Space Science Reviews

, 214:29 | Cite as

Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

  • Miguel A. López-Valverde
  • Jean-Claude Gerard
  • Francisco González-Galindo
  • Ann-Carine Vandaele
  • Ian Thomas
  • Oleg Korablev
  • Nikolai Ignatiev
  • Anna Fedorova
  • Franck Montmessin
  • Anni Määttänen
  • Sabrina Guilbon
  • Franck Lefevre
  • Manish R. Patel
  • Sergio Jiménez-Monferrer
  • Maya García-Comas
  • Alejandro Cardesin
  • Colin F. Wilson
  • R. T. Clancy
  • Armin Kleinböhl
  • Daniel J. McCleese
  • David M. Kass
  • Nick M. Schneider
  • Michael S. Chaffin
  • José Juan López-Moreno
  • Julio Rodríguez
Article
  • 213 Downloads
Part of the following topical collections:
  1. ExoMars-16

Abstract

The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere.

Keywords

Mars ExoMars NOMAD ACS Upper atmosphere Aerobraking Airglow Remote sounding 

Notes

Acknowledgements

The IAA/CSIC team has been supported by the European Union’s Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127, by CSIC Proyecto Intramural 201450E022 and by the Plan Nacional del Espacio ESP2015-65064-C2-1-P (MINECO/FEDER). This research was partly supported by the SCOOP/BRAIN program of the Belgian Science Policy Office (BELSPO). We acknowledge the work of Sabrina Guilbon during her Master internship at LATMOS on the development of the technique to compare the slant profiles of SPICAM and the LMD GCM. M.R.P. thanks UKSA for support under grant ST/I003061/1 and ST/P001262/1. C.F.W. acknowledges funding support from the UK Space Agency. Work by A.K., D.J.MC. and D.M.K. at the Jet Propulsion Laboratory, California Institute of Technology was performed under a contract with the National Aeronautics and Space Administration. OK, NI and AF thanks funding from Roscosmos for the ACS operation support and science funding from The Federal Agency of scientific organization (Planeta No. 0028-2014-0004).

References

  1. D.J. Andrews, S. Barabash, N.J.T. Edberg, D.A. Gurnett, B.E.S. Hall, M. Holmström, M. Lester, D.D. Morgan, H.J. Opgenoorth, R. Ramstad, B. Sanchez-Cano, M. Way, O. Witasse, Plasma observations during the Mars atmospheric plume event of March-April 2012. J. Geophys. Res. Space Phys. 121(4), 3139–3154 (2016).  https://doi.org/10.1002/2015JA022023 ADSCrossRefGoogle Scholar
  2. C. Barth, A. Stewart, S. Bougher, D. Hunten, S. Bauer, A. Nagy, Aeronomy of the current Martian atmosphere, in Mars, ed. by C.S.H.H. Kieffer, B.M. Jakosky, M. Matthews (University of Arizona Press, Tucson, 1992), pp. 1054–1089 Google Scholar
  3. J.L. Bertaux, F. Leblanc, S. Perrier, E. Quemerais, O. Korablev, E. Dimarellis, A. Reberac, F. Forget, P.C. Simon, S.A. Stern, B. Sandel, Nightglow in the upper atmosphere of Mars and implications for atmospheric transport. Science 307, 566–569 (2005a).  https://doi.org/10.1126/science.1106957 ADSCrossRefGoogle Scholar
  4. J.L. Bertaux, F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, O. Korablev, Discovery of an aurora on Mars. Nature 435, 790–794 (2005b).  https://doi.org/10.1038/nature03603 ADSCrossRefGoogle Scholar
  5. J.L. Bertaux, B. Gondet, F. Lefèvre, J.P. Bibring, F. Montmessin, First detection of O2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions. J. Geophys. Res., Planets 117, E00J04 (2012).  https://doi.org/10.1029/2011JE003890 Google Scholar
  6. S.W. Bougher, J.M. Bell, J.R. Murphy, M.A. Lopez-Valverde, P.G. Withers, Polar warming in the Mars thermosphere: seasonal variations owing to changing insolation and dust distributions. Geophys. Res. Lett. 33, 2203 (2006).  https://doi.org/10.1029/2005GL024059 ADSCrossRefGoogle Scholar
  7. S.W. Bougher, T.E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev. (2014).  https://doi.org/10.1007/s11214-014-0053-7 Google Scholar
  8. S. Bougher, B. Jakosky, J. Halekas, J. Grebowsky, J. Luhmann, P. Mahaffy, J. Connerney, F. Eparvier, R. Ergun, D. Larson, J. McFadden, D. Mitchell, N. Schneider, R. Zurek, C. Mazelle, L. Andersson, D. Andrews, D. Baird, D.N. Baker, J.M. Bell, M. Benna, D. Brain, M. Chaffin, P. Chamberlin, J.Y. Chaufray, J. Clarke, G. Collinson, M. Combi, F. Crary, T. Cravens, M. Crismani, S. Curry, D. Curtis, J. Deighan, G. Delory, R. Dewey, G. DiBraccio, C. Dong, Y. Dong, P. Dunn, M. Elrod, S. England, A. Eriksson, J. Espley, S. Evans, X. Fang, M. Fillingim, K. Fortier, C.M. Fowler, J. Fox, H. Gröller, S. Guzewich, T. Hara, Y. Harada, G. Holsclaw, S.K. Jain, R. Jolitz, F. Leblanc, C.O. Lee, Y. Lee, F. Lefevre, R. Lillis, R. Livi, D. Lo, Y. Ma, M. Mayyasi, W. McClintock, T. McEnulty, R. Modolo, F. Montmessin, M. Morooka, A. Nagy, K. Olsen, W. Peterson, A. Rahmati, S. Ruhunusiri, C.T. Russell, S. Sakai, J.A. Sauvaud, K. Seki, M. Steckiewicz, M. Stevens, A.I.F. Stewart, A. Stiepen, S. Stone, V. Tenishev, E. Thiemann, R. Tolson, D. Toublanc, M. Vogt, T. Weber, P. Withers, T. Woods, R. Yelle, Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science 350(6261), aad0459 (2015a).  https://doi.org/10.1126/science.aad0459 CrossRefGoogle Scholar
  9. S.W. Bougher, D. Pawlowski, J.M. Bell, S. Nelli, T. McDunn, J.R. Murphy, M. Chizek, A. Ridley, Mars global ionosphere-thermosphere model: solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. J. Geophys. Res., Planets 120(2), 311–342 (2015b).  https://doi.org/10.1002/2014JE004715 ADSCrossRefGoogle Scholar
  10. S.W. Bougher, K.J. Roeten, K. Olsen, P.R. Mahaffy, M. Benna, M. Elrod, S.K. Jain, N.M. Schneider, J. Deighan, E. Thiemann, F.G. Eparvier, A. Stiepen, B.M. Jakosky, The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res. Space Phys. 122(1), 1296–1313 (2017a).  https://doi.org/10.1002/2016JA023454 ADSCrossRefGoogle Scholar
  11. S.W. Bougher, A. Brain, J.L. Fox, F. Gonzalez-Galindo, C. Simon-Wedlund, P.G. Withers, Upper neutral atmosphere and ionosphere, in The Atmosphere and Climate of Mars, ed. by B. Haberle, M. Smith, T. Clancy, F. Forget, R. Zurek (Cambridge University Press, Cambridge, 2017b), pp. 433–463. Chap. 14. www.cambridge.org/9781107016187.  https://doi.org/10.1017/9781139060172 CrossRefGoogle Scholar
  12. S. Bruinsma, J.C. Marty, H. Svedhem, A. Williams, I. Mueller-Wodarg, Densities inferred from ESA’s Venus Express aerobraking campaign at 130 km altitude, in EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 17 (2015), p. 9841 Google Scholar
  13. M.S. Chaffin, J.Y. Chaufray, I. Stewart, F. Montmessin, N.M. Schneider, J.L. Bertaux, Unexpected variability of Martian hydrogen escape. Geophys. Res. Lett. 41(2), 314–320 (2014).  https://doi.org/10.1002/2013GL058578 ADSCrossRefGoogle Scholar
  14. J.Y. Chaufray, F. Gonzalez-Galindo, F. Forget, M. Lopez-Valverde, F. Leblanc, R. Modolo, S. Hess, Variability of the hydrogen in the Martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling. Icarus 245, 282–294 (2015).  https://doi.org/10.1016/j.icarus.2014.08.038 ADSCrossRefGoogle Scholar
  15. R.T. Clancy, M.J. Wolff, B.A. Whitney, B.A. Cantor, M.D. Smith, T.H. McConnochie, Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations. Icarus 207, 98–109 (2010).  https://doi.org/10.1016/j.icarus.2009.10.011 ADSCrossRefGoogle Scholar
  16. R.T. Clancy, B.J. Sandor, M.J. Wolff, M.D. Smith, F. Lefèvre, J.B. Madeleine, F. Forget, S.L. Murchie, F.P. Seelos, K.D. Seelos, H.A. Nair, A.D. Toigo, D. Humm, D.M. Kass, A. Kleinböhl, N. Heavens, Extensive MRO CRISM observations of 1.27 μm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. J. Geophys. Res., Planets 117(E11), E00J10 (2012).  https://doi.org/10.1029/2011JE004018 Google Scholar
  17. R.T. Clancy, B.J. Sandor, A. García-Muñoz, F. Lefèvre, M.D. Smith, M.J. Wolff, F. Montmessin, S.L. Murchie, H. Nair, First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus 226, 272–281 (2013).  https://doi.org/10.1016/j.icarus.2013.05.035 ADSCrossRefGoogle Scholar
  18. R.T. Clancy, M. Smith, F. Lefvère, B. Sandor, M. Wolff, T. McConnochie, K. Seelos, H. Nair, A. Toigo, S. Murchie, CRISM limb observations of coincident CO2 ice clouds and O2 emission in the Mars equatorial mesosphere, in AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47 (2015) Google Scholar
  19. R.T. Clancy, M.J. Wolff, F. Lefèvre, B.A. Cantor, M.C. Malin, M.D. Smith, Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus 266, 112–133 (2016).  https://doi.org/10.1016/j.icarus.2015.11.016 ADSCrossRefGoogle Scholar
  20. R.T. Clancy, M.D. Smith, F. Lefèvre, T.H. McConnochie, B.J. Sandor, M.J. Wolff, S.W. Lee, S.L. Murchie, A.D. Toigo, H. Nair, T. Navarro, Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus 293, 132–156 (2017).  https://doi.org/10.1016/j.icarus.2017.04.011 ADSCrossRefGoogle Scholar
  21. J.T. Clarke, J.L. Bertaux, J.Y. Chaufray, G.R. Gladstone, E. Quemerais, J.K. Wilson, D. Bhattacharyya, A rapid decrease of the hydrogen corona of Mars. Geophys. Res. Lett. 41(22), 8013–8020 (2014).  https://doi.org/10.1002/2014GL061803 ADSCrossRefGoogle Scholar
  22. J.T. Clarke, M. Mayyasi, D. Bhattacharyya, N.M. Schneider, W.E. McClintock, J.I. Deighan, A.I.F. Stewart, J.Y. Chaufray, M.S. Chaffin, S.K. Jain, A. Stiepen, M. Crismani, G.M. Holsclaw, F. Montmessin, B.M. Jakosky, Variability of D and H in the Martian upper atmosphere observed with the MAVEN IUVS echelle channel. J. Geophys. Res. Space Phys. 122(2), 2336–2344 (2017).  https://doi.org/10.1002/2016JA023479 ADSGoogle Scholar
  23. A. Coradini, D. Grassi, F. Capaccioni, G. Filacchione, F. Tosi, E. Ammannito, M.C. De Sanctis, V. Formisano, P. Wolkenberg, G. Rinaldi, G. Arnold, M.A. Barucci, G. Bellucci, J. Benkhoff, J.P. Bibring, A. Blanco, D. Bockelee-Morvan, M.T. Capria, R. Carlson, U. Carsenty, P. Cerroni, L. Colangeli, M. Combes, M. Combi, J. Crovisier, P. Drossart, T. Encrenaz, S. Erard, C. Federico, U. Fink, S. Fonti, W.H. Ip, P.G.J. Irwin, R. Jaumann, E. Kuehrt, Y. Langevin, G. Magni, T. McCord, V. Mennella, S. Mottola, G. Neukum, V. Orofino, P. Palumbo, G. Piccioni, H. Rauer, B. Schmitt, D. Tiphene, F.W. Taylor, G.P. Tozzi, Martian atmosphere as observed by VIRTIS-M on Rosetta spacecraft. J. Geophys. Res., Planets 115, E04004 (2010).  https://doi.org/10.1029/2009JE003345 ADSGoogle Scholar
  24. C. Cox, A. Saglam, J.C. Gérard, J.L. Bertaux, F. González-Galindo, F. Leblanc, A. Reberac, Distribution of the ultraviolet nitric oxide Martian night airglow: observations from Mars Express and comparisons with a one-dimensional model. J. Geophys. Res. 113(E8), E08,012 (2008).  https://doi.org/10.1029/2007JE003037 CrossRefGoogle Scholar
  25. R. de Kok, P.G.J. Irwin, C.C.C. Tsang, G. Piccioni, P. Drossart, Scattering particles in nightside limb observations of Venus upper atmosphere by Venus Express VIRTIS. Icarus 211, 51–57 (2011).  https://doi.org/10.1016/j.icarus.2010.08.023 ADSCrossRefGoogle Scholar
  26. J. Deighan, M.H. Stevens, N.M. Schneider, S.K. Jain, F. Lefèvre, M. Wolff, F. Montmessin, A. Stiepen, J.S. Evans, M.S. Chaffin, M. Crismani, R.V. Yelle, D.Y. Lo, A.I.F. Stewart, W.E. McClintock, J.T. Clarke, G.M. Holsclaw, B.M. Jakosky, Characterization of high altitude clouds at the Martian limb and terminator using MAVEN IUVS observations, in The Mars Atmosphere: Modelling and Observation, ed. by F. Forget, M. Millour (2017), p. 4101 Google Scholar
  27. A. Dudhia, The Reference Forward Model (RFM). J. Quant. Spectrosc. Radiat. Transf. 186, 243–253 (2017). Satellite Remote Sensing and Spectroscopy: Joint ACE-Odin Meeting, October 2015.  https://doi.org/10.1016/j.jqsrt.2016.06.018 ADSCrossRefGoogle Scholar
  28. B.L. Ehlmann, F.S. Anderson, J. Andrews-Hanna, D.C. Catling, P.R. Christensen, B.A. Cohen, C.D. Dressing, C.S. Edwards, L.T. Elkins-Tanton, K.A. Farley, C.I. Fassett, W.W. Fischer, A.A. Fraeman, M.P. Golombek, V.E. Hamilton, A.G. Hayes, C.D.K. Herd, B. Horgan, R. Hu, B.M. Jakosky, J.R. Johnson, J.F. Kasting, L. Kerber, K.M. Kinch, E.S. Kite, H.A. Knutson, J.I. Lunine, P.R. Mahaffy, N. Mangold, F.M. McCubbin, J.F. Mustard, P.B. Niles, C. Quantin-Nataf, M.S. Rice, K.M. Stack, D.J. Stevenson, S.T. Stewart, M.J. Toplis, T. Usui, B.P. Weiss, S.C. Werner, R.D. Wordsworth, J.J. Wray, R.A. Yingst, Y.L. Yung, K.J. Zahnle, The sustainability of habitability on terrestrial planets: insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds. J. Geophys. Res., Planets 121(10), 1927–1961 (2016).  https://doi.org/10.1002/2016JE005134 ADSCrossRefGoogle Scholar
  29. S.L. England, G. Liu, P. Withers, E. Yiǧit, D. Lo, S. Jain, N.M. Schneider, J. Deighan, W.E. McClintock, P.R. Mahaffy, M. Elrod, M. Benna, B.M. Jakosky, Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft. J. Geophys. Res., Planets 121, 594–607 (2016).  https://doi.org/10.1002/2016JE004997 ADSCrossRefGoogle Scholar
  30. ESA, Esa robotic exploration of Mars website (2016). http://exploration.esa.int/mars. Access date: 02 May 2016
  31. J.S. Evans, M.H. Stevens, J.D. Lumpe, N.M. Schneider, A.I.F. Stewart, J. Deighan, S.K. Jain, M.S. Chaffin, M. Crismani, A. Stiepen, W.E. McClintock, G.M. Holsclaw, F. Lefèvre, D.Y. Lo, J.T. Clarke, F.G. Eparvier, E.M.B. Thiemann, P.C. Chamberlin, S.W. Bougher, J.M. Bell, B.M. Jakosky, Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophys. Res. Lett. 42, 9040–9049 (2015).  https://doi.org/10.1002/2015GL065489 ADSCrossRefGoogle Scholar
  32. A.A. Fedorova, O.I. Korablev, J.L. Bertaux, A.V. Rodin, F. Montmessin, D.A. Belyaev, A. Reberac, Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus 200, 96–117 (2009).  https://doi.org/10.1016/j.icarus.2008.11.006 ADSCrossRefGoogle Scholar
  33. A. Fedorova, F. Lefèvre, S. Guslyakova, O. Korablev, J.L. Bertaux, F. Montmessin, A. Reberac, B. Gondet, The O2 nightglow in the Martian atmosphere by SPICAM onboard of Mars-Express. Icarus 219(2), 596–608 (2012).  https://doi.org/10.1016/j.icarus.2012.03.031 ADSCrossRefGoogle Scholar
  34. A.A. Fedorova, F. Montmessin, A.V. Rodin, O.I. Korablev, A. Määttänen, L. Maltagliati, J.L. Bertaux, Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus 231, 239–260 (2014).  https://doi.org/10.1016/j.icarus.2013.12.015 ADSCrossRefGoogle Scholar
  35. A. Fedorova, J.L. Bertaux, F. Montmessin, O. Korablev, I. Dzuban, L. Maltagliati, J. Clarke, Water vapor in the middle atmosphere of Mars during the global dust storm in 2007, in EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 17 (2015), p. 8740 Google Scholar
  36. J.M. Forbes, A.F.C. Bridger, S.W. Bougher, M.E. Hagan, J.L. Hollingsworth, G.M. Keating, J. Murphy, Nonmigrating tides in the thermosphere of Mars. J. Geophys. Res. 107, 5113 (2002).  https://doi.org/10.1029/2001JE001582 CrossRefGoogle Scholar
  37. F. Forget, E. Millour, F. González-Galindo, A. Spiga, S.R. Lewis, L. Montabone, P.L. Read, M.A. López-Valverde, G. Gilli, M.C. Desjean, J.P. Huot (McD/Gcm Development Team), The new (version 4.2) Mars climate database. LPI Contrib. 1353, 3098 (2007) ADSGoogle Scholar
  38. V. Formisano, A. Maturilli, M. Giuranna, E. D’Aversa, M.A. López-Valverde, Observations of non-LTE emission at 4–5 microns with the planetary Fourier spectrometer abord the Mars Express mission. Icarus 182, 51–67 (2006).  https://doi.org/10.1016/j.icarus.2005.12.022 ADSCrossRefGoogle Scholar
  39. J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84, 7315–7333 (1979).  https://doi.org/10.1029/JA084iA12p07315 ADSCrossRefGoogle Scholar
  40. D.C. Fritts, L. Wang, R.H. Tolson, Mean and gravity wave structures and variability in the Mars upper atmosphere inferred from Mars Global Surveyor and Mars Odyssey aerobraking densities. J. Geophys. Res. Space Phys. 111(A12), A12304 (2006).  https://doi.org/10.1029/2006JA011897 ADSCrossRefGoogle Scholar
  41. M.È. Gagné, S.M.L. Melo, F. Lefèvre, F. González-Galindo, K. Strong, Modeled O2 airglow distributions in the Martian atmosphere. J. Geophys. Res., Planets 117, E06005 (2012).  https://doi.org/10.1029/2011JE003901 ADSGoogle Scholar
  42. M.E. Gagné, J.L. Bertaux, F. González-Galindo, S.M.L. Melo, F. Montmessin, K. Strong, New nitric oxide (NO) nightglow measurements with SPICAM/MEx as a tracer of Mars upper atmosphere circulation and comparison with LMD-MGCM model prediction: evidence for asymmetric hemispheres. J. Geophys. Res., Planets 118, 2172–2179 (2013).  https://doi.org/10.1002/jgre.20165 ADSCrossRefGoogle Scholar
  43. A. García Muñoz, F.P. Mills, G. Piccioni, P. Drossart, The near-infrared nitric oxide nightglow in the upper atmosphere of Venus. Proc. Natl. Acad. Sci. 106(4), 985–988 (2009a).  https://doi.org/10.1073/pnas.0808091106 ADSCrossRefGoogle Scholar
  44. A. García Muñoz, F.P. Mills, T.G. Slanger, G. Piccioni, P. Drossart, Visible and near-infrared nightglow of molecular oxygen in the atmosphere of Venus. J. Geophys. Res., Planets 114(E12), E12002 (2009b).  https://doi.org/10.1029/2009JE003447 ADSCrossRefGoogle Scholar
  45. R.L. Gattinger, N.D. Lloyd, A.E. Bourassa, D.A. Degenstein, I.C. McDade, E.J. Llewellyn, Observation of the 557.7 nm to 297.2 nm brightness ratio in the auroral spectrum with OSIRIS on Odin. Can. J. Phys. 87(10), 1133–1137 (2009).  https://doi.org/10.1139/P09-102 ADSCrossRefGoogle Scholar
  46. J.C. Gèrard, L. Soret, A. Saglam, G. Piccioni, P. Drossart, The distributions of the OH Meinel and \({O}_{2}({a}^{1}\Delta\mbox{``--''}{X}^{3}\varSigma)\) nightglow emissions in the Venus mesosphere based on VIRTIS observations. Adv. Space Res. 45(10), 1268–1275 (2010).  https://doi.org/10.1016/j.asr.2010.01.022 ADSCrossRefGoogle Scholar
  47. J.C. Gèrard, L. Soret, L. Libert, R. Lundin, A. Stiepen, A. Radioti, J.L. Bertaux, Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. J. Geophys. Res. Space Phys. 120(8), 6749–6765 (2015).  https://doi.org/10.1002/2015JA021150 ADSCrossRefGoogle Scholar
  48. G. Gilli, M.A. López-Valverde, P. Drossart, G. Piccioni, S. Erard, A. Cardesín Moinelo, Limb observations of CO2 and CO non-LTE emissions in the Venus atmosphere by VIRTIS/Venus Express. J. Geophys. Res. 114, E00B29 (2009).  https://doi.org/10.1029/2008JE003112 CrossRefGoogle Scholar
  49. G. Gilli, M. López-Valverde, J. Peralta, S. Bougher, A. Brecht, P. Drossart, G. Piccioni, Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus 248(0), 478–498 (2015).  https://doi.org/10.1016/j.icarus.2014.10.047 ADSCrossRefGoogle Scholar
  50. M. Giuranna, P. Wolkenberg, D. Grassi, A. Aronica, S. Aoki, V. Formisano, D. Scaccabarozzi, B. Saggin, 12 years of atmospheric monitoring by the Planetary Fourier Spectrometer onboard Mars Express, in The Mars Atmosphere: Modelling and Observation, ed. by F. Forget, M. Millour (2017), p. 1203 Google Scholar
  51. F. González-Galindo, F. Forget, M.A. López-Valverde, M. Angelats i Coll, E. Millour, A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res., Planets 114(E13), 4001 (2009).  https://doi.org/10.1029/2008JE003246 ADSCrossRefGoogle Scholar
  52. F. González-Galindo, A. Määttänen, F. Forget, A. Spiga, The Martian mesosphere as revealed by CO2 cloud observations and General Circulation Modeling. Icarus 216, 10–22 (2011).  https://doi.org/10.1016/j.icarus.2011.08.006 ADSCrossRefGoogle Scholar
  53. F. González-Galindo, M.A. López-Valverde, F. Forget, M. García-Comas, E. Millour, L. Montabone, Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. J. Geophys. Res., Planets 120(11), 2020–2035 (2015).  https://doi.org/10.1002/2015JE004925 ADSCrossRefGoogle Scholar
  54. F. González-Galindo, E. Millour, M.A. López-Valverde, F. Forget, M. García-Comas, J.Y. Chaufray, L. Montabone, Variability of the thermospheric temperatures given by the LMD-MGCM, in Mars Aeronomy Conference, Boulder, CO (2017) Google Scholar
  55. C. Gray, N. Chanover, T. Slanger, K. Molaverdikhani, The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577 Å oxygen green line. Icarus 233, 342–347 (2014).  https://doi.org/10.1016/j.icarus.2014.01.029 ADSCrossRefGoogle Scholar
  56. H. Gröller, R.V. Yelle, T.T. Koskinen, F. Montmessin, G. Lacombe, N.M. Schneider, J. Deighan, A.I.F. Stewart, S.K. Jain, M.S. Chaffin, M.M.J. Crismani, A. Stiepen, F. Lefèvre, W.E. McClintock, J.T. Clarke, G.M. Holsclaw, P.R. Mahaffy, S.W. Bougher, B.M. Jakosky, Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophys. Res. Lett. 42, 9064–9070 (2015).  https://doi.org/10.1002/2015GL065294 ADSCrossRefGoogle Scholar
  57. S.D. Guzewich, E.R. Talaat, A.D. Toigo, D.W. Waugh, T.H. McConnochie, High-altitude dust layers on Mars: observations with the Thermal Emission Spectrometer. J. Geophys. Res., Planets 118, 1177–1194 (2013).  https://doi.org/10.1002/jgre.20076 ADSCrossRefGoogle Scholar
  58. N.G. Heavens, M.S. Johnson, W.A. Abdou, D.M. Kass, A. Kleinböhl, D.J. McCleese, J.H. Shirley, R.J. Wilson, Seasonal and diurnal variability of detached dust layers in the tropical Martian atmosphere. J. Geophys. Res. (2014).  https://doi.org/10.1002/2014JE004619 Google Scholar
  59. N.G. Heavens, B. Cantor, P. Hayne, D. Kass, A. Kleinböhl, D. McCleese, S. Piqueux, J. Schofield, J. Shirley, Extreme detached dust layers near Martian volcanoes: evidence for dust transport by mesoscale circulations forced by high topography. Geophys. Res. Lett. 42, 3730–3738 (2015).  https://doi.org/10.1002/2015GL064004 ADSCrossRefGoogle Scholar
  60. T. Imamura, A. Watanabe, Y. Maejima, Convective generation and vertical propagation of fast gravity waves on Mars: one- and two-dimensional modeling. Icarus 267, 51–63 (2016).  https://doi.org/10.1016/j.icarus.2015.12.005 ADSCrossRefGoogle Scholar
  61. S.K. Jain, A.I.F. Stewart, N.M. Schneider, J. Deighan, A. Stiepen, J.S. Evans, M.H. Stevens, M.S. Chaffin, M. Crismani, W.E. McClintock, J.T. Clarke, G.M. Holsclaw, D.Y. Lo, F. Lefèvre, F. Montmessin, E.M.B. Thiemann, F. Eparvier, B.M. Jakosky, The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett. 42, 9023–9030 (2015).  https://doi.org/10.1002/2015GL065419 ADSCrossRefGoogle Scholar
  62. B. Jakosky, R. Lin, J. Grebowsky, J. Luhmann, D. Mitchell, G. Beutelschies, T. Priser, M. Acuna, L. Andersson, D. Baird, D. Baker, R. Bartlett, M. Benna, S. Bougher, D. Brain, D. Carson, S. Cauffman, P. Chamberlin, J.Y. Chaufray, O. Cheatom, J. Clarke, J. Connerney, T. Cravens, D. Curtis, G. Delory, S. Demcak, A. DeWolfe, F. Eparvier, R. Ergun, A. Eriksson, J. Espley, X. Fang, D. Folta, J. Fox, C. Gomez-Rosa, S. Habenicht, J. Halekas, G. Holsclaw, M. Houghton, R. Howard, M. Jarosz, N. Jedrich, M. Johnson, W. Kasprzak, M. Kelley, T. King, M. Lankton, D. Larson, F. Leblanc, F. Lefevre, R. Lillis, P. Mahaffy, C. Mazelle, W. McClintock, J. McFadden, D. Mitchell, F. Montmessin, J. Morrissey, W. Peterson, W. Possel, J.A. Sauvaud, N. Schneider, W. Sidney, S. Sparacino, A. Stewart, R. Tolson, D. Toublanc, C. Waters, T. Woods, R. Yelle, R. Zurek, The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. 195(1–4), 3–48 (2015).  https://doi.org/10.1007/s11214-015-0139-x ADSCrossRefGoogle Scholar
  63. B.M. Jakosky, M. Slipski, M. Benna, P. Mahaffy, M. Elrod, R. Yelle, S. Stone, N. Alsaeed, Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355(6332), 1408–1410 (2017).  https://doi.org/10.1126/science.aai7721 ADSMathSciNetCrossRefGoogle Scholar
  64. H.L. Justh, C.G. Justus, H.S. Ramey, Mars-Gram 2010: improving the precision of Mars-Gram, in Mars Atmosphere: Modelling and Observation, ed. by F. Forget, E. Millour (2011), pp. 265–267 Google Scholar
  65. D.M. Kass, A. Kleinböhl, D.J. McCleese, J.T. Schofield, M.D. Smith, Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett. 43(12), 6111–6118 (2016).  https://doi.org/10.1002/2016GL068978 ADSCrossRefGoogle Scholar
  66. G.M. Keating, S.W. Bougher, R.W. Zurek, R.H. Tolson, G.J. Cancro, S.N. Noll, J.S. Parker, T.J. Schellenberg, R.W. Shane, B.L. Wilkerson, J.R. Murphy, J.L. Hollingsworth, R.M. Haberle, M. Joshi, J.C. Pearl, B.J. Conrath, M.D. Smith, R.T. Clancy, R.C. Blanchard, R.G. Wilmoth, D.F. Rault, T.Z. Martin, D.T. Lyons, P.B. Esposito, M.D. Johnston, C.W. Whetzel, C.G. Justus, J.M. Babicke, The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor. Science 279, 1672 (1998).  https://doi.org/10.1126/science.279.5357.1672 ADSCrossRefGoogle Scholar
  67. A. Kleinböhl, J.T. Schofield, D.M. Kass, W.A. Abdou, C.R. Backus, B. Sen, J.H. Shirley, W.G. Lawson, M.I. Richardson, F.W. Taylor, N.A. Teanby, D.J. McCleese, Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. 114(E10), E10006 (2009).  https://doi.org/10.1029/2009JE003358 ADSCrossRefGoogle Scholar
  68. A. Kleinböhl, J.T. Schofield, W.A. Abdou, P.G. Irwin, R.J. de Kok, A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transf. 112(10), 1568–1580 (2011).  https://doi.org/10.1016/j.jqsrt.2011.03.006 ADSCrossRefGoogle Scholar
  69. A. Kleinböhl, R. John Wilson, D. Kass, J.T. Schofield, D.J. McCleese, The semidiurnal tide in the middle atmosphere of Mars. Geophys. Res. Lett. 40(10), 1952–1959 (2013).  https://doi.org/10.1002/grl.50497 ADSCrossRefGoogle Scholar
  70. A. Kleinböhl, A.J. Friedson, J.T. Schofield, Two-dimensional radiative transfer for the retrieval of limb emission measurements in the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transf. 187, 511–522 (2017) ADSCrossRefGoogle Scholar
  71. O.I. Korablev, F. Montmessin, A.A. Fedorova, N.I. Ignatiev, A.V. Shakun, A.V. Trokhimovskiy, A.V. Grigoriev, K.A. Anufreichik, T.O. Kozlova, ACS experiment for atmospheric studies on “ExoMars-2016” Orbiter. Sol. Syst. Res. 49(7), 529–537 (2015).  https://doi.org/10.1134/S003809461507014X ADSCrossRefGoogle Scholar
  72. O. Korablev, F. Montmessin, A. Trokhimovskiy, A.-A. Fedorova, A.V. Shakun, A.V. Grigoriev, B. Moshkin, N. Ignatiev, F. Forget, F. Lefèvre, K. Anufreychik, T. Kozlova, N. Semena, Y. Ivanov, A. Kungurov, Y.K. Kalinnikov, A.Y. Titov, A.V. Stepanov, A. Zharkov, A. Semenov, D. Patsaev, F. Martynovich, A. Sidorov, A. Viktorov, D. Timonin, O. Sazonov, V. Shashkin, A. Santos-Skripko, I. Maslov, I. Dzuban, I. Stupin, D. Merzlyakov, V. Makarov, Y. Nikolskiy, F. Altieri, G. Arnold, D.A. Belyaev, D.S. Betsis, J.L. Bertaux, N. Duxbury, T. Encrenaz, J.C. Gerard, S. Guerlet, D. Grassi, T. Fouchet, P. Hartogh, Y. Kasaba, I. Khatuntsev, V.A. Krasnopolsky, R.O. Kuzmin, E. Lellouch, M.A. Lopez-Valverde, M. Luginin, A. Määtänen, E. Marcq, J.M. Torres, A. Medvedev, E. Millour, V.I. Shematovich, K. Olsen, M. Patel, C. Quantin-Nataf, A.V. Rodin, I. Thomas, N. Thomas, L. Vazquez, M. Vincendon, V. Wilquet, C. Wilson, L.V. Zasova, L.M. Zelenyi, M.P. Zorzano, The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Sci. Rev. 214, 7 (2017) ADSCrossRefGoogle Scholar
  73. F. Leblanc, J.Y. Chaufray, J. Lilensten, O. Witasse, J.L. Bertaux, Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. 111(E9), E09S11 (2006).  https://doi.org/10.1029/2005JE002664 CrossRefGoogle Scholar
  74. S. Lebonnois, E. Quémerais, F. Montmessin, F. Lefèvre, S. Perrier, J.L. Bertaux, F. Forget, Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations. J. Geophys. Res., Planets 111, 9 (2006).  https://doi.org/10.1029/2005JE002643 Google Scholar
  75. C. Lee, W.G. Lawson, M.I. Richardson, N.G. Heavens, a. Kleinböhl, D. Banfield, D.J. McCleese, R. Zurek, D. Kass, J.T. Schofield, C.B. Leovy, F.W. Taylor, a.D. Toigo, Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys. Res. 114(E3), E03005 (2009).  https://doi.org/10.1029/2008JE003285 ADSCrossRefGoogle Scholar
  76. J. Lilensten, D. Bernard, M. Barthélémy, G. Gronoff, C.S. Wedlund, A. Opitz, Prediction of blue, red and green aurorae at Mars. Planet. Space Sci. 115, 48–56 (2015). Solar wind interaction with the terrestrial planets.  https://doi.org/10.1016/j.pss.2015.04.015 ADSCrossRefGoogle Scholar
  77. S.S. Limaye, S. Lebonnois, A. Mahieux, M. Pätzold, S. Bougher, S. Bruinsma, S. Chamberlain, R.T. Clancy, J.C. Gérard, G. Gilli, D. Grassi, R. Haus, M. Herrmann, T. Imamura, E. Kohler, P. Krause, A. Migliorini, F. Montmessin, C. Pere, M. Persson, A. Piccialli, M. Rengel, A. Rodin, B. Sandor, M. Sornig, H. Svedhem, S. Tellmann, P. Tanga, A.C. Vandaele, T. Widemann, C.F. Wilson, I. Müller-Wodarg, L. Zasova, The thermal structure of the Venus atmosphere: intercomparison of Venus Express and ground based observations of vertical temperature and density profiles? Icarus 294, 124–155 (2017).  https://doi.org/10.1016/j.icarus.2017.04.020 ADSCrossRefGoogle Scholar
  78. M. López-Puertas, F.W. Taylor, Non-LTE Radiative Transfer in the Atmosphere (World Scientific Pub., Singapore, 2001) CrossRefGoogle Scholar
  79. M. López-Puertas, B. Funke, S. Gil-López, T. von Clarmann, G.P. Stiller, M. Höpfner, S. Kellmann, G. Mengistu Tsidu, H. Fischer, C.H. Jackman, HNO3, N2O5 and ClONO2 enhancements after the October-November 2003 solar proton events. J. Geophys. Res. 110(A9), A09S44 (2005).  https://doi.org/10.1029/2005JA011051 Google Scholar
  80. M.A. Lopez-Valverde, M. Lopez-Puertas, A non-local thermodynamic equilibrium radiative transfer model for infrared emission in the atmosphere of Mars. 2: Daytime populations of vibrational levels. J. Geophys. Res. 99, 13,117–13,132 (1994a).  https://doi.org/10.1029/94JE01091 ADSCrossRefGoogle Scholar
  81. M.A. Lopez-Valverde, M. Lopez-Puertas, A non-local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars. 1: Theoretical basis and nighttime populations of vibrational levels. J. Geophys. Res. 99, 13,093–13,115 (1994b).  https://doi.org/10.1029/94JE00635 ADSCrossRefGoogle Scholar
  82. M.A. López-Valverde, M. López-Puertas, B. Funke, G. Gilli, M. García-Comas, P. Drossart, G. Piccioni, V. Formisano, Modelling the atmospheric limb emission of CO2 at 4.3 μm in the terrestrial planets. Planet. Space Sci. 59, 988–998 (2011).  https://doi.org/10.1016/j.pss.2010.02.001 ADSCrossRefGoogle Scholar
  83. M.A. Lopez-Valverde, M. García-Comas, B. Funke, S. Jimenez-Monferrer, M. Lopez-Puertas, A non-LTE retrieval scheme for sounding the upper atmosphere of Mars in the infrared, in EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 18 (2016a), p. 17281 Google Scholar
  84. M.A. Lopez-Valverde, L. Montabone, M. Sornig, G. Sonnabend, On the retrieval of mesospheric winds on Mars and Venus from ground-based observations at 10 μm. Astrophys. J. 816(2), 103 (2016b). http://stacks.iop.org/0004-637X/816/i=2/a=103 ADSCrossRefGoogle Scholar
  85. A. Määttänen, C. Listowski, F. Montmessin, L. Maltagliati, A. Reberac, L. Joly, J.L. Bertaux, A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 223, 892–941 (2013).  https://doi.org/10.1016/j.icarus.2012.12.001 ADSCrossRefGoogle Scholar
  86. J.B. Madeleine, J.W. Head, F. Forget, T. Navarro, E. Millour, A. Spiga, A. Colaïtis, A. Määttänen, F. Montmessin, J.L. Dickson, Recent ice ages on Mars: the role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 41(14), 4873–4879 (2014).  https://doi.org/10.1002/2014GL059861 ADSCrossRefGoogle Scholar
  87. P.R. Mahaffy, M. Benna, M. Elrod, R.V. Yelle, S.W. Bougher, S.W. Stone, B.M. Jakosky, Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett. 42, 8951–8957 (2015).  https://doi.org/10.1002/2015GL065329 ADSCrossRefGoogle Scholar
  88. A. Mahieux, A.C. Vandaele, E. Neefs, S. Robert, V. Wilquet, R. Drummond, A. Federova, J.L. Bertaux, Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: retrieval technique. J. Geophys. Res., Planets 115(E14), 12014 (2010).  https://doi.org/10.1029/2010JE003589 ADSCrossRefGoogle Scholar
  89. A. Mahieux, A. Vandaele, S. Bougher, R. Drummond, S. Robert, V. Wilquet, S. Chamberlain, A. Piccialli, F. Montmessin, S. Tellmann, M. Pätzold, B. Häusler, J. Bertaux, Update of the Venus density and temperature profiles at high altitude measured by SOIR on board Venus Express. Planet. Space Sci. (2015a).  https://doi.org/10.1016/j.pss.2015.02.002 Google Scholar
  90. A. Mahieux, A. Vandaele, S. Robert, V. Wilquet, R. Drummond, M.L. Valverde, M.L. Puertas, B. Funke, J. Bertaux, Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express. Planet. Space Sci. 113–114, 347–358 (2015b).  https://doi.org/10.1016/j.pss.2014.12.020 CrossRefGoogle Scholar
  91. A. Mahieux, G. Bellucci, S. Aoki, P. Wolkenberg, H. Iwabuchi, Y. Kasaba, H. Nakagawa, M. Giuranna, A.C. Vandaele, Retrieval of gas and aerosols vertical profiles by means of limb observations considering multiple scattering of the PFS/MEx and NOMAD/ExoMars instruments, in The Mars Atmosphere: Modelling and Observation, ed. by F. Forget, M. Millour (2017), p. 4409 Google Scholar
  92. M.C. Malin, W.M. Calvin, B.A. Cantor, R.T. Clancy, R.M. Haberle, P.B. James, P.C. Thomas, M.J. Wolff, J.F. Bell III, S.W. Lee, Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager. Icarus 194(2), 501–512 (2008).  https://doi.org/10.1016/j.icarus.2007.10.016 ADSCrossRefGoogle Scholar
  93. L. Maltagliati, F. Montmessin, O. Korablev, A. Fedorova, F. Forget, A. Määttänen, F. Lefèvre, J.L. Bertaux, Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations. Icarus 223(2), 942–962 (2013).  https://doi.org/10.1016/j.icarus.2012.12.012 ADSCrossRefGoogle Scholar
  94. D.J. McCleese, J.T. Schofield, F.W. Taylor, S.B. Calcutt, M.C. Foote, D.M. Kass, C.B. Leovy, D.A. Paige, P.L. Read, R.W. Zurek, Mars climate sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res., Planets 112(E5), E05S06 (2007).  https://doi.org/10.1029/2006JE002790 Google Scholar
  95. A.S. Medvedev, F. González-Galindo, E. Yiǧit, A.G. Feofilov, F. Forget, P. Hartogh, Cooling of the Martian thermosphere by CO2 radiation and gravity waves: an intercomparison study with two general circulation models. J. Geophys. Res., Planets 120(5), 913–927 (2015).  https://doi.org/10.1002/2015JE004802 ADSCrossRefGoogle Scholar
  96. A. Migliorini, G. Piccioni, J. Gérard, L. Soret, T. Slanger, R. Politi, M. Snels, P. Drossart, F. Nuccilli, The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express. Icarus 223(1), 609–614 (2013).  https://doi.org/10.1016/j.icarus.2012.11.017 ADSCrossRefGoogle Scholar
  97. E. Millour, F. Forget, A. Spiga, T. Navarro, J.B. Madeleine, L. Montabone, A. Pottier, F. Lefevre, F. Montmessin, J.Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, J.P. Huot, M.C. Desjean (MCD/GCM development Team), The Mars climate database (MCD version 5.2), in European Planetary Science Congress 2015, EPSC2015-438, Nantes, France, 27 September–2 October, 2015, vol. 10 (2015) Google Scholar
  98. F. Montmessin, F. Lefèvre, Transport-driven formation of a polar ozone layer on Mars. Nat. Geosci. 6, 930–933 (2013).  https://doi.org/10.1038/ngeo1957 ADSCrossRefGoogle Scholar
  99. F. Montmessin, E. Quèmerais, J.L. Bertaux, O. Korablev, P. Rannou, S. Lebonnois, Stellar occultations at UV wavelengths by the SPICAM instrument: retrieval and analysis of Martian haze profiles. J. Geophys. Res., Planets 111(E9), E09S09 (2006).  https://doi.org/10.1029/2005JE002662 Google Scholar
  100. Y. Moudden, J.M. Forbes, A new interpretation of Mars aerobraking variability: planetary wave-tide interactions. J. Geophys. Res., Planets 115(E9), E09005 (2010).  https://doi.org/10.1029/2009JE003542 ADSGoogle Scholar
  101. I.C.F. Muller-Wodarg, S. Bruinsma, J.C. Marty, H. Svedhem, In situ observations of waves in Venus’s polar lower thermosphere with Venus Express aerobraking. Nat. Phys. 12(8), 767–771 (2016).  https://doi.org/10.1038/nphys3733 CrossRefGoogle Scholar
  102. S. Murchie, R. Arvidson, P. Bedini, K. Beisser, J.P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R.T. Clancy, E.H. Darlington, D. Des Marais, R. Espiritu, D. Fort, R. Green, E. Guinness, J. Hayes, C. Hash, K. Heffernan, J. Hemmler, G. Heyler, D. Humm, J. Hutcheson, N. Izenberg, R. Lee, J. Lees, D. Lohr, E. Malaret, T. Martin, J.A. McGovern, P. McGuire, R. Morris, J. Mustard, S. Pelkey, E. Rhodes, M. Robinson, T. Roush, E. Schaefer, G. Seagrave, F. Seelos, P. Silverglate, S. Slavney, M. Smith, W.J. Shyong, K. Strohbehn, H. Taylor, P. Thompson, B. Tossman, M. Wirzburger, M. Wolff, Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res., Planets 112(E5), E05S03 (2007).  https://doi.org/10.1029/2006JE002682 Google Scholar
  103. T. Navarro, J.B. Madeleine, F. Forget, A. Spiga, E. Millour, F. Montmessin, A. Määttänen, Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res., Planets 119(7), 1479–1495 (2014).  https://doi.org/10.1002/2013JE004550 ADSCrossRefGoogle Scholar
  104. E. Neefs, A.C. Vandaele, R. Drummond, I.R. Thomas, S. Berkenbosch, R. Clairquin, S. Delanoye, B. Ristic, J. Maes, S. Bonnewijn, G. Pieck, E. Equeter, C. Depiesse, F. Daerden, E.V. Ransbeeck, D. Nevejans, J. Rodriguez-Gómez, J.J. López-Moreno, R. Sanz, R. Morales, G.P. Candini, M.C. Pastor-Morales, B.A. del Moral, J.M. Jeronimo-Zafra, J.M. Gómez-López, G. Alonso-Rodrigo, I. Pérez-Grande, J. Cubas, A.M. Gomez-Sanjuan, F. Navarro-Medina, T. Thibert, M.R. Patel, G. Bellucci, L.D. Vos, S. Lesschaeve, N.V. Vooren, W. Moelans, L. Aballea, S. Glorieux, A. Baeke, D. Kendall, J.D. Neef, A. Soenen, P.Y. Puech, J. Ward, J.F. Jamoye, D. Diez, A. Vicario-Arroyo, M. Jankowski, NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels. Appl. Opt. 54(28), 8494–8520 (2015).  https://doi.org/10.1364/AO.54.008494 ADSCrossRefGoogle Scholar
  105. M.R. Patel, P. Antoine, J. Mason, M. Leese, B. Hathi, A.H. Stevens, D. Dawson, J. Gow, T. Ringrose, J. Holmes, S.R. Lewis, D. Beghuin, P. van Donink, R. Ligot, J.L. Dewandel, D. Hu, D. Bates, R. Cole, R. Drummond, I.R. Thomas, C. Depiesse, E. Neefs, E. Equeter, B. Ristic, S. Berkenbosch, D. Bolsée, Y. Willame, A.C. Vandaele, S. Lesschaeve, L.D. Vos, N.V. Vooren, T. Thibert, E. Mazy, J. Rodriguez-Gomez, R. Morales, G.P. Candini, M.C. Pastor-Morales, R. Sanz, B.A. del Moral, J.M. Jeronimo-Zafra, J.M. Gómez-López, G. Alonso-Rodrigo, I. Pérez-Grande, J. Cubas, A.M. Gomez-Sanjuan, F. Navarro-Medina, A. BenMoussa, B. Giordanengo, S. Gissot, G. Bellucci, J.J. Lopez-Moreno, NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel. Appl. Opt. 56(10), 2771–2782 (2017).  https://doi.org/10.1364/AO.56.002771 ADSCrossRefGoogle Scholar
  106. J. Peralta, M.A. López-Valverde, G. Gilli, A. Piccialli, Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 μm. Astron. Astrophys. 585, A53 (2016).  https://doi.org/10.1051/0004-6361/201527191 ADSCrossRefGoogle Scholar
  107. A. Piccialli, F. Montmessin, D. Belyaev, A. Mahieux, A. Fedorova, E. Marcq, J.L. Bertaux, S. Tellmann, A. Vandaele, O. Korablev, Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet. Space Sci. 113–114, 321–335 (2015). SI: Exploration of Venus.  https://doi.org/10.1016/j.pss.2014.12.009 CrossRefGoogle Scholar
  108. A. Piccialli, M.A. López-Valverde, A. Määttäänen, F. González-Galindo, J. Audouard, F. Altieri, F. Forget, P. Drossart, B. Gondet, J.P. Bibring, CO2 non-LTE limb emissions in Mars’ atmosphere as observed by OMEGA/Mars Express. J. Geophys. Res., Planets 121(6), 1066–1086 (2016).  https://doi.org/10.1002/2015JE004981 ADSCrossRefGoogle Scholar
  109. G. Piccioni, P. Drossart, L. Zasova, A. Migliorini, J.-C. Gèrard, F.P. Mills, A. Shakun, A. García Muñoz, N. Ignatiev, D. Grassi, V. Cottini, F.W. Taylor, S. Erard (The VIRTIS-Venus Express Technical Team), First detection of hydroxyl in the atmosphere of Venus. Astron. Astrophys. 483(3), L29–L33 (2008).  https://doi.org/10.1051/0004-6361:200809761 ADSCrossRefGoogle Scholar
  110. S. Robert, A. Vandaele, I. Thomas, Y. Willame, F. Daerden, S. Delanoye, C. Depiesse, R. Drummond, E. Neefs, L. Neary, B. Ristic, J. Mason, J.J. Lopez-Moreno, J. Rodriguez-Gomez, M. Patel, G. Bellucci (The NOMAD team), Expected performances of the NOMAD/ExoMars instrument. Planet. Space Sci. 124, 94–104 (2016).  https://doi.org/10.1016/j.pss.2016.03.003 ADSCrossRefGoogle Scholar
  111. S. Robert, C. Camy-Peyret, F. Daerden, M.D. Mazière, E.D. Wachter, L. Neary, S. Vandenbussche, A. Vandaele, Two test-cases for synergistic detections in the Martian atmosphere: carbon monoxide and methane. J. Quant. Spectrosc. Radiat. Transf. 189, 86–104 (2017).  https://doi.org/10.1016/j.jqsrt.2016.11.003 ADSCrossRefGoogle Scholar
  112. A. Sanchez-Lavega, A.G. Munoz, E. Garcia-Melendo, S. Perez-Hoyos, J.M. Gomez-Forrellad, C. Pellier, M. Delcroix, M.A. Lopez-Valverde, F. Gonzalez-Galindo, W. Jaeschke, D. Parker, J. Phillips, D. Peach, An extremely high-altitude plume seen at Mars’ morning terminator. Nature (2015).  https://doi.org/10.1038/nature14162 Google Scholar
  113. N.M. Schneider, J.I. Deighan, S.K. Jain, A. Stiepen, A.I.F. Stewart, D. Larson, D.L. Mitchell, C. Mazelle, C.O. Lee, R.J. Lillis, J.S. Evans, D. Brain, M.H. Stevens, W.E. McClintock, M.S. Chaffin, M. Crismani, G.M. Holsclaw, F. Lefevre, D.Y. Lo, J.T. Clarke, F. Montmessin, B.M. Jakosky, Discovery of diffuse aurora on Mars. Science 350(6261), aad0313 (2015).  https://doi.org/10.1126/science.aad0313 CrossRefGoogle Scholar
  114. T.G. Slanger, P.C. Cosby, D.L. Huestis, T.A. Bida, Discovery of the atomic oxygen green line in the Venus night airglow. Science 291(5503), 463–465 (2001).  https://doi.org/10.1126/science.291.5503.463 ADSCrossRefGoogle Scholar
  115. M.D. Smith, M.J. Wolff, R.T. Clancy, S.L. Murchie, Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. J. Geophys. Res., Planets 114(E2), E00D03 (2009).  https://doi.org/10.1029/2008JE003288 Google Scholar
  116. R. Song, M. Kaufmann, J. Ungermann, M. Ern, G. Liu, M. Riese, Tomographic reconstruction of atmospheric gravity wave parameters from airglow observations. Atmos. Meas. Tech. 2017, 1–18 (2017).  https://doi.org/10.5194/amt-2017-118 Google Scholar
  117. L. Soret, J.C. Gérard, L. Libert, V.I. Shematovich, D.V. Bisikalo, A. Stiepen, J.L. Bertaux, SPICAM observations and modeling of Mars aurorae. Icarus 264, 398–406 (2016).  https://doi.org/10.1016/j.icarus.2015.09.023 ADSCrossRefGoogle Scholar
  118. A. Spiga, F. González-Galindo, M.Á. López-Valverde, F. Forget, Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere. Geophys. Res. Lett. 39, L02201 (2012).  https://doi.org/10.1029/2011GL050343 ADSCrossRefGoogle Scholar
  119. A. Spiga, J. Faure, J.B. Madeleine, A. Määttänen, F. Forget, Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res., Planets 118, 746–767 (2013).  https://doi.org/10.1002/jgre.20046 ADSCrossRefGoogle Scholar
  120. M.H. Stevens, J.S. Evans, N.M. Schneider, A.I.F. Stewart, J. Deighan, S.K. Jain, M. Crismani, A. Stiepen, M.S. Chaffin, W.E. McClintock, G.M. Holsclaw, F. Lefèvre, D.Y. Lo, J.T. Clarke, F. Montmessin, S.W. Bougher, B.M. Jakosky, New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophys. Res. Lett. 42, 9050–9056 (2015).  https://doi.org/10.1002/2015GL065319 ADSCrossRefGoogle Scholar
  121. M.H. Stevens, D.E. Siskind, J.S. Evans, S.K. Jain, N.M. Schneider, J. Deighan, A.I.F. Stewart, M. Crismani, A. Stiepen, M.S. Chaffin, W.E. McClintock, G.M. Holsclaw, F. Lefèvre, D.Y. Lo, J.T. Clarke, F. Montmessin, B.M. Jakosky, Martian mesospheric cloud observations by IUVS on MAVEN: thermal tides coupled to the upper atmosphere. Geophys. Res. Lett. (2017).  https://doi.org/10.1002/2017GL072717 Google Scholar
  122. A.I.F. Stewart, M.J. Alexander, R.R. Meier, L.J. Paxton, S.W. Bougher, C.G. Fesen, Atomic oxygen in the Martian thermosphere. J. Geophys. Res. 97, 91–102 (1992).  https://doi.org/10.1029/91JA02489 ADSCrossRefGoogle Scholar
  123. A. Stiepen, J.C. Gérard, M.É. Gagné, F. Montmessin, J.L. Bertaux, Ten years of Martian nitric oxide nightglow observations. Geophys. Res. Lett. 42, 720–725 (2015).  https://doi.org/10.1002/2014GL062300 ADSCrossRefGoogle Scholar
  124. A. Stiepen, S.K. Jain, N.M. Schneider, J.I. Deighan, F. González-Galindo, J.C. Gérard, Z. Milby, M.H. Stevens, S. Bougher, J.S. Evans, A.I.F. Stewart, M.S. Chaffin, M. Crismani, W.E. McClintock, J.T. Clarke, G.M. Holsclaw, F. Montmessin, F. Lefèvre, F. Forget, D.Y. Lo, B. Hubert, B.M. Jakosky, Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMD-MGCM predictions. J. Geophys. Res. Space Phys. 122(5), 5782–5797 (2017).  https://doi.org/10.1002/2016JA023523 ADSCrossRefGoogle Scholar
  125. D.F. Strobel, Aeronomic systems on planets, moons, and comets, in Atmospheres in the Solar System: Comparative Aeronomy, ed. by M. Mendillo, A. Nagy, J.H. Waite (2002), p. 7 CrossRefGoogle Scholar
  126. N. Terada, F. Leblanc, H. Nakagawa, A.S. Medvedev, E. Yiğit, T. Kuroda, T. Hara, S.L. England, H. Fujiwara, K. Terada, K. Seki, P.R. Mahaffy, M. Elrod, M. Benna, J. Grebowsky, B.M. Jakosky, Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. J. Geophys. Res. Space Phys. 122(2), 2374–2397 (2017).  https://doi.org/10.1002/2016JA023476 ADSGoogle Scholar
  127. The Atmosphere and Climate of Mars. Cambridge Planetary Science (2017). www.cambridge.org/9781107016187.  https://doi.org/10.1017/9781139060172
  128. I.R. Thomas, A.C. Vandaele, S. Robert, E. Neefs, R. Drummond, F. Daerden, S. Delanoye, B. Ristic, S. Berkenbosch, R. Clairquin, J. Maes, S. Bonnewijn, C. Depiesse, A. Mahieux, L. Trompet, L. Neary, Y. Willame, V. Wilquet, D. Nevejans, L. Aballea, W. Moelans, L. De Vos, S. Lesschaeve, N. Van Vooren, J.-J. Lopez-Moreno, M.R. Patel, G. Bellucci (The NOMAD Team), Optical and radiometric models of the NOMAD instrument part II: the infrared channels—SO and LNO. Opt. Express 24(4), 3790–3805 (2016).  https://doi.org/10.1364/OE.24.003790 ADSCrossRefGoogle Scholar
  129. D. Titov, J.P. Bibring, A. Cardesin, T. Duxbury, F. Forget, M. Giuranna, F. González-Galindo, M. Holmström, R. Jaumann, A. Määttänen, P. Martin, F. Montmessin, R. Orosei, M. Pätzold, J. Plaut (MEx SGS Team), Mars Express recent findings and future plans, in EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 19 (2017), p. 15392 Google Scholar
  130. A. Vandaele, E. Neefs, R. Drummond, I. Thomas, F. Daerden, J.J. Lopez-Moreno, J. Rodriguez, M. Patel, G. Bellucci, M. Allen, F. Altieri, D. Bolsée, T. Clancy, S. Delanoye, C. Depiesse, E. Cloutis, A. Fedorova, V. Formisano, B. Funke, D. Fussen, A. Geminale, J.C. Gérard, M. Giuranna, N. Ignatiev, J. Kaminski, O. Karatekin, F. Lefévre, M. López-Puertas, M. López-Valverde, A. Mahieux, J. McConnell, M. Mumma, L. Neary, E. Renotte, B. Ristic, S. Robert, M. Smith, S. Trokhimovsky, J.V. Auwera, G. Villanueva, J. Whiteway, V. Wilquet, M. Wolff, Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet. