.  https://doi.org/10.1088/0004-637X/770/2/128 ADSCrossRefGoogle Scholar
  76. C. Inserra, M. Bulla, S.A. Sim, S.J. Smartt, Spectropolarimetry of superluminous supernovae: insight into their geometry. Astrophys. J. 831, 79 (2016). 1607.02353.  https://doi.org/10.3847/0004-637X/831/1/79 ADSCrossRefGoogle Scholar
  77. C. Inserra, M. Nicholl, T.W. Chen, A. Jerkstrand, S.J. Smartt, T. Krühler, J.P. Anderson, C. Baltay, M. Della Valle, M. Fraser, A. Gal-Yam, L. Galbany, E. Kankare, K. Maguire, D. Rabinowitz, K. Smith, S. Valenti, D.R. Young, Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Mon. Not. R. Astron. Soc. 468, 4642–4662 (2017). 1701.00941.  https://doi.org/10.1093/mnras/stx834 ADSCrossRefGoogle Scholar
  78. C. Inserra, R.C. Nichol, D. Scovacricchi, J. Amiaux, M. Brescia, C. Burigana, E. Cappellaro, C.S. Carvalho, S. Cavuoti, V. Conforti, J.C. Cuillandre, A. da Silva, A. De Rosa, M. Della Valle, J. Dinis, E. Franceschi, I. Hook, P. Hudelot, K. Jahnke, T. Kitching, H. Kurki-Suonio, I. Lloro, G. Longo, E. Maiorano, M. Maris, J.D. Rhodes, R. Scaramella, S.J. Smartt, M. Sullivan, C. Tao, R. Toledo-Moreo, I. Tereno, M. Trifoglio, L. Valenziano, Euclid: superluminous supernovae in the deep survey. Astron. Astrophys. 609, A83 (2018a). 1710.09585.  https://doi.org/10.1051/0004-6361/201731758 CrossRefGoogle Scholar
  79. C. Inserra, S.J. Smartt, E.E.E. Gall, G. Leloudas, T.W. Chen, S. Schulze, A. Jerkstrand, M. Nicholl, J.P. Anderson, I. Arcavi, S. Benetti, R.A. Cartier, M. Childress, M. Della Valle, H. Flewelling, M. Fraser, A. Gal-Yam, C.P. Gutiérrez, G. Hosseinzadeh, D.A. Howell, M. Huber, E. Kankare, T. Krühler, E.A. Magnier, K. Maguire, C. McCully, S. Prajs, N. Primak, R. Scalzo, B.P. Schmidt, M. Smith, K.W. Smith, B.E. Tucker, S. Valenti, M. Wilman, D.R. Young, F. Yuan, On the nature of hydrogen-rich superluminous supernovae. Mon. Not. R. Astron. Soc. 475, 1046–1072 (2018b). 1604.01226.  https://doi.org/10.1093/mnras/stx3179 ADSCrossRefGoogle Scholar
  80. L. Izzo, C.C. Thöne, R. García-Benito, A. de Ugarte Postigo, Z. Cano, D.A. Kann, K. Bensch, M. Della Valle, D. Galadí-Enríquez, R.P. Hedrosa, The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy. Astron. Astrophys. 610, A11 (2018). 1708.03856.  https://doi.org/10.1051/0004-6361/201731766 ADSCrossRefGoogle Scholar
  81. J. Japelj, S.D. Vergani, R. Salvaterra, L.K. Hunt, F. Mannucci, Taking stock of superluminous supernovae and long gamma-ray burst host galaxy comparison using a complete sample of LGRBs. Astron. Astrophys. 593, A115 (2016). 1607.01045.  https://doi.org/10.1051/0004-6361/201628603 ADSCrossRefGoogle Scholar
  82. A. Jerkstrand, S.J. Smartt, A. Heger, Nebular spectra of pair-instability supernovae. Mon. Not. R. Astron. Soc. 455, 3207–3229 (2016). 1510.02698.  https://doi.org/10.1093/mnras/stv2369 ADSCrossRefGoogle Scholar
  83. A. Jerkstrand, S.J. Smartt, C. Inserra, M. Nicholl, T.W. Chen, T. Krühler, J. Sollerman, S. Taubenberger, A. Gal-Yam, E. Kankare, K. Maguire, M. Fraser, S. Valenti, M. Sullivan, R. Cartier, D.R. Young, Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017). 1608.02994.  https://doi.org/10.3847/1538-4357/835/1/13 ADSCrossRefGoogle Scholar
  84. C.C. Joggerst, D.J. Whalen, The early evolution of primordial pair-instability supernovae. Astrophys. J. 728, 129 (2011). 1010.4360.  https://doi.org/10.1088/0004-637X/728/2/129 ADSCrossRefGoogle Scholar
  85. E. Kankare, R. Kotak, S. Mattila, P. Lundqvist, M.J. Ward, M. Fraser, A. Lawrence, S.J. Smartt, W.P.S. Meikle, A. Bruce, J. Harmanen, S.J. Hutton, C. Inserra, T. Kangas, A. Pastorello, T. Reynolds, C. Romero-Cañizales, K.W. Smith, S. Valenti, K.C. Chambers, K.W. Hodapp, M.E. Huber, N. Kaiser, R.P. Kudritzki, E.A. Magnier, J.L. Tonry, R.J. Wainscoat, C. Waters, A population of highly energetic transient events in the centres of active galaxies. Nat. Astron. 1, 865–871 (2017). 1711.04577.  https://doi.org/10.1038/s41550-017-0290-2 ADSCrossRefGoogle Scholar
  86. D. Kasen, L. Bildsten, Supernova light curves powered by young magnetars. Astrophys. J. 717, 245–249 (2010). 0911.0680.  https://doi.org/10.1088/0004-637X/717/1/245 ADSCrossRefGoogle Scholar
  87. D. Kasen, S.E. Woosley, A. Heger, Pair instability supernovae: light curves, spectra, and shock breakout. Astrophys. J. 734, 102 (2011). 1101.3336.  https://doi.org/10.1088/0004-637X/734/2/102 ADSCrossRefGoogle Scholar
  88. D. Kasen, B.D. Metzger, L. Bildsten, Magnetar-driven shock breakout and double-peaked supernova light curves. Astrophys. J. 821, 36 (2016). 1507.03645.  https://doi.org/10.3847/0004-637X/821/1/36 ADSCrossRefGoogle Scholar
  89. K.S. Kawabata, M. Tanaka, K. Maeda, T. Hattori, K. Nomoto, N. Tominaga, M. Yamanaka, Extremely luminous supernova 2006gy at late phase: detection of optical emission from supernova. Astrophys. J. 697, 747–757 (2009). 0902.1440.  https://doi.org/10.1088/0004-637X/697/1/747 ADSCrossRefGoogle Scholar
  90. R. Knop, G. Aldering, S. Deustua, G. Goldhaber, M. Kim, P. Nugent, E. Helin, S. Pravdo, D. Rabinowitz, K. Lawrence, Supernovae 1999as and 1999at in anonymous galaxies. IAU Circ. 7128 (1999) Google Scholar
  91. K. Kotera, E.S. Phinney, A.V. Olinto, Signatures of pulsars in the light curves of newly formed supernova remnants. Mon. Not. R. Astron. Soc. 432, 3228–3236 (2013). 1304.5326.  https://doi.org/10.1093/mnras/stt680 ADSCrossRefGoogle Scholar
  92. A. Kozyreva, S. Blinnikov, Can pair-instability supernova models match the observations of superluminous supernovae? Mon. Not. R. Astron. Soc. 454, 4357–4365 (2015). 1510.00439.  https://doi.org/10.1093/mnras/stv2287 ADSCrossRefGoogle Scholar
  93. A. Kozyreva, S. Blinnikov, N. Langer, S.C. Yoon, Observational properties of low-redshift pair instability supernovae. Astron. Astrophys. 565, A70 (2014). 1403.5212.  https://doi.org/10.1051/0004-6361/201423447 ADSCrossRefGoogle Scholar
