Advertisement

Space Science Reviews

, 214:53 | Cite as

Dust in Supernovae and Supernova Remnants II: Processing and Survival

  • E. R. Micelotta
  • M. Matsuura
  • A. Sarangi
Article
Part of the following topical collections:
  1. Supernovae

Abstract

Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

Keywords

Dust Supernova remnants Supernovae Shock waves Early Universe 

Notes

Acknowledgements

We would like to thank the referee for the careful reading and the many useful suggestions. We also deeply acknowledge the support from the International Space Science Institute in Bern, Switzerland and their successful endeavour to organise the Supernovae workshop. We are grateful to Isabelle Cherchneff for her help at the beginning of this project. E. R. M. wishes to acknowledge the support of Academy of Finland grant 1285769 and M. M. acknowledges support from an STFC Ernest Rutherford fellowship (ST/L003597/1).

References

  1. M.G. Allen, B.A. Groves, M.A. Dopita, R.S. Sutherland, L.J. Kewley, The MAPPINGS III library of fast radiative shock models. Astrophys. J. Suppl. Ser. 178, 20–55 (2008).  https://doi.org/10.1086/589652. 0805.0204. ADSCrossRefGoogle Scholar
  2. H.H. Andersen, H.L. Bay, Sputtering Yield Measurements (1981), p. 145.  https://doi.org/10.1007/3540105212_9 Google Scholar
  3. R.G. Arendt, E. Dwek, S.H. Moseley, Newly synthesized elements and pristine dust in the Cassiopeia A supernova remnant. Astrophys. J. 521, :234–245 (1999).  https://doi.org/10.1086/307545. astro-ph/9901042 ADSCrossRefGoogle Scholar
  4. R.G. Arendt, E. Dwek, W.P. Blair, P. Ghavamian, U. Hwang, K.S. Long, R. Petre, J. Rho, P.F. Winkler, Spitzer observations of dust destruction in the puppis a supernova remnant. Astrophys. J. 725(1), 585–597 (2010) ADSCrossRefGoogle Scholar
  5. R.G. Arendt, E. Dwek, G. Kober, J. Rho, U. Hwang, Interstellar and ejecta dust in the Cas A supernova remnant. Astrophys. J. 786, 55 (2014).  https://doi.org/10.1088/0004-637X/786/1/55. 1403.3008 ADSCrossRefGoogle Scholar
  6. R.G. Arendt, E. Dwek, P. Bouchet, I.J. Danziger, K.A. Frank, R.D. Gehrz, S. Park, C.E. Woodward, Infrared continuum and line evolution of the equatorial ring around SN 1987A Astron. J. 151(3), 62 (2016) ADSCrossRefGoogle Scholar
  7. W.D. Arnett, J.N. Bahcall, R.P. Kirshner, S.E. Woosley, Supernova 1987A. in: Annual Review of Astronomy and Astrophysics, vol. 27 Palo Alto 27 (1989), p. 629 (A90-29983 12-90) Google Scholar
  8. M.J. Baines, I.P. Williams, A.S. Asebiomo, Resistance to the motion of a small sphere moving through a gas. Mon. Not. R. Astron. Soc. 130, 63 (1965) ADSCrossRefGoogle Scholar
  9. M.J. Barlow, The destruction and growth of dust grains in interstellar space. I—Destruction by sputtering. Mon. Not. R. Astron. Soc. 183(3), 367–395 (1978) ADSCrossRefGoogle Scholar
  10. M.J. Barlow, O. Krause, B.M. Swinbank, B. Sibthorpe, M.A. Besel, R. Wesson, R.J. Ivison, L. Dunne, W.K. Gear, H.L. Gomez née Morgan, P.C. Hargrave, T. Henning, S.J. Leeks, T.L. Lim, G. Olofsson, E.T. Polehampton, A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant. Astron. Astrophys. 518, L138 (2010) ADSCrossRefGoogle Scholar
  11. M.J. Barlow, O. Krause, B.M. Swinyard, B. Sibthorpe, M.A. Besel, R. Wesson, R.J. Ivison, L. Dunne, W.K. Gear, H.L. Gomez, P.C. Hargrave, T. Henning, S.J. Leeks, T.L. Lim, G. Olofsson, E.T. Polehampton, A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant. Astron. Astrophys. 518, L138 (2010b).  https://doi.org/10.1051/0004-6361/201014585. 1005.2688 ADSCrossRefGoogle Scholar
  12. R. Bedogni, P.R. Woodward, Shock wave interactions with interstellar clouds. Astron. Astrophys. 231, 481–498 (1990) ADSGoogle Scholar
  13. F. Bertoldi, C.L. Carilli, P. Cox, X. Fan, M.A. Strauss, A. Beelen, A. Omont, R. Zylka, Dust emission from the most distant quasars. Astron. Astrophys. 406, L55–L58 (2003).  https://doi.org/10.1051/0004-6361:20030710. astro-ph/0305116 ADSCrossRefGoogle Scholar
  14. A. Bevan, M.J. Barlow, Modelling supernova line profile asymmetries to determine ejecta dust masses: SN 1987A from days 714 to 3604. Mon. Not. R. Astron. Soc. 456(2), 1269–1293 (2016) ADSCrossRefGoogle Scholar
  15. A. Bevan, M.J. Barlow, D. Milisavljevic, Dust masses for SN 1980K, SN1993J and Cassiopeia A from red-blue emission line asymmetries. Mon. Not. R. Astron. Soc. 465, 4044–4056 (2017).  https://doi.org/10.1093/mnras/stw2985. 1611.05006 ADSCrossRefGoogle Scholar
  16. S. Bianchi, R. Schneider, Dust formation and survival in supernova ejecta. Mon. Not. R. Astron. Soc. 378, 973–982 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11829.x. 0704.0586 ADSCrossRefGoogle Scholar
  17. C. Biscaro, I. Cherchneff, Molecules and dust in Cassiopeia A. I. Synthesis in the supernova phase and processing by the reverse shock in the clumpy remnant. Astron. Astrophys. 564, A25 (2014).  https://doi.org/10.1051/0004-6361/201322932. 1401.5594 ADSCrossRefGoogle Scholar
  18. C. Biscaro, I. Cherchneff, Molecules and dust in Cassiopeia A. II. Dust sputtering and diagnosis of supernova dust survival in remnants. Astron. Astrophys. 589, A132 (2016).  https://doi.org/10.1051/0004-6361/201527769. 1511.05487 ADSCrossRefGoogle Scholar
  19. W.P. Blair, P. Ghavamian, K.S. Long, B.J. Williams, K.J. Borkowski, S.P. Reynolds, R. Sankrit, Spitzer Space Telescope observations of Kepler’s supernova remnant: a detailed look at the circumstellar dust component. Astrophys. J. 662(2), 998–1013 (2007) ADSCrossRefGoogle Scholar
  20. J.M. Blondin, R.A. Chevalier, D.M. Frierson, Pulsar wind nebulae in evolved supernova remnants. Astrophys. J. 563, 806–815 (2001).  https://doi.org/10.1086/324042. astro-ph/0107076 ADSCrossRefGoogle Scholar
  21. M. Bocchio, A.P. Jones, J.D. Slavin, A re-evaluation of dust processing in supernova shock waves. Astron. Astrophys. 570, A32 (2014).  https://doi.org/10.1051/0004-6361/201424368 ADSCrossRefGoogle Scholar
  22. M. Bocchio, S. Marassi, R. Schneider, S. Bianchi, M. Limongi, A. Chieffi, Dust grains from the heart of supernovae. Astron. Astrophys. 587, A157 (2016).  https://doi.org/10.1051/0004-6361/201527432. 1601.06770 ADSCrossRefGoogle Scholar
  23. J. Bohdansky, A universal relation for the sputtering yield of monatomic solids at normal ion incidence. Nucl. Instrum. Methods Phys. Res. B 2, 587–591 (1984).  https://doi.org/10.1016/0168-583X(84)90271-4 ADSCrossRefGoogle Scholar
  24. K.J. Borkowski, J.M. Shull, Pure-oxygen radiative shocks with electron thermal conduction. Astrophys. J. 348, 169–185 (1990).  https://doi.org/10.1086/168225 ADSCrossRefGoogle Scholar
  25. K.J. Borkowski, W.J. Lyerly, S.P. Reynolds, Supernova remnants in the Sedov expansion phase: thermal X-ray emission. Astrophys. J. 548, 820–835 (2001).  https://doi.org/10.1086/319011. astro-ph/0008066 ADSCrossRefGoogle Scholar
  26. K.J. Borkowski, B.J. Williams, S.P. Reynolds, W.P. Blair, P. Ghavamian, R. Sankrit, S.P. Hendrick, K.S. Long, J.C. Raymond, R.C. Smith, S. Points, P.F. Winkler, Dust destruction in Type Ia supernova remnants in the Large Magellanic Cloud. Astrophys. J. Lett. 642, L141–L144 (2006).  https://doi.org/10.1086/504472. astro-ph/0602313 ADSCrossRefGoogle Scholar
  27. K.J. Borkowski, B.J. Williams, S.P. Reynolds, W.P. Blair, P. Ghavamian, R. Sankrit, S.P. Hendrick, K.S. Long, J.C. Raymond, R.C. Smith, S. Points, P.F. Winkler, Dust destruction in Type Ia supernova remnants in the Large Magellanic Cloud. Astrophys. J. 642(2), L141–L144 (2006b) ADSCrossRefGoogle Scholar
  28. P. Bouchet, J.M. De Buizer, N.B. Suntzeff, I.J. Danziger, T.L. Hayward, C.M. Telesco, C. Packham, High-resolution mid-infrared imaging of SN 1987A. Astrophys. J. 611, 394–398 (2004).  https://doi.org/10.1086/421936. astro-ph/0312240 ADSCrossRefGoogle Scholar
  29. P. Bouchet, E. Dwek, J. Danziger, SN 1987A after 18 years: mid-infrared Gemini and Spitzer observations of the remnant. Astrophys. J. 650, 212 (2006) ADSCrossRefGoogle Scholar
  30. G.L. Bryan, M.L. Norman, Simulating X-ray clusters with adaptive mesh refinement, in Computational Astrophysics; 12th Kingston Meeting on Theoretical Astrophysics, ed. by D.A. Clarke, M.J. West. Astronomical Society of the Pacific Conference Series, vol. 123 (1997), p. 363. astro-ph/9710186 Google Scholar
  31. I. Cherchneff, E. Dwek, The chemistry of population III supernova ejecta. I. Formation of molecules in the early universe. Astrophys. J. 703, 642–661 (2009).  https://doi.org/10.1088/0004-637X/703/1/642. 0907.3621 ADSCrossRefGoogle Scholar
  32. R.A. Chevalier, Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982).  https://doi.org/10.1086/160126 ADSCrossRefGoogle Scholar
  33. R.A. Chevalier, R.P. Kirshner, Abundance inhomogeneities in the Cassiopeia A supernova remnant. Astrophys. J. 233, 154–162 (1979).  https://doi.org/10.1086/157377 ADSCrossRefGoogle Scholar
  34. D.D. Clayton, L.R. Nittler, Astrophysics with presolar stardust. Annu. Rev. Astron. Astrophys. 42, 39–78 (2004).  https://doi.org/10.1146/annurev.astro.42.053102.134022 ADSCrossRefGoogle Scholar
  35. L.L. Cowie, C.F. McKee, The evaporation of spherical clouds in a hot gas. I—Classical and saturated mass loss rates. Astrophys. J. 211, 135–146 (1977).  https://doi.org/10.1086/154911 ADSCrossRefGoogle Scholar
  36. M. Cropper, J. Bailey, J. McCowage, R.D. Cannon, W.J. Couch, Spectropolarimetry of SN 1987A—observations up to 1987 July 8. Mon. Not. R. Astron. Soc. 231, 695 (1988) ADSCrossRefGoogle Scholar
  37. W.W. Dalton, S.A. Balbus, A flux-limited treatment for the conductive evaporation of spherical interstellar gas clouds. Astrophys. J. 404, 625–635 (1993).  https://doi.org/10.1086/172316 ADSCrossRefGoogle Scholar
  38. I.J. Danziger, C. Gouiffes, P. Bouchet, L.B. Lucy, Supernova 1987A in the Large Magellanic Cloud, IAU Circ 4746 (1989) Google Scholar
  39. I. De Looze, M.J. Barlow, B.M. Swinyard, J. Rho, H.L. Gomez, M. Matsuura, R. Wesson, The dust mass in Cassiopeia A from a spatially resolved Herschel analysis. Mon. Not. R. Astron. Soc. 465(3), 3309–3342 (2017) ADSCrossRefGoogle Scholar
  40. L. Del Zanna, N. Bucciantini, P. Londrillo, An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics. Astron. Astrophys. 400, 397–413 (2003).  https://doi.org/10.1051/0004-6361:20021641. astro-ph/0210618 ADSzbMATHCrossRefGoogle Scholar
  41. D. Docenko, R.A. Sunyaev, Fine-structure infrared lines from the Cassiopeia A knots. Astron. Astrophys. 509, A59 (2010).  https://doi.org/10.1051/0004-6361/200810366. 0806.1801 ADSCrossRefGoogle Scholar
  42. B. Donn, J.A. Nuth, Does nucleation theory apply to the formation of refractory circumstellar grains? Astrophys. J. 288, 187–190 (1985).  https://doi.org/10.1086/162779 ADSCrossRefGoogle Scholar
  43. B.T. Draine, Infrared emission from dust in shocked gas. Astrophys. J. 245, 880 (1981) ADSCrossRefGoogle Scholar
  44. B.T. Draine, Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).  https://doi.org/10.1146/annurev.astro.41.011802.094840. astro-ph/0304489 ADSCrossRefGoogle Scholar
  45. B.T. Draine, Interstellar dust models and evolutionary implications. Cosmic dust—near and far. Astron. Soc. Pac. Conf. Ser. 414, 453 (2009) ADSGoogle Scholar
  46. B.T. Draine, Physics of the Interstellar and Intergalactic Medium (Princeton University Press, Princeton, 2011) zbMATHGoogle Scholar
  47. B.T. Draine, E.E. Salpeter, Time-dependent nucleation theory. J. Chem. Phys. 67, 2230–2235 (1977).  https://doi.org/10.1063/1.435116 ADSCrossRefGoogle Scholar
  48. B.T. Draine, E.E. Salpeter, Destruction mechanisms for interstellar dust. Astrophys. J. 231, 77–94 (1979a).  https://doi.org/10.1086/157165 ADSCrossRefGoogle Scholar
  49. B.T. Draine, E.E. Salpeter, On the physics of dust grains in hot gas. Astrophys. J. 231, 438–455 (1979b).  https://doi.org/10.1086/157206 ADSCrossRefGoogle Scholar
  50. L. Dunne, S.J. Maddox, R.J. Ivison, L. Rudnick, T.A. Delaney, B.C. Matthews, C.M. Crowe, H.L. Gomez, S.A. Eales, S. Dye, Cassiopeia A: dust factory revealed via submillimetre polarimetry. Mon. Not. R. Astron. Soc. 394, 1307–1316 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14453.x. 0809.0887 ADSCrossRefGoogle Scholar
  51. E. Dwek, The infrared echo of a type II supernova with a circumstellar dust shell—applications to SN 1979c and SN 1980k. Astrophys. J. 274, 175–183 (1983).  https://doi.org/10.1086/161435 ADSCrossRefGoogle Scholar
  52. E. Dwek, Temperature fluctuations and infrared emission from dust particles in a hot gas. Astrophys. J. 302, 363–370 (1986) ADSCrossRefGoogle Scholar
  53. E. Dwek, The infrared diagnostic of a dusty plasma with applications to supernova remnants. Astrophys. J. 322, 812 (1987) ADSCrossRefGoogle Scholar
  54. E. Dwek, Interstellar dust: what is it, how does it evolve, and what are its observational consequences? in The Spectral Energy Distributions of Gas-Rich Galaxies: Confronting Models with Data, ed. by C.C. Popescu, R.J. Tuffs. American Institute of Physics Conference Series, vol. 761 (2005), pp. 103–122.  https://doi.org/10.1063/1.1913921. astro-ph/0412344 Google Scholar
  55. E. Dwek, R.G. Arendt, Dust-gas interactions and the infrared emission from hot astrophysical plasmas. Annu. Rev. Astron. Astrophys. 30, 11–50 (1992).  https://doi.org/10.1146/annurev.aa.30.090192.000303 ADSCrossRefGoogle Scholar
  56. E. Dwek, R.G. Arendt, The evolution of dust mass in the ejecta of SN1987A. Astrophys. J. 810(1), 75 (2015) ADSCrossRefGoogle Scholar
  57. E. Dwek, I. Cherchneff, The origin of dust in the early universe: probing the star formation history of galaxies by their dust content. Astrophys. J. 727, 63 (2011).  https://doi.org/10.1088/0004-637X/727/2/63. 1011.1303 ADSCrossRefGoogle Scholar
  58. E. Dwek, R. Petre, A. Szymkowiak, W.L. Rice, IRAS observations of supernova remnants—a comparison between their infrared and X-ray cooling rates. Astrophys. J. Lett. 320, L27–L33 (1987).  https://doi.org/10.1086/184971 ADSCrossRefGoogle Scholar
  59. E. Dwek, S.H. Moseley, W. Glaccum, J.R. Graham, R.F. Loewenstein, R.F. Silverberg, R.K. Smith, Dust and gas contributions to the energy output of SN 1987A on day 1153. Astrophys. J. Lett. 389, L21–L24 (1992).  https://doi.org/10.1086/186339 ADSCrossRefGoogle Scholar
  60. E. Dwek, R.G. Arendt, P. Bouchet, D.N. Burrows, P. Challis, I.J. Danziger, J.M. De Buizer, R.D. Gehrz, R.P. Kirshner, R.A. McCray, S. Park, E.F. Polomski, C.E. Woodward, Infrared and X-ray evidence for circumstellar grain destruction by the blast wave of supernova 1987A. Astrophys. J. 676, 1029 (2008) ADSCrossRefGoogle Scholar
  61. E. Dwek, R.G. Arendt, P. Bouchet, D.N. Burrows, P. Challis, I.J. Danziger, J.M. De Buizer, R.D. Gehrz, S. Park, E.F. Polomski, J.D. Slavin, C.E. Woodward, Five years of mid-infrared evolution of the remnant of SN 1987A: the encounter between the blast wave and the dusty equatorial ring. Astrophys. J. 722(1), 425–434 (2010) ADSCrossRefGoogle Scholar
  62. J.A. Ennis, L. Rudnick, W.T. Reach, J.D. Smith, J. Rho, T. DeLaney, H. Gomez, T. Kozasa, Spitzer IRAC images and sample spectra of Cassiopeia A’s explosion. Astrophys. J. 652, 376–386 (2006).  https://doi.org/10.1086/508142. astro-ph/0610838 ADSCrossRefGoogle Scholar
  63. G.J. Ferland, K.T. Korista, D.A. Verner, J.W. Ferguson, J.B. Kingdon, E.M. Verner, CLOUDY 90: numerical simulation of plasmas and their spectra. Publ. Astron. Soc. Pac. 110, 761–778 (1998).  https://doi.org/10.1086/316190 ADSCrossRefGoogle Scholar
  64. A. Ferrara, S. Viti, C. Ceccarelli, The problematic growth of dust in high-redshift galaxies. Mon. Not. R. Astron. Soc. 463, L112–L116 (2016).  https://doi.org/10.1093/mnrasl/slw165. 1606.07214 ADSCrossRefGoogle Scholar
  65. R.A. Fesen, J.A. Morse, R.A. Chevalier, K.J. Borkowski, C.L. Gerardy, S.S. Lawrence, S. van den Bergh, Hubble space telescope WFPC2 imaging of Cassiopeia A. Astron. J. 122, 2644–2661 (2001).  https://doi.org/10.1086/323539. astro-ph/0108193 ADSCrossRefGoogle Scholar
  66. R.A. Fesen, M.C. Hammell, J. Morse, R.A. Chevalier, K.J. Borkowski, M.A. Dopita, C.L. Gerardy, S.S. Lawrence, J.C. Raymond, S. van den Bergh, Discovery of outlying high-velocity oxygen-rich ejecta in Cassiopeia A. Astrophys. J. 636, 859–872 (2006).  https://doi.org/10.1086/498092. astro-ph/0509067 ADSCrossRefGoogle Scholar
  67. R.A. Fesen, J.A. Zastrow, M.C. Hammell, J.M. Shull, D.W. Silvia, Ejecta knot flickering, mass ablation, and fragmentation in Cassiopeia A. Astrophys. J. 736, 109 (2011).  https://doi.org/10.1088/0004-637X/736/2/109. 1105.3970. ADSCrossRefGoogle Scholar
  68. K. France, R.A. McCray, K. Heng, R.P. Kirshner, P. Challis, P. Bouchet, A. Crotts, E. Dwek, C. Fransson, P.M. Garnavich, J. Larsson, S.S. Lawrence, P. Lundqvist, N. Panagia, C.S.J. Pun, N. Smith, J. Sollerman, G. Sonneborn, J.T. Stocke, L. Wang, J.C. Wheeler, Observing supernova 1987A with the refurbished Hubble space telescope. Science 329, 1624 (2010) ADSCrossRefGoogle Scholar
  69. K.A. Frank, S.A. Zhekov, S. Park, R.A. McCray, E. Dwek, D.N. Burrows, Chandra observes the end of an era in SN 1987A. Astrophys. J. 829(1), 40 (2016) ADSCrossRefGoogle Scholar
  70. C. Fransson, J. Larsson, K. Migotto, D. Pesce, P. Challis, R.A. Chevalier, K. France, R.P. Kirshner, B. Leibundgut, P. Lundqvist, R.A. McCray, J. Spyromilio, F. Taddia, A. Jerkstrand, S. Mattila, N. Smith, J. Sollerman, J.C. Wheeler, A. Crotts, P. Garnavich, K. Heng, S.S. Lawrence, N. Panagia, C.S.J. Pun, G. Sonneborn, B.E.K. Sugerman, The destruction of the circumstellar ring of SN 1987A. Astrophys. J. 806(1), L19 (2015) ADSCrossRefGoogle Scholar
  71. B.M. Gaensler, P.O. Slane, The evolution and structure of pulsar wind nebulae. Annu. Rev. Astron. Astrophys. 44, 17–47 (2006).  https://doi.org/10.1146/annurev.astro.44.051905.092528. astro-ph/0601081 ADSCrossRefGoogle Scholar
  72. C. Gall, J. Hjorth, A.C. Andersen, Production of dust by massive stars at high redshift. Annu. Rev. Astron. Astrophys. 19, 43 (2011).  https://doi.org/10.1007/s00159-011-0043-7. 1108.0403 CrossRefGoogle Scholar
  73. P. Ghavamian, J.M. Laming, C.E. Rakowski, A physical relationship between electron-proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys. J. Lett. 654, L69–L72 (2007).  https://doi.org/10.1086/510740. astro-ph/0611306. ADSCrossRefGoogle Scholar
  74. P. Ghavamian, J.C. Raymond, W.P. Blair, K.S. Long, A. Tappe, S. Park, P.F. Winkler, Spitzer spectroscopy of the galactic supernova remnant G292.0+1.8: structure and composition of the oxygen-rich ejecta. Astrophys. J. 696, 1307–1318 (2009).  https://doi.org/10.1088/0004-637X/696/2/1307. 0902.2804 ADSCrossRefGoogle Scholar
  75. H.L. Gomez, O. Krause, M.J. Barlow, B.M. Swinyard, P.J. Owen, C.J.R. Clark, M. Matsuura, E.L. Gomez, J. Rho, M.A. Besel, J. Bouwman, W.K. Gear, T. Henning, R.J. Ivison, E.T. Polehampton, B. Sibthorpe, A cool dust factory in the Crab nebula: a Herschel study of the filaments. Astrophys. J. 760, 96 (2012).  https://doi.org/10.1088/0004-637X/760/1/96. 1209.5677 ADSCrossRefGoogle Scholar
  76. K.D. Gordon, J. Roman-Duval, C. Bot, M. Meixner, B. Babler, J.P. Bernard, A. Bolatto, M.L. Boyer, G.C. Clayton, C. Engelbracht, Y. Fukui, M. Galametz, F. Galliano, S. Hony, A. Hughes, R. Indebetouw, F.P. Israel, K. Jameson, A. Kawamura, V. Lebouteiller, A. Li, S.C. Madden, M. Matsuura, K. Misselt, E. Montiel, K. Okumura, T. Onishi, P. Panuzzo, D. Paradis, M. Rubio, K.M. Sandstrom, M. Sauvage, J. Seale, M. Sewiło, K. Tchernyshyov, R. Skibba, Dust and gas in the magellanic clouds from the heritage Herschelkey project. I. Dust properties and insights into the origin of the submillimeter excess emission. Astrophys. J. 797(2), 85 (2014) ADSCrossRefGoogle Scholar
  77. E.V. Gotthelf, B. Koralesky, L. Rudnick, T.W. Jones, U. Hwang, R. Petre, Chandra detection of the forward and reverse shocks in Cassiopeia A. Astrophys. J. 552(1), L39–L43 (2001) ADSCrossRefGoogle Scholar
  78. B.W. Grefenstette, F.A. Harrison, S.E. Boggs, S.P. Reynolds, C.L. Fryer, K.K. Madsen, D.R. Wik, A. Zoglauer, C.I. Ellinger, D.M. Alexander, H. An, D. Barret, F.E. Christensen, W.W. Craig, K. Forster, P. Giommi, C.J. Hailey, A. Hornstrup, V.M. Kaspi, T. Kitaguchi, J.E. Koglin, P.H. Mao, H. Miyasaka, K. Mori, M. Perri, M.J. Pivovaroff, S. Puccetti, V. Rana, D. Stern, N.J. Westergaard, W.W. Zhang, Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in Cassiopeia A. Nature 506(7488), 339–342 (2014) ADSCrossRefGoogle Scholar
  79. V. Guillet, Dust evolution in interstellar shocks. Theses, Université Paris Sud—Paris XI (2008). https://tel.archives-ouvertes.fr/tel-00332738
  80. M.C. Hammell, R.A. Fesen, A catalog of outer ejecta knots in the Cassiopeia A supernova remnant. Astrophys. J. Suppl. Ser. 179, 195 (2008).  https://doi.org/10.1086/591528 ADSCrossRefGoogle Scholar
  81. J.J. Hester, The Crab nebula: an astrophysical chimera. Annu. Rev. Astron. Astrophys. 46, 127–155 (2008).  https://doi.org/10.1146/annurev.astro.45.051806.110608 ADSCrossRefGoogle Scholar
  82. R.H. Hildebrand, The determination of cloud masses and dust characteristics from submillimetre thermal emission. Q. J. R. Astron. Soc. 24, 267 (1983) ADSGoogle Scholar
  83. D.C. Hines, G.H. Rieke, K.D. Gordon, J. Rho, K.A. Misselt, C.E. Woodward, M.W. Werner, O. Krause, W.B. Latter, C.W. Engelbracht, E. Egami, D.M. Kelly, J. Muzerolle, J.A. Stansberry, K.Y.L. Su, J.E. Morrison, E.T. Young, A. Noriega-Crespo, D.L. Padgett, R.D. Gehrz, E. Polomski, J.W. Beeman, E.E. Haller, Imaging of the supernova remnant Cassiopeia A with the Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. Ser. 154, 290–295 (2004).  https://doi.org/10.1086/422583 ADSCrossRefGoogle Scholar
  84. H. Hugoniot, Mémoire sur la propagation des mouvements dans les corps et spécialement dans les gaz parfaits (première partie). J. Éc. Polytech. 57, 3–97 (1887) zbMATHGoogle Scholar
  85. H. Hugoniot, Mémoire sur la propagation des mouvements dans les corps et spécialement dans les gaz parfaits (deuxième partie). J. Éc. Polytech. 58, 1–125 (1889) zbMATHGoogle Scholar
  86. U. Hwang, J.M. Laming, The circumstellar medium of Cassiopeia A inferred from the outer ejecta knot properties. Astrophys. J. 703, 883–893 (2009).  https://doi.org/10.1088/0004-637X/703/1/883. 0907.5177 ADSCrossRefGoogle Scholar
  87. U. Hwang, J.M. Laming, A Chandra X-ray survey of ejecta in the Cassiopeia A supernova remnant. Astrophys. J. 746, 130 (2012).  https://doi.org/10.1088/0004-637X/746/2/130. 1111.7316 ADSCrossRefGoogle Scholar
  88. U. Hwang, J.M. Laming, C. Badenes, F. Berendse, J.M. Blondin, D. Cioffi, T.A. DeLaney, D. Dewey, R. Fesen, K.A. Flanagan, C.L. Fryer, P. Ghavamian, J.P. Hughes, J.A. Morse, P.P. Plucinsky, R. Petre, M. Pohl, L. Rudnick, R. Sankrit, P.O. Slane, R.K. Smith, J. Vink, J.S. Warren, A million second Chandra view of Cassiopeia A. Astrophys. J. 615(2), L117–L120 (2004) ADSCrossRefGoogle Scholar
  89. R. Indebetouw, M. Matsuura, E. Dwek, G. Zanardo, M.J. Barlow, M. Baes, P. Bouchet, D.N. Burrows, R. Chevalier, G.C. Clayton, C. Fransson, B. Gaensler, R. Kirshner, M. Lakićević, K.S. Long, P. Lundqvist, I. Martí-Vidal, J. Marcaide, R. McCray, M. Meixner, C.Y. Ng, S. Park, G. Sonneborn, L. Staveley-Smith, C. Vlahakis, J. van Loon, Dust production and particle acceleration in supernova 1987A revealed with ALMA. Astrophys. J. Lett. 782, L2 (2014).  https://doi.org/10.1088/2041-8205/782/1/L2. 1312.4086 ADSCrossRefGoogle Scholar
  90. K. Isensee, G. Olmschenk, L. Rudnick, T.A. DeLaney, J. Rho, J.D. Smith, W.T. Reach, T. Kozasa, H.L. Gomez, Nucleosynthetic layers in the shocked ejecta of Cassiopeia A. Astrophys. J. 757(2), 126 (2012) ADSCrossRefGoogle Scholar
  91. H. Itoh, Shockwave model for the optical emission from oxygen-rich supernova ejecta—part two—precursor region. Publ. Astron. Soc. Jpn. 33, 521 (1981) ADSGoogle Scholar
  92. H. Itoh, The destruction of dust grains in collisions of a supernova with a circumstellar medium. Mon. Not. R. Astron. Soc. 212, 309–323 (1985).  https://doi.org/10.1093/mnras/212.2.309 ADSCrossRefGoogle Scholar
  93. P. Jakobsen, R. Albrecht, C. Barbieri, J.C. Blades, A. Boksenberg, P. Crane, J.M. Deharveng, M.J. Disney, T.M. Kamperman, I.R. King, F. Macchetto, C.D. Mackay, F. Paresce, G. Weigelt, D. Baxter, P. Greenfield, R. Jedrzejewski, A. Nota, W.B. Sparks, R.P. Kirshner, N. Panagia, First results from the faint object camera—SN 1987A. Astrophys. J. 369, L63 (1991) ADSCrossRefGoogle Scholar
  94. A.P. Jones, J.A. Nuth, Dust destruction in the ISM: a re-evaluation of dust lifetimes. Astron. Astrophys. 530, A44 (2011a).  https://doi.org/10.1051/0004-6361/201014440 ADSCrossRefGoogle Scholar
  95. A.P. Jones, J.A. Nuth III., Dust destruction in the ISM: a re-evaluation of dust lifetimes. Astron. Astrophys. 530, A44 (2011b) ADSCrossRefGoogle Scholar
  96. A.P. Jones, A.G.G.M. Tielens, D.J. Hollenbach, C.F. McKee, Grain destruction in shocks in the interstellar medium. Astrophys. J. 433, 797–810 (1994).  https://doi.org/10.1086/174689 ADSCrossRefGoogle Scholar
  97. A.P. Jones, A.G.G.M. Tielens, D.J. Hollenbach, Grain shattering in shocks: the interstellar grain size distribution. Astrophys. J. 469, 740 (1996).  https://doi.org/10.1086/177823 ADSCrossRefGoogle Scholar
  98. A.P. Jones, L. Fanciullo, M. Köhler, L. Verstraete, V. Guillet, M. Bocchio, N. Ysard, The evolution of amorphous hydrocarbons in the ISM: dust modelling from a new vantage point. Astron. Astrophys. 558, A62 (2013) ADSCrossRefGoogle Scholar
  99. A.P. Jones, M. Köhler, N. Ysard, M. Bocchio, L. Verstraete, The global dust modelling framework THEMIS. Astron. Astrophys. 602, A46 (2017) ADSCrossRefGoogle Scholar
  100. S. Jurac, R.E. Johnson, B. Donn, Monte Carlo calculations of the sputtering of grains: enhanced sputtering of small grains. Astrophys. J. 503, 247–252 (1998).  https://doi.org/10.1086/305994 ADSCrossRefGoogle Scholar
  101. V.I. Kalikmanov (ed.), Nucleation Theory. Lecture Notes in Physics, vol. 860 (Springer, Berlin, 2013).  https://doi.org/10.1007/978-90-481-3643-8 Google Scholar
  102. K. Kamper, S. van den Bergh, Optical studies of Cassiopeia A. V—A definitive study of proper motions. Astrophys. J. Suppl. Ser. 32, 351–366 (1976).  https://doi.org/10.1086/190400 ADSCrossRefGoogle Scholar
  103. R.I. Klein, C.F. McKee, P. Colella, On the hydrodynamic interaction of shock waves with interstellar clouds. 1: nonradiative shocks in small clouds. Astrophys. J. 420, 213–236 (1994).  https://doi.org/10.1086/173554 ADSCrossRefGoogle Scholar
  104. B.C.C. Koo, J.J. Lee, I.G. Jeong, J.Y. Seok, H.J. Kim, Infrared supernova remnants and their infrared-to-X-ray flux ratios. Astrophys. J. 821(1), 20 (2016) ADSCrossRefGoogle Scholar
  105. T. Kozasa, H. Hasegawa, K. Nomoto, Formation of dust grains in the ejecta of SN 1987A. Astrophys. J. 344, 325–331 (1989).  https://doi.org/10.1086/167801 ADSCrossRefGoogle Scholar
  106. O. Krause, S.M. Birkmann, T. Usuda, T. Hattori, M. Goto, G.H. Rieke, K.A. Misselt, The Cassiopeia A supernova was of Type IIb. Science 320(5880), 1195–1197 (2008) ADSCrossRefGoogle Scholar
  107. P.O. Lagage, A. Claret, J. Ballet, F. Boulanger, C.J. Cesarsky, D. Cesarsky, C. Fransson, A. Pollock, Dust formation in the Cassiopeia A supernova. Astron. Astrophys. 315, L273–L276 (1996) ADSGoogle Scholar
  108. M. Lakicevic, M. van Loon J.T. Meixner, K.D. Gordon, C. Bot, J. Roman-Duval, B. Babler, A. Bolatto, C. Engelbracht, M. Filipović, S. Hony, R. Indebetouw, K. Misselt, E. Montiel, K. Okumura, P. Panuzzo, F. Patat, M. Sauvage, J. Seale, G. Sonneborn, D. temim t Urošević, G. Zanardo, The influence of supernova remnants on the interstellar medium in the Large Magellanic Cloud seen at 20–600 μm, wavelengths Astrophys. J. 799(1), 50 (2015) ADSCrossRefGoogle Scholar
  109. J.M. Laming, U. Hwang, On the determination of ejecta structure and explosion asymmetry from the X-ray knots of Cassiopeia A. Astrophys. J. 597, 347–361 (2003).  https://doi.org/10.1086/378268. arXiv:astro-ph/0306119 ADSCrossRefGoogle Scholar
  110. J. Larsson, C. Fransson, G. Östlin, P. Groningsson, A. Jerkstrand, C. Kozma, J. Sollerman, P. Challis, R.P. Kirshner, R.A. Chevalier, K. Heng, R.A. McCray, N.B. Suntzeff, P. Bouchet, A. Crotts, I.J. Danziger, E. Dwek, K. France, P.M. Garnavich, S.S. Lawrence, B. Leibundgut, P. Lundqvist, N. Panagia, C.S.J. Pun, N. Smith, G. Sonneborn, L. Wang, J.C. Wheeler, X-ray illumination of the ejecta of supernova 1987A. Nature 474(7352), 484–486 (2011) ADSCrossRefGoogle Scholar
  111. R.M. Lau, T.L. Herter, M.R. Morris, Z. Li, J.D. Adams, Old supernova dust factory revealed at the Galactic center. Science 348(6233), 413–418 (2015) ADSCrossRefGoogle Scholar
  112. M. Limongi, A. Chieffi, The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 \(\text{M}_{\mathrm{solar}}\): the hydrostatic and explosive contributions. Astrophys. J. 647, 483–500 (2006).  https://doi.org/10.1086/505164. astro-ph/0604297 ADSCrossRefGoogle Scholar
  113. L.B. Lucy, I.J. Danziger, C. Gouiffes, P. Bouchet, Dust condensation in the ejecta of SN 1987 A, in Structure and Dynamics of the Interstellar Medium vol. 350 (1989), p. 164 CrossRefGoogle Scholar
  114. M.M. Mac Low, C.F. McKee, R.I. Klein, J.M. Stone, M.L. Norman, Shock interactions with magnetized interstellar clouds. 1: Steady shocks hitting nonradiative clouds. Astrophys. J. 433, 757–777 (1994).  https://doi.org/10.1086/174685 ADSCrossRefGoogle Scholar
  115. S. Marassi, R. Schneider, M. Limongi, A. Chieffi, M. Bocchio, S. Bianchi, The metal and dust yields of the first massive stars. Mon. Not. R. Astron. Soc. 454, 4250–4266 (2015).  https://doi.org/10.1093/mnras/stv2267. 1509.08923 ADSCrossRefGoogle Scholar
  116. J.S. Mathis, W. Rumpl, K.H. Nordsieck, The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).  https://doi.org/10.1086/155591 ADSCrossRefGoogle Scholar
  117. N. Matsunami, A semiempirical formula for the energy dependence of the sputtering yield. Radiat. Eff. 57(1–2), 15–21 (1981).  https://doi.org/10.1080/01422448008218676 CrossRefGoogle Scholar
  118. M. Matsuura, Dust and molecular formation in supernovae, in Handbook of Supernovae, ed. by W.A. Athem M. Paul (Springer, Berlin, 2017) Google Scholar
  119. M. Matsuura, E. Dwek, M. Meixner, M. Otsuka, B. Babler, M.J. Barlow, J. Roman-Duval, C. Engelbracht, K.M. Sandstrom, M. Lakicevic, G. van Loon J.T. Sonneborn, G.C. Clayton, K.S. Long, P. Lundqvist, T. Nozawa, K.D. Gordon, S. Hony, P. Panuzzo, K. Okumura, K.A. Misselt, E. Montiel, M. Sauvage, Herschel detects a massive dust reservoir in supernova 1987A. Science 333(6047), 1258–1261 (2011) ADSCrossRefGoogle Scholar
  120. M. Matsuura, E. Dwek, M.J. Barlow, B. Babler, M. Baes, M. Meixner, J. Cernicharo, G.C. Clayton, L. Dunne, C. Fransson, J. Fritz, W. Gear, H.L. Gomez, M.A.T. Groenewegen, R. Indebetouw, R.J. Ivison, A. Jerkstrand, V. Lebouteiller, T.L. Lim, P. Lundqvist, C.P. Pearson, J. Roman-Duval, P. Royer, L. Staveley-Smith, A stubbornly large mass of cold dust in the ejecta of supernova 1987A. Astrophys. J. 800, 50 (2015).  https://doi.org/10.1088/0004-637X/800/1/50. 1411.7381 ADSCrossRefGoogle Scholar
  121. L. Mattsson, H.L. Gomez, A.C. Andersen, M. Matsuura, From flux to dust mass: does the grain-temperature distribution matter for estimates of cold dust masses in supernova remnants? Mon. Not. R. Astron. Soc. 449, 4079–4090 (2015).  https://doi.org/10.1093/mnras/stv487. 1504.02664 ADSCrossRefGoogle Scholar
  122. R. McCray, Supernova 1987A revisited. Annu. Rev. Astron. Astrophys. 31, 175–216 (1993).  https://doi.org/10.1146/annurev.aa.31.090193.001135 ADSCrossRefGoogle Scholar
  123. R.A. McCray, Supernova 1987A revisited. Annu. Rev. Astron. Astrophys. 31, 175 (1993) ADSCrossRefGoogle Scholar
  124. R.A. McCray, C. Fransson, The remnant of supernova 1987A. Annu. Rev. Astron. Astrophys. 54(1), 19–52 (2016) ADSCrossRefGoogle Scholar
  125. C. McKee, Dust destruction in the interstellar medium, in Proceedings of the International Astronomical Union, vol. 135 (1989), p. 431 Google Scholar
  126. C.F. McKee, J.P. Ostriker, A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148 (1977) ADSCrossRefGoogle Scholar
  127. C.F. McKee, D.J. Hollenbach, G.C. Seab, A.G.G.M. Tielens, The structure of the time-dependent interstellar shocks and grain destruction in the interstellar medium. Astrophys. J. 318, 674–701 (1987).  https://doi.org/10.1086/165403 ADSCrossRefGoogle Scholar
  128. V. Mennella, J.R. Brucato, L. Colangeli, P. Palumbo, A. Rotundi, E. Bussoletti, Temperature dependence of the absorption coefficient of cosmic analog grains in the wavelength range 20 microns to 2 millimeters. Astrophys. J. 496(2), 1058–1066 (1998) ADSCrossRefGoogle Scholar
  129. E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, Polycyclic aromatic hydrocarbon processing in a hot gas. Astron. Astrophys. 510, A37 (2010a).  https://doi.org/10.1051/0004-6361/200911683. 0912.1595 ADSCrossRefGoogle Scholar
  130. E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, Polycyclic aromatic hydrocarbon processing in interstellar shocks. Astron. Astrophys. 510, A36 (2010b).  https://doi.org/10.1051/0004-6361/200911682. 0910.2461 ADSCrossRefGoogle Scholar
  131. E.R. Micelotta, E. Dwek, J.D. Slavin, Dust destruction by the reverse shock in the Cassiopeia A supernova remnant. Astron. Astrophys. 590, A65 (2016).  https://doi.org/10.1051/0004-6361/201527350. 1602.02754 ADSCrossRefGoogle Scholar
  132. D. Milisavljevic, R.A. Fesen, A detailed kinematic map of Cassiopeia A’s optical main shell and outer high-velocity ejecta. Astrophys. J. 772, 134 (2013).  https://doi.org/10.1088/0004-637X/772/2/134. 1306.2310 ADSCrossRefGoogle Scholar
  133. D. Milisavljevic, R.A. Fesen, The bubble-like interior of the core-collapse supernova remnant Cassiopeia A. Science 347(6221), 526–530 (2015) ADSCrossRefGoogle Scholar
  134. J.A. Morse, R.A. Fesen, R.A. Chevalier, K.J. Borkowski, C.L. Gerardy, S.S. Lawrence, S. van den Bergh, Location of the optical reverse shock in the Cassiopeia A supernova remnant. Astrophys. J. 614, 727–736 (2004).  https://doi.org/10.1086/423709 ADSCrossRefGoogle Scholar
  135. S.H. Moseley, E. Dwek, W. Glaccum, J.R. Graham, R.F. Loewenstein, Far-infrared observations of thermal dust emission from supernova 1987A. Nature 340, 697–699 (1989).  https://doi.org/10.1038/340697a0 ADSCrossRefGoogle Scholar
  136. F. Nakamura, C.F. McKee, R.I. Klein, R.T. Fisher, On the hydrodynamic interaction of shock waves with interstellar clouds. II. The effect of smooth cloud boundaries on cloud destruction and cloud turbulence. Astrophys. J. Suppl. Ser. 164, 477–505 (2006).  https://doi.org/10.1086/501530. astro-ph/0511016 ADSCrossRefGoogle Scholar
  137. B.B. Nath, T. Laskar, J.M. Shull, Dust sputtering by reverse shocks in supernova remnants. Astrophys. J. 682, 1055–1064 (2008).  https://doi.org/10.1086/589224. 0804.3472 ADSCrossRefGoogle Scholar
  138. K. Nomoto, K. Iwamoto, T. Suzuki, O.R. Pols, H. Yamaoka, M. Hashimoto, P. Hoflich, E.P.J. van den Heuvel, The origin of Type Ib-Ic-IIb-IIL supernovae and binary star evolution, in Compact Stars in Binaries, IAU Symposium, vol. 165, ed. by J. van Paradijs, E.P.J. van den Heuvel, E. Kuulkers (1996), p. p 119 CrossRefGoogle Scholar
  139. K.I. Nomoto, K. Iwamoto, T. Suzuki, The evolution and explosion of massive binary stars and Type Ib-Ic-IIb-IIL supernovae. Phys. Rep. 256, 173–191 (1995).  https://doi.org/10.1016/0370-1573(94)00107-E ADSCrossRefGoogle Scholar
  140. M.L. Norman, G.L. Bryan, Cosmological adaptive mesh refinement\(^{CD}\), in Numerical Astrophysics, Astrophys. Space Sci. Library, vol. 240, ed. by S.M. Miyama, K. Tomisaka, T. Hanawa (1999), p. 19.  https://doi.org/10.1007/978-94-011-4780-4_3. astro-ph/9807121 Google Scholar
  141. T. Nozawa, T. Kozasa, H. Umeda, K. Maeda, K. Nomoto, Dust in the early universe: dust formation in the ejecta of population III supernovae. Astrophys. J. 598, 785–803 (2003).  https://doi.org/10.1086/379011. astro-ph/0307108 ADSCrossRefGoogle Scholar
  142. T. Nozawa, T. Kozasa, A. Habe, Dust destruction in the high-velocity shocks driven by supernovae in the early universe. Astrophys. J. 648, 435–451 (2006).  https://doi.org/10.1086/505639. astro-ph/0605193 ADSCrossRefGoogle Scholar
  143. T. Nozawa, T. Kozasa, A. Habe, E. Dwek, H. Umeda, N. Tominaga, K. Maeda, K. Nomoto, Evolution of dust in primordial supernova remnants: can dust grains formed in the ejecta survive and be injected into the early interstellar medium? Astrophys. J. 666, 955–966 (2007).  https://doi.org/10.1086/520621. 0706.0383 ADSCrossRefGoogle Scholar
  144. T. Nozawa, T. Kozasa, N. Tominaga, K. Maeda, H. Umeda, K. Nomoto, O. Krause, Formation and evolution of dust in type IIb supernovae with application to the Cassiopeia A supernova remnant. Astrophys. J. 713, 356–373 (2010).  https://doi.org/10.1088/0004-637X/713/1/356. 0909.4145 ADSCrossRefGoogle Scholar
  145. S. Orlando, G. Peres, F. Reale, F. Bocchino, R. Rosner, T. Plewa, A. Siegel, Crushing of interstellar gas clouds in supernova remnants. I. The role of thermal conduction and radiative losses. Astron. Astrophys. 444, 505–519 (2005).  https://doi.org/10.1051/0004-6361:20052896. astro-ph/0508638 ADSCrossRefGoogle Scholar
  146. B.W. O’Shea, G.L. Bryan, J. Bordner, M.L. Norman, T. Abel, R. Harkness, A. Kritsuk, Introducing Enzo, an AMR cosmology application, in Adaptive Mesh Refinement—Theory and Applications. Lecture Notes in Computational Science and Engineering, vol. 41 (Springer, Berlin, 2005) Google Scholar
  147. V. Ossenkopf, T. Henning, J.S. Mathis, Constraints on cosmic silicates. Astron. Astrophys. 261, 567 (1992) ADSGoogle Scholar
  148. M. Otsuka, J.T. van Loon, K.S. Long, M. Meixner, M. Matsuura, W.T. Reach, J. Roman-Duval, K. Gordon, M. Sauvage, S. Hony, K. Misselt, C. Engelbracht, P. Panuzzo, K. Okumura, P.M. Woods, F. Kemper, G.C. Sloan, Dust in the bright supernova remnant N49 in the LMC. Astron. Astrophys. 518, L139 (2010).  https://doi.org/10.1051/0004-6361/201014642. 1005.2787 ADSCrossRefGoogle Scholar
  149. P.J. Owen, M.J. Barlow, The dust and gas content of the Crab nebula. Astrophys. J. 801, 141 (2015).  https://doi.org/10.1088/004-637X/801/2/141. 1501.01510 ADSCrossRefGoogle Scholar
  150. T. Padmanabhan, Theoretical Astrophysics, vol. 2. Stars and Stellar Systems (Springer, Berlin, 2001).  https://doi.org/10.2277/0521562414 zbMATHCrossRefGoogle Scholar
  151. N. Panagia, R. Gilmozzi, F. Macchetto, H.M. Adorf, R.P. Kirshner, Properties of the SN 1987A circumstellar ring and the distance to the Large Magellanic Cloud. Astrophys. J. 380, L23–L26 (1991) ADSCrossRefGoogle Scholar
  152. D.J. Patnaude, R.A. Fesen, Model simulations of a shock-cloud interaction in the Cygnus Loop. Astrophys. J. 633, 240–247 (2005).  https://doi.org/10.1086/452627. astro-ph/0507330 ADSCrossRefGoogle Scholar
  153. W.J.M. Rankine, On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. Lond. 160, 277–288 (1870).  https://doi.org/10.1098/rstl.1870.0015. http://rstl.royalsocietypublishing.org/content/160/277.short. http://rstl.royalsocietypublishing.org/content/160/277.full.pdf+html CrossRefGoogle Scholar
  154. T. Rauscher, A. Heger, R.D. Hoffman, S.E. Woosley, Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002).  https://doi.org/10.1086/341728. astro-ph/0112478 ADSCrossRefGoogle Scholar
  155. J.C. Raymond, P. Ghavamian, B.J. Williams, W.P. Blair, K.J. Borkowski, T.J. Gaetz, R. Sankrit, Grain destruction in A supernova remnant shock wave. Astrophys. J. 778(2), 161 (2013) ADSCrossRefGoogle Scholar
  156. S.P. Reynolds, Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008).  https://doi.org/10.1146/annurev.astro.46.060407.145237 ADSCrossRefGoogle Scholar
  157. J. Rho, T. Kozasa, W.T. Reach, J.D. Smith, L. Rudnick, T. DeLaney, J.A. Ennis, H. Gomez, A. Tappe, Freshly formed dust in the Cassiopeia A supernova remnant as revealed by the Spitzer Space Telescope. Astrophys. J. 673, 271–282 (2008).  https://doi.org/10.1086/523835. 0709.2880 ADSCrossRefGoogle Scholar
  158. J. Rho, T.H. Jarrett, W.T. Reach, H. Gomez, M. Andersen, Carbon monoxide in the Cassiopeia A supernova remnant. Astrophys. J. Lett. 693, L39–L43 (2009).  https://doi.org/10.1088/0004-637X/693/1/L39. 0901.2308 ADSCrossRefGoogle Scholar
  159. J. Rho, W.T. Reach, A. Tappe, U. Hwang, J.D. Slavin, T. Kozasa, L. Dunne, Spitzer observations of the young core-collapse supernova remnant 1E0102-72.3: infrared ejecta emission and dust formation. Astrophys. J. 700, 579–596 (2009b).  https://doi.org/10.1088/0004-637X/700/1/579 ADSCrossRefGoogle Scholar
  160. J. Rho, W.T. Reach, A. Tappe, L. Rudnick, T. Kozasa, U. Hwang, M. Andersen, H. Gomez, T. Delaney, L. Dunne, J. Slavin, Dust formation observed in young supernova remnants with Spitzer, in Cosmic Dust—Near and Far, ed. by T. Henning, E. Grün, J. Steinacker. Astronomical Society of the Pacific Conference Series, vol. 414 (2009c), p. p 22. 0901.1699 Google Scholar
  161. J. Rho, T. Onaka, J. Cami, W.T. Reach, Spectroscopic detection of carbon monoxide in the young supernova remnant Cassiopeia A. Astrophys. J. Lett. 747, L6 (2012).  https://doi.org/10.1088/2041-8205/747/1/L6. 1202.4540 ADSCrossRefGoogle Scholar
  162. E.E. Salpeter, Formation and destruction of dust grains. Annu. Rev. Astron. Astrophys. 15(1), 267–293 (1977) ADSCrossRefGoogle Scholar
  163. K.M. Sandstrom, A.D. Bolatto, S. Stanimirović, J.T. van Loon, J.D.T. Smith, Measuring dust production in the small Magellanic Cloud core-collapse supernova remnant 1E 0102.2-7219. Astrophys. J. 696, 2138–2154 (2009).  https://doi.org/10.1088/0004-637X/696/2/2138. 0810.2803 ADSCrossRefGoogle Scholar
  164. R. Sankrit, B.J. Williams, K.J. Borkowski, T.J. Gaetz, J.C. Raymond, W.P. Blair, P. Ghavamian, K.S. Long, S.P. Reynolds, Dust destruction in a non-radiative shock in the Cygnus Loop supernova remnant. Astrophys. J. 712(2), 1092–1099 (2010) ADSCrossRefGoogle Scholar
  165. A. Sarangi, I. Cherchneff, The chemically controlled synthesis of dust in Type II-P supernovae. Astrophys. J. 776, 107 (2013).  https://doi.org/10.1088/0004-637X/776/2/107. 1309.5887 ADSCrossRefGoogle Scholar
  166. A. Sarangi, I. Cherchneff, Condensation of dust in the ejecta of Type II-P supernovae. Astron. Astrophys. 575, A95 (2015).  https://doi.org/10.1051/0004-6361/201424969. 1412.5522 ADSCrossRefGoogle Scholar
  167. A. Sarangi, M. Matsuura, E. Micelotta, Dust in supernovae and supernova remnants I: formation scenarios. Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-0484-7 Google Scholar
  168. C.L. Sarazin, R.E. White III, Steady state cooling flow models for normal elliptical galaxies. Astrophys. J. 320, 32–48 (1987).  https://doi.org/10.1086/165522 ADSCrossRefGoogle Scholar
  169. B.D. Savage, K.R. Sembach, Interstellar abundances from absorption-line observations with the Hubble space telescope. Annu. Rev. Astron. Astrophys. 34(1), 279–329 (1996) ADSCrossRefGoogle Scholar
  170. R. Schneider, A. Ferrara, R. Salvaterra, Dust formation in very massive primordial supernovae. Mon. Not. R. Astron. Soc. 351, 1379–1386 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07876.x. astro-ph/0307087 ADSCrossRefGoogle Scholar
  171. C.G. Seab, J.M. Shull, Shock processing of interstellar grains. Astrophys. J. 275, 652–660 (1983).  https://doi.org/10.1086/161563 ADSCrossRefGoogle Scholar
  172. L.I. Sedov, Similarity and Dimensional Methods in Mechanics (1959) zbMATHGoogle Scholar
  173. J.Y. Seok, B.C.C. Koo, T. Onaka, A survey of infrared supernova remnants in the Large Magellanic Cloud. Astrophys. J. 779(2), 134 (2013) ADSCrossRefGoogle Scholar
  174. J.Y. Seok, B.C. Koo, H. Hirashita, Dust cooling in supernova remnants in the Large Magellanic Cloud. Astrophys. J. 807, 100 (2015).  https://doi.org/10.1088/0004-637X/807/1/100. 1506.07926 ADSCrossRefGoogle Scholar
  175. L. Serra Díaz-Cano, A.P. Jones, Carbonaceous dust in interstellar shock waves: hydrogenated amorphous carbon (a-C:H) vs. graphite. Astron. Astrophys. 492, 127–133 (2008).  https://doi.org/10.1051/0004-6361:200810622 ADSCrossRefGoogle Scholar
  176. J.M. Shull, Disruption and sputtering of grains in intermediate-velocity interstellar clouds. Astrophys. J. 226, 858–862 (1978).  https://doi.org/10.1086/156666 ADSCrossRefGoogle Scholar
  177. P. Sigmund, Sputtering by Particle Bombardment, vol. 1. Topics in Applied Physics, vol. 47 (Springer, Berlin, 1981) Google Scholar
  178. D.W. Silvia, B.D. Smith, J.M. Shull, Numerical simulations of supernova dust destruction. I. Cloud-crushing and post-processed grain sputtering. Astrophys. J. 715, 1575–1590 (2010).  https://doi.org/10.1088/0004-637X/715/2/1575. 1001.4793 ADSCrossRefGoogle Scholar
  179. D.W. Silvia, B.D. Smith, J.M. Shull, Numerical simulations of supernova dust destruction. II. Metal-enriched ejecta knots. Astrophys. J. 748, 12 (2012).  https://doi.org/10.1088/0004-637X/748/1/12. 1111.0302 ADSCrossRefGoogle Scholar
  180. J.D. Slavin, E. Dwek, A.P. Jones, Destruction of interstellar dust in evolving supernova remnant shock waves. Astrophys. J. 803, 7 (2015).  https://doi.org/10.1088/0004-637X/803/1/7. 1502.00929 ADSCrossRefGoogle Scholar
  181. J.D.T. Smith, L. Rudnick, T. Delaney, J. Rho, H. Gomez, T. Kozasa, W. Reach, K. Isensee, Spitzer spectral mapping of supernova remnant Cassiopeia A. Astrophys. J. 693, 713–721 (2009).  https://doi.org/10.1088/0004-637X/693/1/713. 0810.3014 ADSCrossRefGoogle Scholar
  182. J.M. Stone, M.L. Norman, The three-dimensional interaction of a supernova remnant with an interstellar cloud. Astrophys. J. Lett. 390, L17–L19 (1992).  https://doi.org/10.1086/186361 ADSCrossRefGoogle Scholar
  183. R.S. Sutherland, M.A. Dopita, Young oxygen-rich supernova remnants. 2: an oxygen-rich emission mechanism. Astrophys. J. 439, 381–398 (1995).  https://doi.org/10.1086/175181 ADSCrossRefGoogle Scholar
  184. G. Taylor, The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. Ser. A 201, 159–174 (1950).  https://doi.org/10.1098/rspa.1950.0049 ADSzbMATHCrossRefGoogle Scholar
  185. T. Temim, E. Dwek, The importance of physical models for deriving dust masses and grain size distributions in supernova ejecta. I. Radiatively heated dust in the Crab nebula. Astrophys. J. 774, 8 (2013).  https://doi.org/10.1088/0004-637X/774/1/8. 1302.5452 ADSCrossRefGoogle Scholar
  186. T. Temim, P. Slane, S.P. Reynolds, J.C. Raymond, K.J. Borkowski, Deep Chandra observations of the Crab-like pulsar wind nebula G54.1+0.3 and Spitzer spectroscopy of the associated infrared shell. Astrophys. J. 710, 309–324 (2010).  https://doi.org/10.1088/0004-637X/710/1/309. 0912.4538 ADSCrossRefGoogle Scholar
  187. T. Temim, E. Dwek, K. Tchernyshyov, M.L. Boyer, M. Meixner, C. Gall, J. Roman-Duval, Dust destruction rates and lifetimes in the Magellanic Clouds. Astrophys. J. 799, 158 (2015).  https://doi.org/10.1088/0004-637X/799/2/158. 1411.4574 ADSCrossRefGoogle Scholar
  188. T. Temim, E. Dwek, R.G. Arendt, K.J. Borkowski, S.P. Reynolds, P. Slane, J.D. Gelfand, J.C. Raymond, A massive shell of supernova-formed dust in SNR G54.1+0.3. Astrophys. J. 836, 129 (2017).  https://doi.org/10.3847/1538-4357/836/1/129. 1701.01117 ADSCrossRefGoogle Scholar
  189. A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press, Cambridge, 2010) Google Scholar
  190. A.G.G.M. Tielens, C.F. McKee, C.G. Seab, D.J. Hollenbach, The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks. Astrophys. J. 431, 321–340 (1994).  https://doi.org/10.1086/174488 ADSCrossRefGoogle Scholar
  191. P. Todini, A. Ferrara, Dust formation in primordial Type II supernovae. Mon. Not. R. Astron. Soc. 325, 726–736 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04486.x. astro-ph/0009176 ADSCrossRefGoogle Scholar
  192. J.K. Truelove, C.F. McKee, Evolution of nonradiative supernova remnants. Astrophys. J. Suppl. Ser. 120, 299–326 (1999).  https://doi.org/10.1086/313176 ADSCrossRefGoogle Scholar
  193. H. Umeda, K. Nomoto, Nucleosynthesis of zinc and iron peak elements in population III Type II supernovae: comparison with abundances of very metal poor halo stars. Astrophys. J. 565, 385–404 (2002).  https://doi.org/10.1086/323946. astro-ph/0103241 ADSCrossRefGoogle Scholar
  194. M. van Adelsberg, K. Heng, R. McCray, J.C. Raymond, Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys. J. 689, 1089–1104 (2008).  https://doi.org/10.1086/592680. 0803.2521 ADSCrossRefGoogle Scholar
  195. E. van der Swaluw, A. Achterberg, Y.A. Gallant, T.P. Downes, R. Keppens, Interaction of high-velocity pulsars with supernova remnant shells. Astron. Astrophys. 397, 913–920 (2003).  https://doi.org/10.1051/0004-6361:20021488. astro-ph/0202232 ADSCrossRefGoogle Scholar
  196. O. Vancura, J.C. Raymond, E. Dwek, W.P. Blair, K.S. Long, S. Foster, A study of X-ray and infrared emissions from dusty nonradiative shock waves. Astrophys. J. 431, 188–200 (1994).  https://doi.org/10.1086/174477 ADSCrossRefGoogle Scholar
  197. J. Vink, J.S. Kaastra, J.A.M. Bleeker, A new mass estimate and puzzling abundances of SNR Cassiopeia A. Astron. Astrophys. 307, L41–L44 (1996) ADSGoogle Scholar
  198. S.H.J. Wallström, C. Biscaro, F. Salgado, J.H. Black, I. Cherchneff, S. Muller, O. Berné, J. Rho, A.G.G.M. Tielens, CO rotational line emission from a dense knot in Cassiopeia A. Evidence for active post-reverse-shock chemistry. Astron. Astrophys. 558, L2 (2013).  https://doi.org/10.1051/0004-6361/201322576. 1309.4229 ADSCrossRefGoogle Scholar
  199. D. Watson, L. Christensen, K.K. Knudsen, J. Richard, A. Gallazzi, M.J. Michałowski, A dusty, normal galaxy in the epoch of reionization. Nature 519, 327–330 (2015).  https://doi.org/10.1038/nature14164. 1503.00002 ADSCrossRefGoogle Scholar
  200. K.W. Weiler, R.A. Sramek, Supernovae and supernova remnants (1988). Annu. Rev. Astron. Astrophys. 26:295–341,  https://doi.org/10.1146/annurev.aa.26.090188.001455
  201. J.C. Weingartner, B.T. Draine, Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296 (2001) ADSCrossRefGoogle Scholar
  202. R. Wesson, M.J. Barlow, M. Matsuura, B. Ercolano, The timing and location of dust formation in the remnant of SN 1987A. Mon. Not. R. Astron. Soc. 446(2), 2089–2101 (2014) ADSCrossRefGoogle Scholar
  203. P.A. Whitelock, R.M. Catchpole, J.W. Menzies, M.W. Feast, S.E. Woosley, D. Alen, F. van Wyk, F. Marang, C.D. Laney, H. Winkler, K. Sekiguchi, L.A. Balona, B.S. Carter, J.H. Spencer Jones, J.D. Laing, T.L. Evans, A.P. Fairall, D.A.H. Buckley, I.S. Glass, M.V. Penston, L.N. da Costa, S.A. Bell, C. Hellier, M. Shara, A.F.J. Moffat, Spectroscopic and photometric observations of SN1987A. VI—Days 617 to 792. Mon. Not. R. Astron. Soc. 240, 7–24 (1989) ADSCrossRefGoogle Scholar
  204. B.J. Williams, T. Temim, Infrared emission from supernova remnants: formation and destruction of dust (2016).  https://doi.org/10.1007/978-3-319-20794-0_94-1
  205. B.J. Williams, K.J. Borkowski, S.P. Reynolds, W.P. Blair, P. Ghavamian, S.P. Hendrick, K.S. Long, S. Points, J.C. Raymond, R. Sankrit, R.C. Smith, P.F. Winkler, Dust destruction in fast shocks of core-collapse supernova remnants in the Large Magellanic Cloud. Astrophys. J. 652(1), L33–L36 (2006) ADSCrossRefGoogle Scholar
  206. B.J. Williams, K.J. Borkowski, S.P. Reynolds, P. Ghavamian, W.P. Blair, K.S. Long, R. Sankrit, Dust in a type Ia supernova progenitor: Spitzer spectroscopy of Kepler’s supernova remnant. Astrophys. J. 755(1), 3 (2012) ADSCrossRefGoogle Scholar
  207. R. Willingale, J.A.M. Bleeker, K.J. bparticevan der Heyden, J.S. Kaastra, J. Vink, X-ray spectral imaging and Doppler mapping of Cassiopeia A. Astron. Astrophys. 381, 1039–1048 (2002).  https://doi.org/10.1051/0004-6361:20011614. astro-ph/0107270 ADSCrossRefGoogle Scholar
  208. J. Wilms, Supernova Remnants. X-ray Astronomy II, University of Erlangen-Nuremberg 4 (2012). http://pulsar.sternwarte.uni-erlangen.de/wilms/teach/xray2_0809/xray2chap4toc.html
  209. A. Wongwathanarat, E. Müller, H.T. Janka, Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout. Astron. Astrophys. 577, A48 (2015).  https://doi.org/10.1051/0004-6361/201425025. 1409.5431 ADSCrossRefGoogle Scholar
  210. D.H. Wooden, Observational evidence for mixing and dust condensation in core-collapse supernovae, in American Institute of Physics Conference Series, ed. by E.K. Zinner, T.J. Bernatowicz. American Institute of Physics Conference Series, vol. 402 (1997), pp. 317–376.  https://doi.org/10.1063/1.53315 Google Scholar
  211. D.H. Wooden, D.M. Rank, J.D. Bregman, F.C. Witteborn, A.G.G.M. Tielens, M. Cohen, P.A. Pinto, T.S. Axelrod, Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns—time history of the dust continuum and line emission. Astron. Astrophys. Suppl. Ser. 88, 477 (1993). (ISSN 0067-0049) ADSCrossRefGoogle Scholar
  212. S.E. Woosley, T.A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181 (1995).  https://doi.org/10.1086/192237 ADSCrossRefGoogle Scholar
  213. H. Yamaguchi, K.A. Eriksen, C. Badenes, J.P. Hughes, N.S. Brickhouse, A.R. Foster, D.J. Patnaude, R. Petre, P.O. Slane, R.K. Smith, New evidence for efficient collisionless heating of electrons at the reverse shock of a young supernova remnant. Astrophys. J. 780, 136 (2014).  https://doi.org/10.1088/0004-637X/780/2/136. 1310.8355 ADSCrossRefGoogle Scholar
  214. T. Yamamoto, H. Hasegawa, Grain formation through nucleation process in astrophysical environment. Prog. Theor. Phys. 58, 816–828 (1977).  https://doi.org/10.1143/PTP.58.816 ADSCrossRefGoogle Scholar
  215. G. Zanardo, L. Staveley-Smith, L. Ball, B.M. Gaensler, M.J. Kesteven, R.N. Manchester, C.Y. Ng, A.K. Tzioumis, T.M. Potter, Multifrequency radio measurements of supernova 1987A over 22 years. Astrophys. J. 710(2), 1515–1529 (2010) ADSCrossRefGoogle Scholar
  216. G. Zanardo, L. Staveley-Smith, C.Y. Ng, B.M. Gaensler, T.M. Potter, R.N. Manchester, A.K. Tzioumis, High-resolution radio observations of the remnant of SN 1987A at high frequencies. Astrophys. J. 767(2), 98 (2013) ADSCrossRefGoogle Scholar
  217. G. Zanardo, L. Staveley-Smith, R. Indebetouw, R.A. Chevalier, M. Matsuura, B.M. Gaensler, M.J. Barlow, C. Fransson, R.N. Manchester, M. Baes, J.R. Kamenetzky, M. Lakićević, P. Lundqvist, J.M. Marcaide, I. Marti-Vidal, M. Meixner, C.Y. Ng, S. Park, G. Sonneborn, J. Spyromilio, J.T. van Loon, Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA Astrophys. J. 796(2), 82 (2014) ADSCrossRefGoogle Scholar
  218. E. Zinner, Stardust in the laboratory. Publ. Astron. Soc. Aust. 25, 7–17 (2008).  https://doi.org/10.1071/AS07039 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HelsinkiFinland
  2. 2.School of Physics & AstronomyCardiff UniversityCardiffUK
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Physics DepartmentThe Catholic University of AmericaWashingtonUSA

Personalised recommendations