Space Science Reviews

, 214:47 | Cite as

The Delivery of Water During Terrestrial Planet Formation

  • David P. O’Brien
  • Andre Izidoro
  • Seth A. Jacobson
  • Sean N. Raymond
  • David C. Rubie
Article
Part of the following topical collections:
  1. The Delivery of Water to Protoplanets, Planets and Satellites

Abstract

The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.

Keywords

Terrestrial planet formation Water delivery 

Notes

Acknowledgements

We thank the International Space Science Institute (ISSI) for organizing and supporting the workshop “The Delivery of Water to Protoplanets, Planets and Satellites”, and an anonymous reviewer for their helpful comments and suggestions. AI acknowledges financial support from FAPESP through grants number 16/12686-2 and 16/19556-7. SNR acknowledges Agence Nationale pour la Recherche grant ANR-13-BS05-0003-002 (grant MOJO). DCR and SAJ were supported by the European Research Council Advanced Grant “ACCRETE” (contract number 290568), and additional support to DCR was provided by the German Science Foundation (DFG) Priority Programme SPP1833 “Building a Habitable Earth” (Ru1323/10-1).

References

  1. Y. Abe, E. Ohtani, T. Okuchi, K. Righter, M. Drake, Water in the early earth, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 413–433 Google Scholar
  2. I. Adachi, C. Hayashi, K. Nakazawa, The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog. Theor. Phys. 56, 1756–1771 (1976).  https://doi.org/10.1143/PTP.56.1756 ADSCrossRefGoogle Scholar
  3. C.M.O.’D. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721 (2012).  https://doi.org/10.1126/science.1223474 ADSCrossRefGoogle Scholar
  4. C.M.O.’D. Alexander, K.D. McKeegan, K. Altwegg, Water reservoirs in small planetary bodies: meteorites, asteroids, and comets. Space Sci. Rev. (2018, in press).  https://doi.org/10.1007/s11214-018-0474-9 Google Scholar
  5. K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C.Y. Tzou, H. Waite, P. Wurz, 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(27), 1261952 (2015).  https://doi.org/10.1126/science.1261952 CrossRefGoogle Scholar
  6. Y. Amelin, A.N. Krot, I.D. Hutcheon, A.A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002).  https://doi.org/10.1126/science.1073950 ADSCrossRefGoogle Scholar
  7. P.J. Armitage, Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys. 49, 195–236 (2011).  https://doi.org/10.1146/annurev-astro-081710-102521 ADSCrossRefGoogle Scholar
  8. A. Asaduzzaman, K. Muralidharan, J. Ganguly, Incorporation of water into olivine during nebular condensation: insights from density functional theory and thermodynamics, and implications for phyllosilicate formation and terrestrial water inventory. Meteorit. Planet. Sci. 50, 578–589 (2015).  https://doi.org/10.1111/maps.12409 ADSCrossRefGoogle Scholar
  9. G. Avice, B. Marty, The iodine-plutonium-xenon age of the Moon-Earth system revisited. Philos. Trans. R. Soc. Lond. Ser. A 372, 20130260 (2014).  https://doi.org/10.1098/rsta.2013.0260 ADSCrossRefGoogle Scholar
  10. J. Badro, A.S. Côté, J.P. Brodholt, A seismologically consistent compositional model of Earth’s core. Proc. Natl. Acad. Sci. 111, 7542–7545 (2014).  https://doi.org/10.1073/pnas.1316708111 ADSCrossRefGoogle Scholar
  11. K. Baillié, S. Charnoz, E. Pantin, Time evolution of snow regions and planet traps in an evolving protoplanetary disk. Astron. Astrophys. 577, 65 (2015).  https://doi.org/10.1051/0004-6361/201424987 ADSCrossRefGoogle Scholar
  12. V.R. Baker, Geomorphological evidence for water on Mars. Elements 2(3), 139–143 (2007).  https://doi.org/10.2113/gselements.2.3.139 CrossRefGoogle Scholar
  13. B. Bitsch, A. Johansen, M. Lambrechts, A. Morbidelli, The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, 28 (2015).  https://doi.org/10.1051/0004-6361/201424964 ADSCrossRefGoogle Scholar
  14. W.F. Bottke, D. Vokrouhlický, D. Minton, D. Nesvorný, A. Morbidelli, R. Brasser, B. Simonson, H.F. Levison, An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).  https://doi.org/10.1038/nature10967 ADSCrossRefGoogle Scholar
  15. A. Bouvier, M. Wadhwa, The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010).  https://doi.org/10.1038/ngeo941 ADSCrossRefGoogle Scholar
  16. R. Brasser, S. Matsumura, S. Ida, S.J. Mojzsis, S.C. Werner, Analysis of terrestrial planet formation by the Grand Tack Model: system architecture and tack location. Astrophys. J. 821, 75 (2016).  https://doi.org/10.3847/0004-637X/821/2/75 ADSCrossRefGoogle Scholar
  17. B.C. Bromley, S.J. Kenyon, A hybrid N-body-coagulation code for planet formation. Astron. J. 131, 2737–2748 (2006).  https://doi.org/10.1086/503280 ADSCrossRefGoogle Scholar
  18. T.H. Burbine, T.J. McCoy, A. Meibom, B. Gladman, K. Keil, Meteoritic parent bodies: their number and identification, in Asteroids III, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 653–667 Google Scholar
  19. A.G.W. Cameron, Higher-resolution Simulations of the Giant Impact, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter, et al.(University of Arizona Press, Tucson, 2000), pp. 133–144 Google Scholar
  20. H. Campins, K. Hargrove, N. Pinilla-Alonso, E.S. Howell, M.S. Kelley, J. Licandro, T. Mothé-Diniz, Y. Fernández, J. Ziffer, Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010).  https://doi.org/10.1038/nature09029 ADSCrossRefGoogle Scholar
  21. R.M. Canup, Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).  https://doi.org/10.1016/j.icarus.2003.09.028 ADSCrossRefGoogle Scholar
  22. R.M. Canup, Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).  https://doi.org/10.1126/science.1226073 ADSCrossRefGoogle Scholar
  23. R.M. Canup, E. Asphaug, Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).  https://doi.org/10.1038/35089010 ADSCrossRefGoogle Scholar
  24. J.E. Chambers, Making more terrestrial planets. Icarus 152, 205–224 (2001).  https://doi.org/10.1006/icar.2001.6639 ADSCrossRefGoogle Scholar
  25. J.E. Chambers, Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004).  https://doi.org/10.1016/j.epsl.2004.04.031 ADSCrossRefGoogle Scholar
  26. J.E. Chambers, Planetesimal formation by turbulent concentration. Icarus 208, 505–517 (2010).  https://doi.org/10.1016/j.icarus.2010.03.004 ADSCrossRefGoogle Scholar
  27. J.E. Chambers, Pebble accretion and the diversity of planetary systems. Astrophys. J. 825, 63 (2016).  https://doi.org/10.3847/0004-637X/825/1/63 ADSCrossRefGoogle Scholar
  28. J.E. Chambers, D.P. O’Brien, A.M. Davis, Accretion of planetesimals and the formation of rocky planets, in Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, ed. by D.A. Apai, D.S. Lauretta (2010), pp. 299–335 CrossRefGoogle Scholar
  29. C.R. Chapman, B.A. Cohen, D.H. Grinspoon, What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189, 233–245 (2007).  https://doi.org/10.1016/j.icarus.2006.12.020 ADSCrossRefGoogle Scholar
  30. C.F. Chyba, The cometary contribution to the oceans of primitive earth. Nature 330, 632–635 (1987).  https://doi.org/10.1038/330632a0 ADSCrossRefGoogle Scholar
  31. F. Ciesla, D. Lauretta, Radial migration and dehydration of phyllosilicates in the solar nebula. Earth Planet. Sci. Lett. 231, 1–8 (2005).  https://doi.org/10.1016/j.epsl.2004.12.022 ADSCrossRefGoogle Scholar
  32. J.N. Connelly, M. Bizzarro, A.N. Krot, Å. Nordlund, D. Wielandt, M.A. Ivanova, The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).  https://doi.org/10.1126/science.1226919 ADSCrossRefGoogle Scholar
  33. M. Ćuk, S.T. Stewart, Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).  https://doi.org/10.1126/science.1225542 ADSCrossRefGoogle Scholar
  34. J.N. Cuzzi, R.C. Hogan, J.M. Paque, A.R. Dobrovolskis, Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001).  https://doi.org/10.1086/318233 ADSCrossRefGoogle Scholar
  35. J.N. Cuzzi, R.C. Hogan, K. Shariff, Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 1432–1447 (2008).  https://doi.org/10.1086/591239 ADSCrossRefGoogle Scholar
  36. G. D’Angelo, F. Marzari, Outward migration of Jupiter and Saturn in evolved gaseous disks. Astrophys. J. 757, 50 (2012).  https://doi.org/10.1088/0004-637X/757/1/50 ADSCrossRefGoogle Scholar
  37. N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).  https://doi.org/10.1038/nature10077 ADSCrossRefGoogle Scholar
  38. N. Dauphas, F. Robert, B. Marty, The late asteroidal and cometary bombardment of earth as recorded in water deuterium to protium ratio. Icarus 148, 508–512 (2000).  https://doi.org/10.1006/icar.2000.6489 ADSCrossRefGoogle Scholar
  39. S.S. Davis, Condensation front migration in a protoplanetary nebula. Astrophys. J. 620, 994–1001 (2005).  https://doi.org/10.1086/427073 ADSCrossRefGoogle Scholar
  40. M.C. de Sanctis, A. Raponi, E. Ammannito, M. Ciarniello, M.J. Toplis, H.Y. McSween, J.C. Castillo-Rogez, B.L. Ehlmann, F.G. Carrozzo, S. Marchi, F. Tosi, F. Zambon, F. Capaccioni, M.T. Capria, S. Fonte, M. Formisano, A. Frigeri, M. Giardino, A. Longobardo, G. Magni, E. Palomba, L.A. McFadden, C.M. Pieters, R. Jaumann, P. Schenk, R. Mugnuolo, C.A. Raymond, C.T. Russell, Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature 536, 54–57 (2016).  https://doi.org/10.1038/nature18290 ADSCrossRefGoogle Scholar
  41. R. Deienno, R.S. Gomes, K.J. Walsh, A. Morbidelli, D. Nesvorný, Is the Grand Tack model compatible with the orbital distribution of main belt asteroids? Icarus 272, 114–124 (2016).  https://doi.org/10.1016/j.icarus.2016.02.043 ADSCrossRefGoogle Scholar
  42. A.H. Delsemme, Cometary origin of carbon and water on the terrestrial planets. Adv. Space Res. 12, 5–12 (1992).  https://doi.org/10.1016/0273-1177(92)90147-P ADSCrossRefGoogle Scholar
  43. A. Delsemme, The origin of the atmosphere and of the oceans, in Comets and the Origin and Evolution of Life, ed. by P.J. Thomas, C.F. Chyba, C.P. McKay (Springer, New York, 1997), pp. 29–67 CrossRefGoogle Scholar
  44. A.H. Delsemme, The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planet. Space Sci. 47, 125–131 (1998).  https://doi.org/10.1016/S0032-0633(98)00093-2 ADSCrossRefGoogle Scholar
  45. T.M. Donahue, J.H. Hoffman, R.R. Hodges, A.J. Watson, Venus was wet—a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).  https://doi.org/10.1126/science.216.4546.630 ADSCrossRefGoogle Scholar
  46. M.J. Drake, K. Righter, Determining the composition of the Earth. Nature 416, 39–44 (2002).  https://doi.org/10.1038/416039a ADSCrossRefGoogle Scholar
  47. J. Dra̧żkowska, Y. Alibert, B. Moore, Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, 105 (2016).  https://doi.org/10.1051/0004-6361/201628983 CrossRefGoogle Scholar
  48. G. Dreibus, H. Waenke, Supply and loss of volatile constituents during the accretion of terrestrial planets, in Origin and Evolution of Planetary and Satellite Atmospheres, ed. by S.K. Atreya, J.B. Pollack, M.S. Matthews (University of Arizona Press, Tucson, 1989), pp. 268–288 Google Scholar
  49. W.C. Feldman, T.H. Prettyman, S. Maurice, J.J. Plaut, D.L. Bish, D.T. Vaniman, M.T. Mellon, A.E. Metzger, S.W. Squyres, S. Karunatillake, W.V. Boynton, R.C. Elphic, H.O. Funsten, D.J. Lawrence, R.L. Tokar, Global distribution of near-surface hydrogen on Mars. J. Geophys. Res., Planets 109, 09006 (2004).  https://doi.org/10.1029/2003JE002160 ADSCrossRefGoogle Scholar
  50. R.A. Fischer, F.J. Ciesla, Dynamics of the terrestrial planets from a large number of N-body simulations. Earth Planet. Sci. Lett. 392, 28–38 (2014).  https://doi.org/10.1016/j.epsl.2014.02.011 ADSCrossRefGoogle Scholar
  51. J. Ganguly, A. Asaduzzaman, K. Muralidharan, Origin of water in Earth with high D/H ratio relative to protosolar nebula, and an explanation of its similarity with the isotopic ratios of carbonaceous chondrites and asteroid Vesta, in 79th Annual Meeting of the Meteoritical Society. LPI Contributions, vol. 1921 (2016), p. 6055 Google Scholar
  52. P. Garaud, D.N.C. Lin, The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. Astrophys. J. 654, 606–624 (2007).  https://doi.org/10.1086/509041 ADSCrossRefGoogle Scholar
  53. H. Genda, M. Ikoma, Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194, 42–52 (2008).  https://doi.org/10.1016/j.icarus.2007.09.007 ADSCrossRefGoogle Scholar
  54. P. Goldreich, S. Tremaine, Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980).  https://doi.org/10.1086/158356 ADSMathSciNetCrossRefGoogle Scholar
  55. P. Goldreich, W.R. Ward, The formation of planetesimals. Astrophys. J. 183, 1051–1062 (1973).  https://doi.org/10.1086/152291 ADSCrossRefGoogle Scholar
  56. R.S. Gomes, A. Morbidelli, H.F. Levison, Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004).  https://doi.org/10.1016/j.icarus.2004.03.011 ADSCrossRefGoogle Scholar
  57. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).  https://doi.org/10.1038/nature03676 ADSCrossRefGoogle Scholar
  58. J. Gradie, E. Tedesco, Compositional structure of the asteroid belt. Science 216, 1405–1407 (1982).  https://doi.org/10.1126/science.216.4553.1405 ADSCrossRefGoogle Scholar
  59. R. Greenberg, W.K. Hartmann, C.R. Chapman, J.F. Wacker, Planetesimals to planets—numerical simulation of collisional evolution. Icarus 35, 1–26 (1978).  https://doi.org/10.1016/0019-1035(78)90057-X ADSCrossRefGoogle Scholar
  60. J.M. Hahn, R. Malhotra, Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041–3053 (1999).  https://doi.org/10.1086/300891 ADSCrossRefGoogle Scholar
  61. K.E. Haisch Jr., E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553, 153–156 (2001).  https://doi.org/10.1086/320685 ADSCrossRefGoogle Scholar
  62. L.J. Hallis, G.R. Huss, K. Nagashima, G.J. Taylor, S.A. Halldórsson, D.R. Hilton, M.J. Mottl, K.J. Meech, Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).  https://doi.org/10.1126/science.aac4834 ADSCrossRefGoogle Scholar
  63. B.M.S. Hansen, Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009).  https://doi.org/10.1088/0004-637X/703/1/1131 ADSCrossRefGoogle Scholar
  64. P. Hartogh, D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E.A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Szutowicz, G.A. Blake, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011).  https://doi.org/10.1038/nature10519 ADSCrossRefGoogle Scholar
  65. R. Hueso, T. Guillot, Evolution of protoplanetary disks: constraints from DM Tauri and GM Aurigae. Astron. Astrophys. 442, 703–725 (2005).  https://doi.org/10.1051/0004-6361:20041905 ADSCrossRefGoogle Scholar
  66. M. Ikoma, H. Genda, Constraints on the mass of a habitable planet with water of nebular origin. Astrophys. J. 648, 696–706 (2006).  https://doi.org/10.1086/505780 ADSCrossRefGoogle Scholar
  67. A. Izidoro, K. de Souza Torres, O.C. Winter, N. Haghighipour, A compound model for the origin of Earth’s water. Astrophys. J. 767, 54 (2013).  https://doi.org/10.1088/0004-637X/767/1/54 ADSCrossRefGoogle Scholar
  68. A. Izidoro, N. Haghighipour, O.C. Winter, M. Tsuchida, Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. Astrophys. J. 782, 31 (2014).  https://doi.org/10.1088/0004-637X/782/1/31 ADSCrossRefGoogle Scholar
  69. A. Izidoro, S.N. Raymond, A. Morbidelli, O.C. Winter, Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015).  https://doi.org/10.1093/mnras/stv1835 ADSCrossRefGoogle Scholar
  70. A. Izidoro, S.N. Raymond, A. Pierens, A. Morbidelli, O.C. Winter, D. Nesvorny‘, The asteroid belt as a relic from a chaotic early Solar System. Astrophys. J. 833, 40 (2016).  https://doi.org/10.3847/1538-4357/833/1/40 ADSCrossRefGoogle Scholar
  71. S.A. Jacobson, K.J. Walsh, Earth and terrestrial planet formation. American Geophysical Union Geophysical Monograph Series 212, 49–70 (2015).  https://doi.org/10.1002/9781118860359.ch3 ADSCrossRefGoogle Scholar
  72. S.A. Jacobson, A. Morbidelli, S.N. Raymond, D.P. O’Brien, K.J. Walsh, D.C. Rubie, Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).  https://doi.org/10.1038/nature13172 ADSCrossRefGoogle Scholar
  73. D. Jewitt, The active asteroids. Astron. J. 143, 66 (2012).  https://doi.org/10.1088/0004-6256/143/3/66 ADSCrossRefGoogle Scholar
  74. A. Johansen, J.S. Oishi, M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).  https://doi.org/10.1038/nature06086 ADSCrossRefGoogle Scholar
  75. H.E. King, M. Stimpfl, P. Deymier, M.J. Drake, C.R.A. Catlow, A. Putnis, N.H. de Leeuw, Computer simulations of water interactions with low-coordinated forsterite surface sites: implications for the origin of water in the inner solar system. Earth Planet. Sci. Lett. 300, 11–18 (2010).  https://doi.org/10.1016/j.epsl.2010.10.019 ADSCrossRefGoogle Scholar
  76. N.T. Kita, G.R. Huss, S. Tachibana, Y. Amelin, L.E. Nyquist, I.D. Hutcheon, Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides, in Chondrites and the Protoplanetary Disk, ed. by A.N. Krot, E.R.D. Scott, B. Reipurth. Astronomical Society of the Pacific Conference Series, vol. 341 (2005), pp. 558–587 Google Scholar
  77. T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).  https://doi.org/10.1016/j.gca.2008.11.047 ADSCrossRefGoogle Scholar
  78. W. Kley, R.P. Nelson, Planet-disk interaction and orbital evolution. Annu. Rev. Astron. Astrophys. 50, 211–249 (2012).  https://doi.org/10.1146/annurev-astro-081811-125523 ADSCrossRefGoogle Scholar
  79. E. Kokubo, S. Ida, On runaway growth of planetesimals. Icarus 123, 180–191 (1996).  https://doi.org/10.1006/icar.1996.0148 ADSCrossRefGoogle Scholar
  80. E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998).  https://doi.org/10.1006/icar.1997.5840 ADSCrossRefGoogle Scholar
  81. E. Kokubo, S. Ida, Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000).  https://doi.org/10.1006/icar.1999.6237 ADSCrossRefGoogle Scholar
  82. J. Kominami, S. Ida, The effect of tidal interaction with a gas disk on formation of terrestrial planets. Icarus 157, 43–56 (2002).  https://doi.org/10.1006/icar.2001.6811 ADSCrossRefGoogle Scholar
  83. J. Kominami, S. Ida, Formation of terrestrial planets in a dissipating gas disk with Jupiter and Saturn. Icarus 167, 231–243 (2004).  https://doi.org/10.1016/j.icarus.2003.10.005 ADSCrossRefGoogle Scholar
  84. M. Küppers, L. O’Rourke, D. Bockelée-Morvan, V. Zakharov, S. Lee, P. von Allmen, B. Carry, D. Teyssier, A. Marston, T. Müller, J. Crovisier, M.A. Barucci, R. Moreno, Localized sources of water vapour on the dwarf planet (1) Ceres. Nature 505, 525–527 (2014).  https://doi.org/10.1038/nature12918 ADSCrossRefGoogle Scholar
  85. M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, 32 (2012).  https://doi.org/10.1051/0004-6361/201219127 ADSCrossRefGoogle Scholar
  86. M. Lambrechts, A. Johansen, Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, 107 (2014).  https://doi.org/10.1051/0004-6361/201424343 ADSCrossRefGoogle Scholar
  87. C. Lécuyer, The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol. 145, 249–261 (1998).  https://doi.org/10.1016/S0009-2541(97)00146-0 ADSCrossRefGoogle Scholar
  88. H.F. Levison, K.A. Kretke, K.J. Walsh, W.F. Bottke, Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. Proc. Natl. Acad. Sci. 112, 14180–14185 (2015).  https://doi.org/10.1073/pnas.1513364112 ADSCrossRefGoogle Scholar
  89. D.N.C. Lin, J. Papaloizou, On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986).  https://doi.org/10.1086/164653 ADSCrossRefGoogle Scholar
  90. D.C. Lis, N. Biver, D. Bockelée-Morvan, P. Hartogh, E.A. Bergin, G.A. Blake, J. Crovisier, M. de Val-Borro, E. Jehin, M. Küppers, J. Manfroid, R. Moreno, M. Rengel, S. Szutowicz, A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková and Prospects for D/H Measurements with CCAT. Astrophys. J. Lett. 774, 3 (2013).  https://doi.org/10.1088/2041-8205/774/1/L3 ADSCrossRefGoogle Scholar
  91. J.J. Lissauer, O. Hubickyj, G. D’Angelo, P. Bodenheimer, Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus 199, 338–350 (2009).  https://doi.org/10.1016/j.icarus.2008.10.004 ADSCrossRefGoogle Scholar
  92. P.S. Lykawka, T. Ito, Terrestrial planet formation during the migration and resonance crossings of the giant planets. Astrophys. J. 773, 65 (2013).  https://doi.org/10.1088/0004-637X/773/1/65 ADSCrossRefGoogle Scholar
  93. R. Malhotra, The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993).  https://doi.org/10.1038/365819a0 ADSCrossRefGoogle Scholar
  94. R. Malhotra, The origin of Pluto’s orbit: implications for the solar system beyond Neptune. Astron. J. 110, 420–429 (1995).  https://doi.org/10.1086/117532 ADSCrossRefGoogle Scholar
  95. S. Marchi, W.F. Bottke, D.A. Kring, A. Morbidelli, The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325, 27–38 (2012).  https://doi.org/10.1016/j.epsl.2012.01.021 ADSCrossRefGoogle Scholar
  96. B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).  https://doi.org/10.1016/j.epsl.2011.10.040 ADSCrossRefGoogle Scholar
  97. F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, 55–59 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04159.x ADSCrossRefGoogle Scholar
  98. T.B. McCord, C. Sotin, Ceres: Evolution and current state. J. Geophys. Res., Planets 110, 5009 (2005).  https://doi.org/10.1029/2004JE002244 ADSCrossRefGoogle Scholar
  99. A. Morbidelli, A. Crida, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007).  https://doi.org/10.1016/j.icarus.2007.04.001 ADSCrossRefGoogle Scholar
  100. A. Morbidelli, D. Nesvorny, Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astron. Astrophys. 546, 18 (2012).  https://doi.org/10.1051/0004-6361/201219824 ADSCrossRefGoogle Scholar
  101. A. Morbidelli, S.N. Raymond, Challenges in planet formation. J. Geophys. Res., Planets 121, 1962–1980 (2016).  https://doi.org/10.1002/2016JE005088 ADSCrossRefGoogle Scholar
  102. A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K.E. Cyr, Source regions and time scales for the delivery of water to Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000).  https://doi.org/10.1111/j.1945-5100.2000.tb01518.x ADSCrossRefGoogle Scholar
  103. A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).  https://doi.org/10.1038/nature03540 ADSCrossRefGoogle Scholar
  104. A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010).  https://doi.org/10.1088/0004-6256/140/5/1391 ADSCrossRefGoogle Scholar
  105. A. Morbidelli, S. Marchi, W.F. Bottke, D.A. Kring, A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151 (2012a).  https://doi.org/10.1016/j.epsl.2012.07.037 ADSCrossRefGoogle Scholar
  106. A. Morbidelli, J.I. Lunine, D.P. O’Brien, S.N. Raymond, K.J. Walsh, Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012b).  https://doi.org/10.1146/annurev-earth-042711-105319 ADSCrossRefGoogle Scholar
  107. A. Morbidelli, M. Lambrechts, S. Jacobson, B. Bitsch, The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores. Icarus 258, 418–429 (2015).  https://doi.org/10.1016/j.icarus.2015.06.003 ADSCrossRefGoogle Scholar
  108. A. Morbidelli, B. Bitsch, A. Crida, M. Gounelle, T. Guillot, S. Jacobson, A. Johansen, M. Lambrechts, E. Lega, Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).  https://doi.org/10.1016/j.icarus.2015.11.027 ADSCrossRefGoogle Scholar
  109. R. Morishima, M.W. Schmidt, J. Stadel, B. Moore, Formation and accretion history of terrestrial planets from runaway growth through to late time: implications for orbital eccentricity. Astrophys. J. 685, 1247–1261 (2008).  https://doi.org/10.1086/590948 ADSCrossRefGoogle Scholar
  110. R. Morishima, J. Stadel, B. Moore, From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets. Icarus 207, 517–535 (2010).  https://doi.org/10.1016/j.icarus.2009.11.038 ADSCrossRefGoogle Scholar
  111. T. Mothé-Diniz, J.M.Á. Carvano, D. Lazzaro, Distribution of taxonomic classes in the main belt of asteroids. Icarus 162, 10–21 (2003).  https://doi.org/10.1016/S0019-1035(02)00066-0 ADSCrossRefGoogle Scholar
  112. K. Muralidharan, P. Deymier, M. Stimpfl, N.H. de Leeuw, M.J. Drake, Origin of water in the inner Solar System: a kinetic Monte Carlo study of water adsorption on forsterite. Icarus 198, 400–407 (2008).  https://doi.org/10.1016/j.icarus.2008.07.017 ADSCrossRefGoogle Scholar
  113. M. Nagasawa, D.N.C. Lin, E. Thommes, Dynamical shake-up of planetary systems. I. Embryo trapping and induced collisions by the sweeping secular resonance and embryo-disk tidal interaction. Astrophys. J. 635, 578–598 (2005).  https://doi.org/10.1086/497386 ADSCrossRefGoogle Scholar
  114. R. Nomura, K. Hirose, K. Uesugi, Y. Ohishi, A. Tsuchiyama, A. Miyake, Y. Ueno, Low core-mantle boundary temperature inferred from the solidus of pyrolite. Science 343(6170), 522–525 (2014).  https://doi.org/10.1126/science.1248186 ADSCrossRefGoogle Scholar
  115. D.P. O’Brien, M.V. Sykes, The origin and evolution of the asteroid belt—implications for Vesta and Ceres. Space Sci. Rev. 163, 41–61 (2011).  https://doi.org/10.1007/s11214-011-9808-6 ADSCrossRefGoogle Scholar
  116. D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006).  https://doi.org/10.1016/j.icarus.2006.04.005 ADSCrossRefGoogle Scholar
  117. D.P. O’Brien, A. Morbidelli, W.F. Bottke, The primordial excitation and clearing of the asteroid belt—revisited. Icarus 191, 434–452 (2007).  https://doi.org/10.1016/j.icarus.2007.05.005 ADSCrossRefGoogle Scholar
  118. D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014).  https://doi.org/10.1016/j.icarus.2014.05.009 ADSCrossRefGoogle Scholar
  119. M. Ogihara, S. Ida, A. Morbidelli, Accretion of terrestrial planets from oligarchs in a turbulent disk. Icarus 188, 522–534 (2007).  https://doi.org/10.1016/j.icarus.2006.12.006 ADSCrossRefGoogle Scholar
  120. A. Oka, T. Nakamoto, S. Ida, Evolution of snow line in optically thick protoplanetary disks: effects of water ice opacity and dust grain size. Astrophys. J. 738, 141 (2011).  https://doi.org/10.1088/0004-637X/738/2/141 ADSCrossRefGoogle Scholar
  121. C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, 43 (2010).  https://doi.org/10.1051/0004-6361/201014903 ADSCrossRefGoogle Scholar
  122. T. Owen, A. Bar-Nun, Comets, impacts and atmospheres. Icarus 116, 215–226 (1995).  https://doi.org/10.1006/icar.1995.1122 ADSCrossRefGoogle Scholar
  123. A.H. Peslier, M. Schönbächler, H. Busemann, S.I. Karato, Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 212, 743–810 (2017).  https://doi.org/10.1007/s11214-017-0387-z ADSCrossRefGoogle Scholar
  124. J. Petit, A. Morbidelli, J. Chambers, The primordial excitation and clearing of the asteroid belt. Icarus 153, 338–347 (2001).  https://doi.org/10.1006/icar.2001.6702 ADSCrossRefGoogle Scholar
  125. A. Pierens, R.P. Nelson, Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astron. Astrophys. 482, 333–340 (2008).  https://doi.org/10.1051/0004-6361:20079062 ADSMATHCrossRefGoogle Scholar
  126. A. Pierens, S.N. Raymond, Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astron. Astrophys. 533, 131 (2011).  https://doi.org/10.1051/0004-6361/201117451 ADSCrossRefGoogle Scholar
  127. A. Pierens, S.N. Raymond, D. Nesvorny, A. Morbidelli, Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Nice models. Astrophys. J. Lett. 795, 11 (2014).  https://doi.org/10.1088/2041-8205/795/1/L11 ADSCrossRefGoogle Scholar
  128. S.N. Raymond, A. Izidoro, Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017a).  https://doi.org/10.1016/j.icarus.2017.06.030 ADSCrossRefGoogle Scholar
  129. S.N. Raymond, A. Izidoro, The empty primordial asteroid belt. Sci. Adv. 3, 1701138 (2017b).  https://doi.org/10.1126/sciadv.1701138 ADSCrossRefGoogle Scholar
  130. S.N. Raymond, T. Quinn, J.I. Lunine, Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004).  https://doi.org/10.1016/j.icarus.2003.11.019 ADSCrossRefGoogle Scholar
  131. S.N. Raymond, T. Quinn, J.I. Lunine, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006).  https://doi.org/10.1016/j.icarus.2006.03.011 ADSCrossRefGoogle Scholar
  132. S.N. Raymond, T. Quinn, J.I. Lunine, High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7, 66–84 (2007).  https://doi.org/10.1089/ast.2006.06-0126 ADSCrossRefGoogle Scholar
  133. S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009).  https://doi.org/10.1016/j.icarus.2009.05.016 ADSCrossRefGoogle Scholar
  134. S.N. Raymond, E. Kokubo, A. Morbidelli, R. Morishima, K.J. Walsh, Terrestrial planet formation at home and abroad, in Protostars and Planets VI, ed. by B. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (University of Arizona Press, Tucson, 2014), pp. 595–618 Google Scholar
  135. S.N. Raymond, A. Izidoro, B. Bitsch, S.A. Jacobson, Did Jupiter’s core form in the innermost parts of the Sun’s protoplanetary disc? Mon. Not. R. Astron. Soc. 458, 2962–2972 (2016).  https://doi.org/10.1093/mnras/stw431 ADSCrossRefGoogle Scholar
  136. A. Reufer, M.M.M. Meier, W. Benz, R. Wieler, A hit-and-run giant impact scenario. Icarus 221, 296–299 (2012).  https://doi.org/10.1016/j.icarus.2012.07.021 ADSCrossRefGoogle Scholar
  137. K. Righter, M.J. Drake, Effect of water on metal-silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet. Sci. Lett. 171, 383–399 (1999).  https://doi.org/10.1016/S0012-821X(99)00156-9 ADSCrossRefGoogle Scholar
  138. K. Righter, D.P. O’Brien, Cosmochemistry Special feature: terrestrial planet formation. Proc. Natl. Acad. Sci. 108, 19165–19170 (2011).  https://doi.org/10.1073/pnas.1013480108 ADSCrossRefGoogle Scholar
  139. A.S. Rivkin, J.P. Emery, Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010).  https://doi.org/10.1038/nature09028 ADSCrossRefGoogle Scholar
  140. F. Robert, The D/H ratio in chondrites. Space Sci. Rev. 106, 87–101 (2003).  https://doi.org/10.1023/A:1024629402715 ADSCrossRefGoogle Scholar
  141. F. Robert, Solar system deuterium/hydrogen ratio, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 341–351 Google Scholar
  142. D.C. Rubie, C.K. Gessmann, D.J. Frost, Partitioning of oxygen during core formation on the Earth and Mars. Nature 429, 58–61 (2004).  https://doi.org/10.1038/nature02473 ADSCrossRefGoogle Scholar
  143. D.C. Rubie, D.J. Frost, U. Mann, Y. Asahara, F. Nimmo, K. Tsuno, P. Kegler, A. Holzheid, H. Palme, Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).  https://doi.org/10.1016/j.epsl.2010.11.030 ADSCrossRefGoogle Scholar
  144. D.C. Rubie, F. Nimmo, H.J. Melosh, Formation of the Earth’s core, in Treatise on Geophysics, vol. 9, ed. by G. Schubert (Elsevier, Amsterdam, 2015a), pp. 43–79 CrossRefGoogle Scholar
  145. D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015b).  https://doi.org/10.1016/j.icarus.2014.10.015 ADSCrossRefGoogle Scholar
  146. J. Siebert, J. Badro, D. Antonangeli, F.J. Ryerson, Terrestrial accretion under oxidizing conditions. Science 339(6124), 1194–1197 (2013).  https://doi.org/10.1126/science.1227923 ADSCrossRefGoogle Scholar
  147. M. Stimpfl, A.M. Walker, M.J. Drake, N.H. de Leeuw, P. Deymier, An ångström-sized window on the origin of water in the inner solar system: atomistic simulation of adsorption of water on olivine. J. Cryst. Growth 294, 83–95 (2006).  https://doi.org/10.1016/j.jcrysgro.2006.05.057 ADSCrossRefGoogle Scholar
  148. C. Surville, L. Mayer, D.N.C. Lin, Dust capture and long-lived density enhancements triggered by vortices in 2D protoplanetary disks. Astrophys. J. 831, 82 (2016).  https://doi.org/10.3847/0004-637X/831/1/82 ADSCrossRefGoogle Scholar
  149. F. Tera, D.A. Papanastassiou, G.J. Wasserburg, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974).  https://doi.org/10.1016/0012-821X(74)90059-4 ADSCrossRefGoogle Scholar
  150. E. Thommes, M. Nagasawa, D.N.C. Lin, Dynamical shake-up of planetary systems. II. N-body simulations of solar system terrestrial planet formation induced by secular resonance sweeping. Astrophys. J. 676, 728–739 (2008).  https://doi.org/10.1086/526408 ADSCrossRefGoogle Scholar
  151. M. Touboul, T. Kleine, B. Bourdon, H. Palme, R. Wieler, Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007).  https://doi.org/10.1038/nature06428 ADSCrossRefGoogle Scholar
  152. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).  https://doi.org/10.1038/nature03539 ADSCrossRefGoogle Scholar
  153. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).  https://doi.org/10.1038/nature10201 ADSCrossRefGoogle Scholar
  154. W.R. Ward, Density waves in the solar nebula—differential Lindblad torque. Icarus 67, 164–180 (1986).  https://doi.org/10.1016/0019-1035(86)90182-X ADSCrossRefGoogle Scholar
  155. W.R. Ward, On planetesimal formation: the role of collective particle behavior, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 75–84 Google Scholar
  156. S.J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).  https://doi.org/10.1093/mnras/180.2.57 ADSCrossRefGoogle Scholar
  157. S.J. Weidenschilling, Dust to planetesimals—settling and coagulation in the solar nebula. Icarus 44, 172–189 (1980).  https://doi.org/10.1016/0019-1035(80)90064-0 ADSCrossRefGoogle Scholar
  158. S.J. Weidenschilling, Radial drift of particles in the solar nebula: implications for planetesimal formation. Icarus 165, 438–442 (2003).  https://doi.org/10.1016/S0019-1035(03)00169-6 ADSCrossRefGoogle Scholar
  159. S.J. Weidenschilling, Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671–684 (2011).  https://doi.org/10.1016/j.icarus.2011.05.024 ADSCrossRefGoogle Scholar
  160. S.J. Weidenschilling, J.N. Cuzzi, Formation of planetesimals in the solar nebula, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (University of Arizona Press, Tucson, 1993), pp. 1031–1060 Google Scholar
  161. S.J. Weidenschilling, D. Spaute, D.R. Davis, F. Marzari, K. Ohtsuki, Accretional evolution of a planetesimal swarm. Icarus 128, 429–455 (1997).  https://doi.org/10.1006/icar.1997.5747 ADSCrossRefGoogle Scholar
  162. G.W. Wetherill, Radiometric chronology of the early solar system. Annu. Rev. Nucl. Part. Sci. 25, 283–328 (1975).  https://doi.org/10.1146/annurev.ns.25.120175.001435 ADSCrossRefGoogle Scholar
  163. G.W. Wetherill, Why isn’t Mars as big as Earth? in Lunar and Planetary Science Conference Abstracts, vol. 22 (1991), p. 1495 Google Scholar
  164. G.W. Wetherill, An alternative model for the formation of the asteroids. Icarus 100, 307–325 (1992).  https://doi.org/10.1016/0019-1035(92)90103-E ADSCrossRefGoogle Scholar
  165. G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989).  https://doi.org/10.1016/0019-1035(89)90093-6 ADSCrossRefGoogle Scholar
  166. G.W. Wetherill, G.R. Stewart, Formation of planetary embryos—effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106, 190 (1993).  https://doi.org/10.1006/icar.1993.1166 ADSCrossRefGoogle Scholar
  167. B.J. Wood, J. Wade, M.R. Kilburn, Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72, 1415–1426 (2008).  https://doi.org/10.1016/j.gca.2007.11.036 ADSCrossRefGoogle Scholar
  168. G. Wurm, J. Blum, J.E. Colwell, NOTE: a new mechanism relevant to the formation of planetesimals in the solar nebula. Icarus 151, 318–321 (2001).  https://doi.org/10.1006/icar.2001.6620 ADSCrossRefGoogle Scholar
  169. A.N. Youdin, J. Goodman, Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).  https://doi.org/10.1086/426895 ADSCrossRefGoogle Scholar
  170. A.N. Youdin, F.H. Shu, Planetesimal formation by gravitational instability. Astrophys. J. 580, 494–505 (2002).  https://doi.org/10.1086/343109 ADSCrossRefGoogle Scholar
  171. H. Zhang, J.L. Zhou, On the orbital evolution of a giant planet pair embedded in a gaseous disk. II. A Saturn-Jupiter configuration. Astrophys. J. 719, 671–684 (2010).  https://doi.org/10.1088/0004-637X/719/1/671 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • David P. O’Brien
    • 1
  • Andre Izidoro
    • 2
    • 3
  • Seth A. Jacobson
    • 4
    • 5
    • 6
  • Sean N. Raymond
    • 3
  • David C. Rubie
    • 5
  1. 1.Planetary Science InstituteTucsonUSA
  2. 2.Grupo de Dinamica Orbital PlanetologiaUNESP, Universidade Estadual PaulistaGuaratinguetaBrazil
  3. 3.Laboratoire d’Astrophysique de Bordeaux, CNRSUniversite de BordeauxPessacFrance
  4. 4.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA
  5. 5.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany
  6. 6.Observatoire de la Côte d’AzurNice Cedex 4France

Personalised recommendations