  94. A. Kozyreva, M. Gilmer, R. Hirschi, C. Fröhlich, S. Blinnikov, R.T. Wollaeger, U.M. Noebauer, D.R. van Rossum, A. Heger, W.P. Even, R. Waldman, A. Tolstov, E. Chatzopoulos, E. Sorokina, Fast evolving pair-instability supernova models: evolution, explosion, light curves. Mon. Not. R. Astron. Soc. 464, 2854–2865 (2017). 1610.01086.  https://doi.org/10.1093/mnras/stw2562 ADSCrossRefGoogle Scholar
  95. N. Langer, C.A. de Norman, A. Koter, J.S. Vink, M. Cantiello, S.C. Yoon, Pair creation supernovae at low and high redshift. Astron. Astrophys. 475, L19–L23 (2007). 0708.1970.  https://doi.org/10.1051/0004-6361:20078482 ADSCrossRefGoogle Scholar
  96. G. Leloudas, E. Chatzopoulos, B. Dilday, J. Gorosabel, J. Vinko, A. Gallazzi, J.C. Wheeler, B. Bassett, J.A. Fischer, J.A. Frieman, J.P.U. Fynbo, A. Goobar, M. Jelínek, D. Malesani, R.C. Nichol, J. Nordin, L. Östman, M. Sako, D.P. Schneider, M. Smith, J. Sollerman, M.D. Stritzinger, C.C. Thöne, A. de Ugarte Postigo, SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN Survey. Astron. Astrophys. 541, A129 (2012). 1201.5393.  https://doi.org/10.1051/0004-6361/201118498 CrossRefGoogle Scholar
  97. G. Leloudas, F. Patat, J.R. Maund, E. Hsiao, D. Malesani, S. Schulze, C. Contreras, A. de Ugarte Postigo, J. Sollerman, M.D. Stritzinger, F. Taddia, J.C. Wheeler, J. Gorosabel, Polarimetry of the superluminous supernova LSQ14mo: no evidence for significant deviations from spherical symmetry. Astrophys. J. Lett. 815, L10 (2015a). 1511.04522.  https://doi.org/10.1088/2041-8205/815/1/L10 ADSCrossRefGoogle Scholar
  98. G. Leloudas, S. Schulze, T. Krühler, J. Gorosabel, L. Christensen, A. Mehner, A. de Ugarte Postigo, R. Amorín, C.C. Thöne, J.P. Anderson, F.E. Bauer, A. Gallazzi, K.G. Hełminiak, J. Hjorth, E. Ibar, D. Malesani, N. Morell, J. Vinko, J.C. Wheeler, Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 449, 917–932 (2015b). 1409.8331.  https://doi.org/10.1093/mnras/stv320 ADSCrossRefGoogle Scholar
  99. G. Leloudas, M. Fraser, N.C. Stone, S. van Velzen, P.G. Jonker, I. Arcavi, C. Fremling, J.R. Maund, S.J. Smartt, T. Krìhler, J.C.A. Miller-Jones, P.M. Vreeswijk, A. Gal-Yam, P.A. Mazzali, A. De Cia, D.A. Howell, C. Inserra, F. de Patat, A. Ugarte Postigo, O. Yaron, C. Ashall, I. Bar, H. Campbell, T.W. Chen, M. Childress, N. Elias-Rosa, J. Harmanen, G. Hosseinzadeh, J. Johansson, T. Kangas, E. Kankare, S. Kim, H. Kuncarayakti, J. Lyman, M.R. Magee, K. Maguire, D. Malesani, S. Mattila, C.V. McCully, M. Nicholl, S. Prentice, C. Romero-Cañizales, S. Schulze, K.W. Smith, J. Sollerman, M. Sullivan, B.E. Tucker, S. Valenti, J.C. Wheeler, D.R. Young, The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nat. Astron. 1, 0002 (2016). 1609.02927.  https://doi.org/10.1038/s41550-016-0002 CrossRefGoogle Scholar
  100. G. Leloudas, J.R. Maund, A. Gal-Yam, T. Pursimo, E. Hsiao, D. Malesani, F. Patat, A. de Ugarte Postigo, J. Sollerman, M.D. Stritzinger, J.C. Wheeler, Time-resolved polarimetry of the superluminous SN 2015bn with the Nordic Optical Telescope. Astrophys. J. Lett. 837, L14 (2017). 1702.05494.  https://doi.org/10.3847/2041-8213/aa6157 ADSCrossRefGoogle Scholar
  101. A.J. Levan, A.M. Read, B.D. Metzger, P.J. Wheatley, N.R. Tanvir, Superluminous X-rays from a superluminous supernova. Astrophys. J. 771, 136 (2013). 1304.1173.  https://doi.org/10.1088/0004-637X/771/2/136 ADSCrossRefGoogle Scholar
  102. L.D. Liu, S.Q. Wang, L.J. Wang, Z.G. Dai, H. Yu, Z.K. Peng, A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. Astrophys. J. 842, 26 (2017a). 1705.06047.  https://doi.org/10.3847/1538-4357/aa73d9 ADSCrossRefGoogle Scholar
  103. Y.Q. Liu, M. Modjaz, F.B. Bianco, Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. Astrophys. J. 845, 85 (2017b). 1612.07321.  https://doi.org/10.3847/1538-4357/aa7f74 ADSCrossRefGoogle Scholar
  104. R. Lunnan, R. Chornock, E. Berger, T. Laskar, W. Fong, A. Rest, N.E. Sanders, P.M. Challis, M.R. Drout, R.J. Foley, M.E. Huber, R.P. Kirshner, C. Leibler, G.H. Marion, M. McCrum, D. Milisavljevic, G. Narayan, D. Scolnic, S.J. Smartt, K.W. Smith, A.M. Soderberg, J.L. Tonry, W.S. Burgett, K.C. Chambers, H. Flewelling, K.W. Hodapp, N. Kaiser, E.A. Magnier, P.A. Price, R.J. Wainscoat, Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. Astrophys. J. 787, 138 (2014). 1311.0026.  https://doi.org/10.1088/0004-637X/787/2/138 ADSCrossRefGoogle Scholar
  105. R. Lunnan, R. Chornock, E. Berger, A. Rest, W. Fong, D. Scolnic, D.O. Jones, A.M. Soderberg, P.M. Challis, M.R. Drout, R.J. Foley, M.E. Huber, R.P. Kirshner, C. Leibler, G.H. Marion, M. McCrum, D. Milisavljevic, G. Narayan, N.E. Sanders, S.J. Smartt, K.W. Smith, J.L. Tonry, W.S. Burgett, K.C. Chambers, H. Flewelling, R.P. Kudritzki, R.J. Wainscoat, C. Waters, Zooming in on the progenitors of superluminous supernovae with the HST. Astrophys. J. 804, 90 (2015). 1411.1060.  https://doi.org/10.1088/0004-637X/804/2/90 ADSCrossRefGoogle Scholar
  106. R. Lunnan, R. Chornock, E. Berger, D. Milisavljevic, D.O. Jones, A. Rest, W. Fong, C. Fransson, R. Margutti, M.R. Drout, P.K. Blanchard, P. Challis, P.S. Cowperthwaite, R.J. Foley, R.P. Kirshner, N. Morrell, A.G. Riess, K.C. Roth, D. Scolnic, S.J. Smartt, K.W. Smith, V.A. Villar, K.C. Chambers, P.W. Draper, M.E. Huber, N. Kaiser, R.P. Kudritzki, E.A. Magnier, N. Metcalfe, C. Waters, PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. Astrophys. J. 831, 144 (2016). 1605.05235.  https://doi.org/10.3847/0004-637X/831/2/144 ADSCrossRefGoogle Scholar
  107. R. Lunnan, R. Chornock, E. Berger, D.O. Jones, A. Rest, I. Czekala, J. Dittmann, M.R. Drout, R.J. Foley, W. Fong, R.P. Kirshner, T. Laskar, C.N. Leibler, R. Margutti, D. Milisavljevic, G. Narayan, Y.C. Pan, A.G. Riess, K.C. Roth, N.E. Sanders, D. Scolnic, S.J. Smartt, K.W. Smith, K.C. Chambers, P.W. Draper, H. Flewelling, M.E. Huber, N. Kaiser, R.P. Kudritzki, E.A. Magnier, N. Metcalfe, R.J. Wainscoat, C. Waters, M. Willman, Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophys. J. 852, 81 (2018). 1708.01619.  https://doi.org/10.3847/1538-4357/aa9f1a ADSCrossRefGoogle Scholar
  108. J.D. Lyman, D. Bersier, P.A. James, P.A. Mazzali, J.J. Eldridge, M. Fraser, E. Pian, Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 457, 328–350 (2016). 1406.3667.  https://doi.org/10.1093/mnras/stv2983 ADSCrossRefGoogle Scholar
  109. P. Madau, M. Dickinson, Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014). 1403.0007.  https://doi.org/10.1146/annurev-astro-081811-125615 ADSCrossRefGoogle Scholar
  110. K. Maeda, M. Tanaka, K. Nomoto, N. Tominaga, K. Kawabata, P.A. Mazzali, H. Umeda, T. Suzuki, T. Hattori, The unique Type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. Astrophys. J. 666, 1069–1082 (2007). 0705.2713.  https://doi.org/10.1086/520054 ADSCrossRefGoogle Scholar
  111. B. Margalit, B.D. Metzger, T.A. Thompson, M. Nicholl, T. Sukhbold, The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures. Mon. Not. R. Astron. Soc. 475, 2659–2674 (2018). 1705.01103.  https://doi.org/10.1093/mnras/sty013 ADSCrossRefGoogle Scholar
  112. R. Margutti, R. Chornock, B.D. Metzger, D.L. Coppejans, C. Guidorzi, G. Migliori, D. Milisavljevic, E. Berger, M. Nicholl, B.A. Zauderer, R. Lunnan, A. Kamble, M. Drout, M. Modjaz, Results from a systematic survey of X-ray emission from Hydrogen-poor Superluminous Supernovae. ArXiv e-prints. 1704.05865 (2017)
  113. C.D. Matzner, C.F. McKee, The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999). astro-ph/9807046.  https://doi.org/10.1086/306571 ADSCrossRefGoogle Scholar
  114. P.A. Mazzali, M. Sullivan, E. Pian, J. Greiner, D.A. Kann, Spectrum formation in superluminous supernovae (Type I). Mon. Not. R. Astron. Soc. 458, 3455–3465 (2016). 1603.00388.  https://doi.org/10.1093/mnras/stw512 ADSCrossRefGoogle Scholar
  115. M. McCrum, S.J. Smartt, A. Rest, K. Smith, R. Kotak, S.A. Rodney, D.R. Young, R. Chornock, E. Berger, R.J. Foley, M. Fraser, D. Wright, D. Scolnic, J.L. Tonry, Y. Urata, K. Huang, A. Pastorello, M.T. Botticella, S. Valenti, S. Mattila, E. Kankare, D.J. Farrow, M.E. Huber, C.W. Stubbs, R.P. Kirshner, F. Bresolin, W.S. Burgett, K.C. Chambers, P.W. Draper, H. Flewelling, R. Jedicke, N. Kaiser, E.A. Magnier, N. Metcalfe, J.S. Morgan, P.A. Price, W. Sweeney, R.J. Wainscoat, C. Waters, Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. Mon. Not. R. Astron. Soc. 448, 1206–1231 (2015). 1402.1631.  https://doi.org/10.1093/mnras/stv034 ADSCrossRefGoogle Scholar
  116. B.D. Metzger, I. Vurm, R. Hascoët, A.M. Beloborodov, Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae. Mon. Not. R. Astron. Soc. 437, 703–720 (2014). 1307.8115.  https://doi.org/10.1093/mnras/stt1922 ADSCrossRefGoogle Scholar
  117. A.A. Miller, R. Chornock, D.A. Perley, M. Ganeshalingam, W. Li, N.R. Butler, J.S. Bloom, N. Smith, M. Modjaz, D. Poznanski, A.V. Filippenko, C.V. Griffith, J.H. Shiode, J.M. Silverman, The exceptionally luminous Type II-linear supernova 2008es. Astrophys. J. 690, 1303–1312 (2009). 0808.2193.  https://doi.org/10.1088/0004-637X/690/2/1303 ADSCrossRefGoogle Scholar
  118. A.A. Miller, N. Smith, W. Li, J.S. Bloom, R. Chornock, A.V. Filippenko, J.X. Prochaska, New observations of the very luminous supernova 2006gy: evidence for echoes. Astron. J. 139, 2218–2229 (2010). 0906.2201.  https://doi.org/10.1088/0004-6256/139/6/2218 ADSCrossRefGoogle Scholar
  119. T.J. Moriya, N. Langer, Pulsations of red supergiant pair-instability supernova progenitors leading to extreme mass loss. Astron. Astrophys. 573, A18 (2015). 1410.4557.  https://doi.org/10.1051/0004-6361/201424957 ADSCrossRefGoogle Scholar
  120. T.J. Moriya, K. Maeda, A dip after the early emission of superluminous supernovae: a signature of shock breakout within dense circumstellar media. Astrophys. J. Lett. 756, L22 (2012). 1203.1451.  https://doi.org/10.1088/2041-8205/756/1/L22 ADSCrossRefGoogle Scholar
  121. T.J. Moriya, N. Tominaga, Diversity of luminous supernovae from non-steady mass loss. Astrophys. J. 747, 118 (2012). 1110.3807.  https://doi.org/10.1088/0004-637X/747/2/118 ADSCrossRefGoogle Scholar
  122. T. Moriya, N. Tominaga, M. Tanaka, K. Maeda, K. Nomoto, A core-collapse supernova model for the extremely luminous Type Ic supernova 2007bi: an alternative to the pair-instability supernova model. Astrophys. J. Lett. 717, L83–L86 (2010). 1004.2967.  https://doi.org/10.1088/2041-8205/717/2/L83 ADSCrossRefGoogle Scholar
  123. T.J. Moriya, S.I. Blinnikov, N. Tominaga, N. Yoshida, M. Tanaka, K. Maeda, K. Nomoto, Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium. Mon. Not. R. Astron. Soc. 428, 1020–1035 (2013b). 1204.6109.  https://doi.org/10.1093/mnras/sts075 ADSCrossRefGoogle Scholar
  124. T.J. Moriya, K. Maeda, F. Taddia, J. Sollerman, S.I. Blinnikov, E.I. Sorokina, An analytic bolometric light curve model of interaction-powered supernovae and its application to Type IIn supernovae. Mon. Not. R. Astron. Soc. 435, 1520–1535 (2013b). 1307.2644.  https://doi.org/10.1093/mnras/stt1392 ADSCrossRefGoogle Scholar
  125. T.J. Moriya, Z.W. Liu, J. Mackey, T.W. Chen, N. Langer, Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission. Astron. Astrophys. 584, L5 (2015). 1510.01621.  https://doi.org/10.1051/0004-6361/201527515 ADSCrossRefGoogle Scholar
  126. T.J. Moriya, B.D. Metzger, S.I. Blinnikov, Supernovae powered by magnetars that transform into black holes. Astrophys. J. 833, 64 (2016). 1606.09316.  https://doi.org/10.3847/1538-4357/833/1/64 ADSCrossRefGoogle Scholar
  127. T.J. Moriya, T.W. Chen, N. Langer, Properties of magnetars mimicking 56Ni-powered light curves in Type IC superluminous supernovae. Astrophys. J. 835, 177 (2017a). 1612.06917.  https://doi.org/10.3847/1538-4357/835/2/177 ADSCrossRefGoogle Scholar
  128. T.J. Moriya, M. Tanaka, T. Morokuma, K. Ohsuga, Superluminous transients at AGN centers from interaction between black hole disk winds and broad-line region clouds. Astrophys. J. Lett. 843, L19 (2017b). 1706.06855.  https://doi.org/10.3847/2041-8213/aa7af3 ADSCrossRefGoogle Scholar
  129. T.J. Moriya, M. Tanaka, N. Yasuda, J. Ja, C.H. Lee, K. Maeda, T. Morokuma, K. Nomoto, R.M. Quimby, N. Suzuki, I. Takahashi, M. Tanaka, N. Tominaga, M. Yamaguchi, S.R. Bernard, J. Cooke, C. Curtin, L. Galbany, S. Gonzalez-Gaitan, G. Pignata, T. Pritchard, Y. Komiyama, R.H. Lupton, First release of high-redshift superluminous supernovae from the Subaru HIgh-Z sUpernova CAmpaign (SHIZUCA). I. Photometric properties. ArXiv e-prints. 1801.08240 (2018)
  130. D.K. Nadyozhin, The properties of Ni to Co to Fe decay. Astrophys. J. Suppl. Ser. 92, 527–531 (1994).  https://doi.org/10.1086/192008 ADSCrossRefGoogle Scholar
  131. J.D. Neill, M. Sullivan, A. Gal-Yam, R. Quimby, E. Ofek, T.K. Wyder, D.A. Howell, P. Nugent, M. Seibert, D.C. Martin, R. Overzier, T.A. Barlow, K. Foster, P.G. Friedman, P. Morrissey, S.G. Neff, D. Schiminovich, L. Bianchi, J. Donas, T.M. Heckman, Y.W. Lee, B.F. Madore, B. Milliard, R.M. Rich, A.S. Szalay, The extreme hosts of extreme supernovae. Astrophys. J. 727, 15 (2011). 1011.3512.  https://doi.org/10.1088/0004-637X/727/1/15 ADSCrossRefGoogle Scholar
  132. M. Nicholl, S.J. Smartt, Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. Mon. Not. R. Astron. Soc. 457, L79–L83 (2016). 1511.03740.  https://doi.org/10.1093/mnrasl/slv210 ADSCrossRefGoogle Scholar
  133. M. Nicholl, S.J. Smartt, A. Jerkstrand, C. Inserra, J.P. Anderson, C. Baltay, S. Benetti, T.W. Chen, N. Elias-Rosa, U. Feindt, M. Fraser, A. Gal-Yam, E. Hadjiyska, D.A. Howell, R. Kotak, A. Lawrence, G. Leloudas, S. Margheim, S. Mattila, M. McCrum, R. McKinnon, A. Mead, P. Nugent, D. Rabinowitz, A. Rest, K.W. Smith, J. Sollerman, M. Sullivan, F. Taddia, S. Valenti, E.S. Walker, D.R. Young, Superluminous supernovae from PESSTO. Mon. Not. R. Astron. Soc. 444, 2096–2113 (2014). 1405.1325.  https://doi.org/10.1093/mnras/stu1579 ADSCrossRefGoogle Scholar
  134. M. Nicholl, S.J. Smartt, A. Jerkstrand, C. Inserra, S.A. Sim, T.W. Chen, S. Benetti, M. Fraser, A. Gal-Yam, E. Kankare, K. Maguire, K. Smith, M. Sullivan, S. Valenti, D.R. Young, C. Baltay, F.E. Bauer, S. Baumont, D. Bersier, M.T. Botticella, M. Childress, M. Dennefeld, M. Della Valle, N. Elias-Rosa, U. Feindt, L. Galbany, E. Hadjiyska, L. Le Guillou, G. Leloudas, P. Mazzali, R. McKinnon, J. Polshaw, D. Rabinowitz, S. Rostami, R. Scalzo, B.P. Schmidt, S. Schulze, J. Sollerman, F. Taddia, F. Yuan, On the diversity of superluminous supernovae: ejected mass as the dominant factor. Mon. Not. R. Astron. Soc. 452, 3869–3893 (2015a). 1503.03310.  https://doi.org/10.1093/mnras/stv1522 ADSCrossRefGoogle Scholar
  135. M. Nicholl, S.J. Smartt, A. Jerkstrand, S.A. Sim, C. Inserra, J.P. Anderson, C. Baltay, S. Benetti, K. Chambers, T.W. Chen, N. Elias-Rosa, U. Feindt, H.A. Flewelling, M. Fraser, A. Gal-Yam, L. Galbany, M.E. Huber, T. Kangas, E. Kankare, R. Kotak, T. Krühler, K. Maguire, R. McKinnon, D. Rabinowitz, S. Rostami, S. Schulze, K.W. Smith, M. Sullivan, J.L. Tonry, S. Valenti, D.R. Young, LSQ14bdq: a Type Ic super-luminous supernova with a double-peaked light curve. Astrophys. J. Lett. 807, L18 (2015b). 1505.01078.  https://doi.org/10.1088/2041-8205/807/1/L18 ADSCrossRefGoogle Scholar
  136. M. Nicholl, E. Berger, R. Margutti, R. Chornock, P.K. Blanchard, A. Jerkstrand, S.J. Smartt, I. Arcavi, P. Challis, K.C. Chambers, T.W. Chen, P.S. Cowperthwaite, A. Gal-Yam, G. Hosseinzadeh, D.A. Howell, C. Inserra, E. Kankare, E.A. Magnier, K. Maguire, P.A. Mazzali, C. McCully, D. Milisavljevic, K.W. Smith, S. Taubenberger, S. Valenti, R.J. Wainscoat, O. Yaron, D.R. Young, Superluminous supernova SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star. Astrophys. J. Lett. 828, L18 (2016a). 1608.02995.  https://doi.org/10.3847/2041-8205/828/2/L18 ADSCrossRefGoogle Scholar
  137. M. Nicholl, E. Berger, S.J. Smartt, R. Margutti, A. Kamble, K.D. Alexander, T.W. Chen, C. Inserra, I. Arcavi, P.K. Blanchard, R. Cartier, K.C. Chambers, M.J. Childress, R. Chornock, P.S. Cowperthwaite, M. Drout, H.A. Flewelling, M. Fraser, A. Gal-Yam, L. Galbany, J. Harmanen, T.W.S. Holoien, G. Hosseinzadeh, D.A. Howell, M.E. Huber, A. Jerkstrand, E. Kankare, C.S. Kochanek, Z.Y. Lin, R. Lunnan, E.A. Magnier, K. Maguire, C. McCully, M. McDonald, B.D. Metzger, D. Milisavljevic, A. Mitra, T. Reynolds, J. Saario, B.J. Shappee, K.W. Smith, S. Valenti, V.A. Villar, C. Waters, D.R. Young, SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. Astrophys. J. 826, 39 (2016b). 1603.04748.  https://doi.org/10.3847/0004-637X/826/1/39 ADSCrossRefGoogle Scholar
  138. M. Nicholl, E. Berger, R. Margutti, P.K. Blanchard, J. Guillochon, J. Leja, R. Chornock, The superluminous supernova SN 2017egm in the nearby galaxy NGC 3191: a metal-rich environment can support a typical SLSN evolution. Astrophys. J. Lett. 845, L8 (2017a). 1706.08517.  https://doi.org/10.3847/2041-8213/aa82b1 ADSCrossRefGoogle Scholar
  139. M. Nicholl, J. Guillochon, E. Berger, The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. Astrophys. J. 850, 55 (2017b). 1706.00825.  https://doi.org/10.3847/1538-4357/aa9334 ADSCrossRefGoogle Scholar
  140. E.O. Ofek, P.B. Cameron, M.M. Kasliwal, A. Gal-Yam, A. Rau, S.R. Kulkarni, D.A. Frail, P. Chandra, S.B. Cenko, A.M. Soderberg, S. Immler, SN 2006gy: an extremely luminous supernova in the galaxy NGC 1260. Astrophys. J. Lett. 659, L13–L16 (2007). astro-ph/0612408.  https://doi.org/10.1086/516749 ADSCrossRefGoogle Scholar
  141. J.P. Ostriker, J.E. Gunn, Do pulsars make supernovae? Astrophys. J. Lett. 164, L95 (1971).  https://doi.org/10.1086/180699 ADSCrossRefGoogle Scholar
  142. R. Ouyed, M. Kostka, N. Koning, D.A. Leahy, W. Steffen, Quark nova imprint in the extreme supernova explosion SN 2006gy. Mon. Not. R. Astron. Soc. 423, 1652–1662 (2012). 1010.5530.  https://doi.org/10.1111/j.1365-2966.2012.20986.x ADSCrossRefGoogle Scholar
  143. Y.C. Pan, R.J. Foley, M. Smith, L. Galbany, C.B. D’Andrea, S. González-Gaitán, M.J. Jarvis, R. Kessler, E. Kovacs, C. Lidman R.C. Nichol, A. Papadopoulos, M. Sako, M. Sullivan, T.M.C. Abbott, F.B. Abdalla, J. Annis, K. Bechtol, A. Benoit-Lévy, D. Brooks, E. Buckley-Geer, D.L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F.J. Castander, C.E. Cunha, L.N. da Costa, S. Desai, H.T. Diehl, P. Doel, T.F. Eifler, D.A. Finley, B. Flaugher, J. Frieman, J. García-Bellido, D.A. Goldstein, D. Gruen, R.A. Gruendl, J. Gschwend, G. Gutierrez, D.J. James, A.G. Kim, E. Krause, K. Kuehn, N. Kuropatkin, O. Lahav, M. Lima, M.A.G. Maia, M. March, J.L. Marshall, P. Martini, R. Miquel, P. Nugent, A.A. Plazas, A.K. Romer, E. Sanchez, V. Scarpine, M. Schubnell, I. Sevilla-Noarbe, R.C. Smith, F. Sobreira, E. Suchyta, M.E.C. Swanson, R.C. Thomas, A.R. Walker (DES Collaboration), DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the Big Bang. Mon. Not. R. Astron. Soc. 470, 4241–4250 (2017). 1707.06649.  https://doi.org/10.1093/mnras/stx1467 ADSGoogle Scholar
  144. A. Pastorello, S.J. Smartt, M.T. Botticella, K. Maguire, M. Fraser, K. Smith, R. Kotak, L. Magill, S. Valenti, D.R. Young, S. Gezari, F. Bresolin, R. Kudritzki, D.A. Howell, A. Rest, N. Metcalfe, S. Mattila, E. Kankare, K.Y. Huang, Y. Urata, W.S. Burgett, K.C. Chambers, T. Dombeck, H. Flewelling, T. Grav, J.N. Heasley, K.W. Hodapp, N. Kaiser, G.A. Luppino, R.H. Lupton, E.A. Magnier, D.G. Monet, J.S. Morgan, P.M. Onaka, P.A. Price, P.H. Rhoads, W.A. Siegmund, C.W. Stubbs, W.E. Sweeney, J.L. Tonry, R.J. Wainscoat, M.F. Waterson, C. Waters, C.G. Wynn-Williams, Ultra-bright optical transients are linked with Type Ic supernovae. Astrophys. J. Lett. 724, L16–L21 (2010). 1008.2674.  https://doi.org/10.1088/2041-8205/724/1/L16 ADSCrossRefGoogle Scholar
  145. A. Pastorello, X.F. Wang, F. Ciabattari, D. Bersier, P.A. Mazzali, X. Gao, Z. Xu, J.J. Zhang, S. Tokuoka, S. Benetti, E. Cappellaro, N. Elias-Rosa, A. Harutyunyan, F. Huang, M. Miluzio, J. Mo, P. Ochner, L. Tartaglia, G. Terreran, L. Tomasella, M. Turatto, Massive stars exploding in a He-rich circumstellar medium—IX. SN 2014av, and characterization of Type Ibn SNe. Mon. Not. R. Astron. Soc. 456, 853–869 (2016). 1509.09069.  https://doi.org/10.1093/mnras/stv2634 ADSCrossRefGoogle Scholar
  146. D.A. Perley, R.M. Quimby, L. Yan, P.M. Vreeswijk, A. De Cia, R. Lunnan, A. Gal-Yam, O. Yaron, A.V. Filippenko, M.L. Graham, R. Laher, P.E. Nugent, Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 830, 13 (2016). 1604.08207.  https://doi.org/10.3847/0004-637X/830/1/13 ADSCrossRefGoogle Scholar
  147. A.L. Piro, Using double-peaked supernova light curves to study extended material. Astrophys. J. Lett. 808, L51 (2015). 1505.07103.  https://doi.org/10.1088/2041-8205/808/2/L51 ADSCrossRefGoogle Scholar
  148. O. Porth, S.S. Komissarov, R. Keppens, Rayleigh-Taylor instability in magnetohydrodynamic simulations of the Crab nebula. Mon. Not. R. Astron. Soc. 443, 547–558 (2014). 1405.4029.  https://doi.org/10.1093/mnras/stu1082 ADSCrossRefGoogle Scholar
  149. S. Prajs, M. Sullivan, M. Smith, A. Levan, N.V. Karpenka, T.D.P. Edwards, C.R. Walker, W.M. Wolf, C. Balland, R. Carlberg, D.A. Howell, C. Lidman, R. Pain, C. Pritchet, V. Ruhlmann-Kleider, The volumetric rate of superluminous supernovae at \(z \sim1\). Mon. Not. R. Astron. Soc. 464, 3568–3579 (2017). 1605.05250.  https://doi.org/10.1093/mnras/stw1942 ADSCrossRefGoogle Scholar
  150. R.M. Quimby, The Texas Supernova Search. PhD thesis, The University of Texas at Austin (2006) Google Scholar
  151. R.M. Quimby, S.R. Kulkarni, M.M. Kasliwal, A. Gal-Yam, I. Arcavi, M. Sullivan, P. Nugent, R. Thomas, D.A. Howell, E. Nakar, L. Bildsten, C. Theissen, N.M. Law, R. Dekany, G. Rahmer, D. Hale, R. Smith, E.O. Ofek, J. Zolkower, V. Velur, R. Walters, J. Henning, K. Bui, D. McKenna, D. Poznanski, S.B. Cenko, D. Levitan, Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489 (2011). 0910.0059.  https://doi.org/10.1038/nature10095 ADSCrossRefGoogle Scholar
  152. R.M. Quimby, F. Yuan, C. Akerlof, J.C. Wheeler, Rates of superluminous supernovae at \(z \sim0.2\). Mon. Not. R. Astron. Soc. 431, 912–922 (2013). 1302.0911.  https://doi.org/10.1093/mnras/stt213 ADSCrossRefGoogle Scholar
  153. R.M. Quimby, A. De Cia, A. Gal-Yam, G. Leloudas, R. Lunnan, D.A. Perley, P.M. Vreeswijk, L. Yan, J.S. Bloom, S.B. Cenko, J. Cooke, R. Ellis, A.V. Filippenko, M.M. Kasliwal, I.K.W. Kleiser, S.R. Kulkarni, T. Matheson, P.E. Nugent, Y.C. Pan, J.M. Silverman, A. Sternberg, M. Sullivan, O. Yaron, Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. ArXiv e-prints. 1802.07820 (2018)
  154. G. Rakavy, G. Shaviv, Instabilities in highly evolved stellar models. Astrophys. J. 148, 803 (1967).  https://doi.org/10.1086/149204 ADSCrossRefGoogle Scholar
  155. N. Renault-Tinacci, K. Kotera, A. Neronov, S. Ando, Search for gamma-ray emission from super-luminous supernovae with the Fermi-LAT. ArXiv e-prints. 1708.08971 (2017)
  156. A. Rest, R.J. Foley, S. Gezari, G. Narayan, B. Draine, K. Olsen, M.E. Huber, T. Matheson, A. Garg, D.L. Welch, A.C. Becker, P. Challis, A. Clocchiatti, K.H. Cook, G. Damke, M. Meixner, G. Miknaitis, D. Minniti, L. Morelli, S. Nikolaev, G. Pignata, J.L. Prieto, R.C. Smith, C. Stubbs, N.B. Suntzeff, A.R. Walker, W.M. Wood-Vasey, A. Zenteno, L. Wyrzykowski, A. Udalski, M.K. Szymański, M. Kubiak, G. Pietrzyński, I. Soszyński, O. Szewczyk, K. Ulaczyk, R. Poleski, Pushing the boundaries of conventional core-collapse supernovae: the extremely energetic supernova SN 2003ma. Astrophys. J. 729, 88 (2011). 0911.2002.  https://doi.org/10.1088/0004-637X/729/2/88 ADSCrossRefGoogle Scholar
  157. S.P. Reynolds, Dynamical Evolution and Radiative Processes of Supernova Remnants (Springer, Cham, 2016), pp. 1–24.  https://doi.org/10.1007/978-3-319-20794-0_89-1 Google Scholar
  158. D. Richardson, R.L. Jenkins III, J. Wright, L. Maddox, Absolute-magnitude distributions of supernovae. Astron. J. 147, 118 (2014). 1403.5755.  https://doi.org/10.1088/0004-6256/147/5/118 ADSCrossRefGoogle Scholar
  159. R. Roy, J. Sollerman, J.M. Silverman, A. Pastorello, C. Fransson, A. Drake, F. Taddia, C. Fremling, E. Kankare, B. Kumar, E. Cappellaro, S. Bose, S. Benetti, A.V. Filippenko, S. Valenti, A. Nyholm, M. Ergon, F. Sutaria, B. Kumar, S.B. Pandey, M. Nicholl, D. Garcia-Álvarez, L. Tomasella, E. Karamehmetoglu, K. Migotto, SN 2012aa: a transient between Type Ibc core-collapse and superluminous supernovae. Astron. Astrophys. 596, A67 (2016). 1607.00924.  https://doi.org/10.1051/0004-6361/201527947 ADSCrossRefGoogle Scholar
  160. E. Scannapieco, P. Madau, S. Woosley, A. Heger, A. Ferrara, The detectability of pair-production supernovae at \(z \lesssim6\). Astrophys. J. 633, 1031–1041 (2005). astro-ph/0507182.  https://doi.org/10.1086/444450 ADSCrossRefGoogle Scholar
  161. S. Schulze, T. Krühler, G. Leloudas, J. Gorosabel, A. Mehner, J. Buchner, S. Kim, E. Ibar, R. Amorín, R. Herrero-Illana, J.P. Anderson, F.E. Bauer, L. Christensen, M. de Pasquale, A. de Ugarte Postigo, A. Gallazzi, J. Hjorth, N. Morrell, D. Malesani, M. Sparre, B. Stalder, A.A. Stark, C.C. Thöne, J.C. Wheeler, Cosmic evolution and metal aversion in superluminous supernova host galaxies. Mon. Not. R. Astron. Soc. 473, 1258–1285 (2018). 1612.05978.  https://doi.org/10.1093/mnras/stx2352 ADSCrossRefGoogle Scholar
  162. D. Scovacricchi, R.C. Nichol, D. Bacon, M. Sullivan, S. Prajs, Cosmology with superluminous supernovae. Mon. Not. R. Astron. Soc. 456, 1700–1707 (2016). 1511.06670.  https://doi.org/10.1093/mnras/stv2752 ADSCrossRefGoogle Scholar
  163. N. Smith, S.P. Owocki, On the role of continuum-driven eruptions in the evolution of very massive stars and Population III stars. Astrophys. J. Lett. 645, L45–L48 (2006). astro-ph/0606174.  https://doi.org/10.1086/506523 ADSCrossRefGoogle Scholar
  164. N. Smith, W. Li, R.J. Foley, J.C. Wheeler, D. Pooley, R. Chornock, A.V. Filippenko, J.M. Silverman, R. Quimby, J.S. Bloom, C. Hansen, SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like \(\eta \) Carinae. Astrophys. J. 666, 1116–1128 (2007). astro-ph/0612617.  https://doi.org/10.1086/519949 ADSCrossRefGoogle Scholar
  165. N. Smith, R. Chornock, W. Li, M. Ganeshalingam, J.M. Silverman, R.J. Foley, A.V. Filippenko, A.J. Barth, SN 2006tf: precursor eruptions and the optically thick regime of extremely luminous Type IIn supernovae. Astrophys. J. 686, 467–484 (2008a). 0804.0042.  https://doi.org/10.1086/591021 ADSCrossRefGoogle Scholar
  166. N. Smith, R.J. Foley, J.S. Bloom, W. Li, A.V. Filippenko, R. Gavazzi, A. Ghez, Q. Konopacky, M.A. Malkan, P.J. Marshall, D. Pooley, T. Treu, J.H. Woo, Late-time observations of SN 2006gy: still going strong. Astrophys. J. 686, 485–491 (2008b). 0802.1743.  https://doi.org/10.1086/590141 ADSCrossRefGoogle Scholar
  167. N. Smith, R. Chornock, J.M. Silverman, A.V. Filippenko, R.J. Foley, Spectral evolution of the extraordinary Type IIn supernova 2006gy. Astrophys. J. 709, 856–883 (2010). 0906.2200.  https://doi.org/10.1088/0004-637X/709/2/856 ADSCrossRefGoogle Scholar
  168. N. Smith, W. Li, J.M. Silverman, M. Ganeshalingam, A.V. Filippenko, Luminous blue variable eruptions and related transients: diversity of progenitors and outburst properties. Mon. Not. R. Astron. Soc. 415, 773–810 (2011). 1010.3718.  https://doi.org/10.1111/j.1365-2966.2011.18763.x ADSCrossRefGoogle Scholar
  169. M. Smith, M. Sullivan, C.B. D’Andrea, F.J. Castander, R. Casas, S. Prajs, A. Papadopoulos, R.C. Nichol, N.V. Karpenka, S.R. Bernard, P. Brown, R. Cartier, J. Cooke, C. Curtin, T.M. Davis, D.A. Finley, R.J. Foley, A. Gal-Yam, D.A. Goldstein, S. González-Gaitán, R.R. Gupta, D.A. Howell, C. Inserra, R. Kessler, C. Lidman, J. Marriner, P. Nugent, T.A. Pritchard, M. Sako, S. Smartt, R.C. Smith, H. Spinka, R.C. Thomas, R.C. Wolf, A. Zenteno, T.M.C. Abbott, A. Benoit-Lévy, E. Bertin, D. Brooks, E. Buckley-Geer, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, M. Crocce, C.E. Cunha, L.N. da Costa, S. Desai, H.T. Diehl, P. Doel, J. Estrada, A.E. Evrard, B. Flaugher, P. Fosalba, J. Frieman, D.W. Gerdes, D. Gruen, R.A. Gruendl, D.J. James, K. Kuehn, N. Kuropatkin, O. Lahav, T.S. Li, J.L. Marshall, P. Martini, C.J. Miller, R. Miquel, B. Nord, R. Ogando, A.A. Plazas, K. Reil, A.K. Romer, A. Roodman, E.S. Rykoff, E. Sanchez, V. Scarpine, M. Schubnell, I. Sevilla-Noarbe, M. Soares-Santos, F. Sobreira, E. Suchyta, M.E.C. Swanson, G. Tarle, A.R. Walker, W. Wester (DES Collaboration), DES14X3taz: a Type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. Astrophys. J. Lett. 818, L8 (2016). 1512.06043.  https://doi.org/10.3847/2041-8205/818/1/L8 ADSCrossRefGoogle Scholar
  170. M. Smith, M. Sullivan, R.C. Nichol, L. Galbany, C.B. D’Andrea, C. Inserra, C. Lidman, A. Rest, M. Schirmer, A.V. Filippenko, W. Zheng, S.B. Cenko, C.R. Angus, P.J. Brown, T.M. Davis, D.A. Finley, R.J. Foley, S. González-Gaitán, C.P. Gutiérrez, R. Kessler, S. Kuhlmann, J. Marriner, A. Möller, P.E. Nugent, S. Prajs, R. Thomas, R. Wolf, A. Zenteno, T.M.C. Abbott, F.B. Abdalla, S. Allam, J. Annis, K. Bechtol, A. Benoit-Lévy, E. Bertin, D. Brooks, D.L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F.J. Castander, M. Crocce, C.E. Cunha, L.N. da Costa, C. Davis, S. Desai, H.T. Diehl, P. Doel, T.F. Eifler, B. Flaugher, P. Fosalba, J. Frieman, J. García-Bellido, E. Gaztanaga, D.W. Gerdes, D.A. Goldstein, D. Gruen, R.A. Gruendl, J. Gschwend, G. Gutierrez, K. Honscheid, D.J. James, M.W.G. Johnson, K. Kuehn, N. Kuropatkin, T.S. Li, M. Lima, M.A.G. Maia, J.L. Marshall, P. Martini, F. Menanteau, C.J. Miller, R. Miquel, R.L.C. Ogando, D. Petravick, A.A. Plazas, A.K. Romer, E.S. Rykoff, M. Sako, E. Sanchez, V. Scarpine, R. Schindler, M. Schubnell, I. Sevilla-Noarbe, R.C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M.E.C. Swanson, G. Tarle, A.R. Walker, The DES Collaboration, Studying the ultraviolet spectrum of the first spectroscopically confirmed supernova at redshift two. Astrophys. J. 854, 37 (2018). arXiv:1712.04535.  https://doi.org/10.3847/1538-4357/aaa126 ADSCrossRefGoogle Scholar
  171. A.M. Soderberg, S.R. Kulkarni, E. Nakar, E. Berger, P.B. Cameron, D.B. Fox, D. Frail, A. Gal-Yam, R. Sari, S.B. Cenko, M. Kasliwal, R.A. Chevalier, T. Piran, P.A. Price, B.P. Schmidt, G. Pooley, D.S. Moon, B.E. Penprase, E. Ofek, A. Rau, N. Gehrels, J.A. Nousek, D.N. Burrows, S.E. Persson, P.J. McCarthy, Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442, 1014–1017 (2006). arXiv:astro-ph/0604389.  https://doi.org/10.1038/nature05087 ADSCrossRefGoogle Scholar
  172. N. Soker, A. Gilkis, Magnetar-powered superluminous supernovae must first be exploded by jets. Astrophys. J. 851, 95 (2017). arXiv:1708.08356.  https://doi.org/10.3847/1538-4357/aa9c83 ADSCrossRefGoogle Scholar
  173. E. Sorokina, S. Blinnikov, K. Nomoto, R. Quimby, A. Tolstov, Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. Astrophys. J. 829, 17 (2016). 1510.00834.  https://doi.org/10.3847/0004-637X/829/1/17 ADSCrossRefGoogle Scholar
  174. A. Spitkovsky, Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys. J. Lett. 648, L51–L54 (2006). astro-ph/0603147.  https://doi.org/10.1086/507518 ADSCrossRefGoogle Scholar
  175. A. Suzuki, K. Maeda, Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. Mon. Not. R. Astron. Soc. 466, 2633–2657 (2017). 1612.03911.  https://doi.org/10.1093/mnras/stw3259 ADSCrossRefGoogle Scholar
  176. F. Taddia, J. Sollerman, G. Leloudas, M.D. Stritzinger, S. Valenti, L. Galbany, R. Kessler, D.P. Schneider, J.C. Wheeler, Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey. Astron. Astrophys. 574, A60 (2015). 1408.4084.  https://doi.org/10.1051/0004-6361/201423915 ADSCrossRefGoogle Scholar
  177. K. Takahashi, T. Yoshida, H. Umeda, K. Sumiyoshi, S. Yamada, Exact and approximate expressions of energy generation rates and their impact on the explosion properties of pair instability supernovae. Mon. Not. R. Astron. Soc. 456, 1320–1331 (2016). 1511.03040.  https://doi.org/10.1093/mnras/stv2649 ADSCrossRefGoogle Scholar
  178. G. Terreran, M.L. Pumo, T.W. Chen, T.J. Moriya, F. Taddia, L. Dessart, L. Zampieri, S.J. Smartt, S. Benetti, C. Inserra, E. Cappellaro, M. Nicholl, M. Fraser, Ł. Wyrzykowski, A. Udalski, D.A. Howell, C. McCully, S. Valenti, G. Dimitriadis, K. Maguire, M. Sullivan, K.W. Smith, O. Yaron, D.R. Young, J.P. Anderson, M. Della Valle, N. Elias-Rosa, A. Gal-Yam, A. Jerkstrand, E. Kankare, A. Pastorello, J. Sollerman, M. Turatto, Z. Kostrzewa-Rutkowska, S. Kozłowski, P. Mróz, M. Pawlak, P. Pietrukowicz, R. Poleski, D. Skowron, J. Skowron, I. Soszyński, M.K. Szymański, K. Ulaczyk, Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nat. Astron. 1, 713–720 (2017). 1709.10475.  https://doi.org/10.1038/s41550-017-0228-8 ADSCrossRefGoogle Scholar
  179. C.C. Thöne, A. de Ugarte Postigo, R. García-Benito, G. Leloudas, S. Schulze, R. Amorín, A young stellar environment for the superluminous supernova PTF12dam. Mon. Not. R. Astron. Soc. 451, L65–L69 (2015). 1411.1104.  https://doi.org/10.1093/mnrasl/slv051 ADSCrossRefGoogle Scholar
  180. A. Tolstov, S. Blinnikov, S. Nagataki, K. Nomoto, Shock wave structure in astrophysical flows with an account of photon transfer. Astrophys. J. 811, 47 (2015). 1412.1434.  https://doi.org/10.1088/0004-637X/811/1/47 ADSCrossRefGoogle Scholar
  181. A. Tolstov, K. Nomoto, S. Blinnikov, E. Sorokina, R. Quimby, P. Baklanov, Pulsational pair-instability model for superluminous supernova PTF12dam: interaction and radioactive decay. Astrophys. J. 835, 266 (2017a). 1612.01634.  https://doi.org/10.3847/1538-4357/835/2/266 ADSCrossRefGoogle Scholar
  182. A. Tolstov, A. Zhiglo, K. Nomoto, E. Sorokina, A. Kozyreva, S. Blinnikov, Ultraviolet light curves of Gaia16apd in superluminous supernova models. Astrophys. J. Lett. 845, L2 (2017b). 1707.05746.  https://doi.org/10.3847/2041-8213/aa808e ADSCrossRefGoogle Scholar
  183. H. Umeda, K. Nomoto, How much 56Ni can be produced in core-collapse supernovae? Evolution and explosions of \(30\mbox{--}100 M_{\odot}\) stars. Astrophys. J. 673, 1014–1022 (2008). 0707.2598.  https://doi.org/10.1086/524767 ADSCrossRefGoogle Scholar
  184. J.S. Vink (ed.), Very Massive Stars in the Local Universe. Astrophysics and Space Science Library, vol. 412 (Springer, Berlin, 2015). 1406.4836.  https://doi.org/10.1007/978-3-319-09596-7 Google Scholar
  185. A. Vlasis, L. Dessart, E. Audit, Two-dimensional radiation hydrodynamics simulations of superluminous interacting supernovae of Type IIn. Mon. Not. R. Astron. Soc. 458, 1253–1266 (2016). 1602.05864.  https://doi.org/10.1093/mnras/stw410 ADSCrossRefGoogle Scholar
  186. P.M. Vreeswijk, S. Savaglio, A. Gal-Yam, A. De Cia, R.M. Quimby, M. Sullivan, S.B. Cenko, D.A. Perley, A.V. Filippenko, K.I. Clubb, F. Taddia, J. Sollerman, G. Leloudas, I. Arcavi, A. Rubin, M.M. Kasliwal, Y. Cao, O. Yaron, D. Tal, E.O. Ofek, J. Capone, A.S. Kutyrev, V. Toy, P.E. Nugent, R. Laher, J. Surace, S.R. Kulkarni, The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. Astrophys. J. 797, 24 (2014). 1409.8287.  https://doi.org/10.1088/0004-637X/797/1/24 ADSCrossRefGoogle Scholar
  187. P.M. Vreeswijk, G. Leloudas, A. Gal-Yam, A. De Cia, D.A. Perley, R.M. Quimby, R. Waldman, M. Sullivan, L. Yan, E.O. Ofek, C. Fremling, F. Taddia, J. Sollerman, S. Valenti, I. Arcavi, D.A. Howell, A.V. Filippenko, S.B. Cenko, O. Yaron, M.M. Kasliwal, Y. Cao, S. Ben-Ami, A. Horesh, A. Rubin, R. Lunnan, P.E. Nugent, R. Laher, U.D. Rebbapragada, P. Woźniak, S.R. Kulkarni, On the early-time excess emission in hydrogen-poor superluminous supernovae. Astrophys. J. 835, 58 (2017). 1609.08145.  https://doi.org/10.3847/1538-4357/835/1/58 ADSCrossRefGoogle Scholar
  188. S.Q. Wang, L.J. Wang, Z.G. Dai, X.F. Wu, Superluminous supernovae powered by magnetars: late-time light curves and hard emission leakage. Astrophys. J. 799, 107 (2015). 1411.5126.  https://doi.org/10.1088/0004-637X/799/1/107 ADSCrossRefGoogle Scholar
  189. T.A. Weaver, The structure of supernova shock waves. Astrophys. J. Suppl. Ser. 32, 233–282 (1976).  https://doi.org/10.1086/190398 ADSCrossRefGoogle Scholar
  190. J.J. Wei, X.F. Wu, F. Melia, Testing cosmological models with Type Ic super luminous supernovae. Astron. J. 149, 165 (2015). arXiv:1503.06378.  https://doi.org/10.1088/0004-6256/149/5/165 ADSCrossRefGoogle Scholar
  191. D.J. Whalen, J. Smidt, A. Heger, R. Hirschi, N. Yusof, W. Even, C.L. Fryer, M. Stiavelli, K.J. Chen, C.C. Joggerst, Pair-instability supernovae in the local universe. Astrophys. J. 797, 9 (2014). 1312.5360.  https://doi.org/10.1088/0004-637X/797/1/9 ADSCrossRefGoogle Scholar
  192. J.C. Wheeler, E. Chatzopoulos, J. Vinkó, R. Tuminello, Circumstellar interaction models for the bolometric light curve of Type I superluminous SN 2017egm. Astrophys. J. Lett. 851, L14 (2017). 1710.04994.  https://doi.org/10.3847/2041-8213/aa9d84 ADSCrossRefGoogle Scholar
  193. S.E. Woosley, Bright supernovae from magnetar birth. Astrophys. J. Lett. 719, L204–L207 (2010). 0911.0698.  https://doi.org/10.1088/2041-8205/719/2/L204 ADSCrossRefGoogle Scholar
  194. S.E. Woosley, Pulsational pair-instability supernovae. Astrophys. J. 836, 244 (2017). 1608.08939.  https://doi.org/10.3847/1538-4357/836/2/244 ADSCrossRefGoogle Scholar
  195. S.E. Woosley, S. Blinnikov, A. Heger, Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450, 390–392 (2007). 0710.3314.  https://doi.org/10.1038/nature06333 ADSCrossRefGoogle Scholar
  196. L. Yan, R. Quimby, E. Ofek, A. Gal-Yam, P. Mazzali, D. Perley, P.M. Vreeswijk, G. Leloudas, A. de Cia, F. Masci, S.B. Cenko, Y. Cao, S.R. Kulkarni, P.E. Nugent, U.D. Rebbapragada, P.R. Woźniak, O. Yaron, Detection of broad H\(\alpha\) emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. Astrophys. J. 814, 108 (2015). 1508.04420.  https://doi.org/10.1088/0004-637X/814/2/108 ADSCrossRefGoogle Scholar
  197. L. Yan, R. Lunnan, D.A. Perley, A. Gal-Yam, O. Yaron, R. Roy, R. Quimby, J. Sollerman, C. Fremling, G. Leloudas, S.B. Cenko, P. Vreeswijk, M.L. Graham, D.A. Howell, A. De Cia, E.O. Ofek, P. Nugent, S.R. Kulkarni, G. Hosseinzadeh, F. Masci, C. McCully, U.D. Rebbapragada, P. Woźniak, Hydrogen-poor superluminous supernovae with late-time H\(\alpha\) emission: three events from the intermediate Palomar Transient Factory. Astrophys. J. 848, 6 (2017a). 1704.05061.  https://doi.org/10.3847/1538-4357/aa8993 ADSCrossRefGoogle Scholar
  198. L. Yan, D.A. Perley, A. De Cia, R. Quimby, R. Lunnan, K.H.R. Rubin, P.J. Brown, Far-UV HST spectroscopy of an unusual hydrogen poor superluminous supernova: SN2017egm. ArXiv e-prints. 1711.01534 (2017b)
  199. L. Yan, R. Quimby, A. Gal-Yam, P. Brown, N. Blagorodnova, E.O. Ofek, R. Lunnan, J. Cooke, S.B. Cenko, J. Jencson, M. Kasliwal, Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. Astrophys. J. 840, 57 (2017c). 1611.02782.  https://doi.org/10.3847/1538-4357/aa6b02 ADSCrossRefGoogle Scholar
  200. O. Yaron, A. Gal-Yam, WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668 (2012). 1204.1891.  https://doi.org/10.1086/666656 ADSCrossRefGoogle Scholar
  201. S.C. Yoon, A. Dierks, N. Langer, Evolution of massive Population III stars with rotation and magnetic fields. Astron. Astrophys. 542, A113 (2012). 1201.2364.  https://doi.org/10.1051/0004-6361/201117769 CrossRefGoogle Scholar
  202. D.R. Young, S.J. Smartt, S. Valenti, A. Pastorello, S. Benetti, C.R. Benn, D. Bersier, M.T. Botticella, R.L.M. Corradi, A.H. Harutyunyan, M. Hrudkova, I. Hunter, S. Mattila, E.J.W. de Mooij, H. Navasardyan, I.A.G. Snellen, N.R. Tanvir, L. Zampieri, Two type Ic supernovae in low-metallicity, dwarf galaxies: diversity of explosions. Astron. Astrophys. 512, A70 (2010). 0910.2248.  https://doi.org/10.1051/0004-6361/200913004 ADSCrossRefGoogle Scholar
  203. Y.W. Yu, S.Z. Li, A possible relation between flare activity in superluminous supernovae and gamma-ray bursts. Mon. Not. R. Astron. Soc. 470, 197–201 (2017). arXiv:1607.00626.  https://doi.org/10.1093/mnras/stx1028 ADSCrossRefGoogle Scholar
  204. Y.W. Yu, J.P. Zhu, S.Z. Li, H.J. Lü, Y.C. Zou, A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. Astrophys. J. 840, 12 (2017). arXiv:1704.01682.  https://doi.org/10.3847/1538-4357/aa6c27 ADSCrossRefGoogle Scholar
  205. N. Yusof, R. Hirschi, G. Meynet, P.A. Crowther, S. Ekström, U. Frischknecht, C. Georgy, H. Abu Kassim, O. Schnurr, Evolution and fate of very massive stars. Mon. Not. R. Astron. Soc. 433, 1114–1132 (2013). 1305.2099.  https://doi.org/10.1093/mnras/stt794 ADSCrossRefGoogle Scholar
  206. T. Zhang, X. Wang, C. Wu, J. Chen, J. Chen, Q. Liu, F. Huang, J. Liang, X. Zhao, L. Lin, M. Wang, M. Dennefeld, J. Zhang, M. Zhai, H. Wu, Z. Fan, H. Zou, X. Zhou, J. Ma, Type IIn Supernova SN 2010jl: optical observations for over 500 days after explosion. Astron. J. 144, 131 (2012). 1208.6078.  https://doi.org/10.1088/0004-6256/144/5/131 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Theoretical AstronomyNational Astronomical Observatory of Japan, National Institutes of Natural SciencesMitakaJapan
  2. 2.Sternberg Astronomical InstituteM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Department of AstronomyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations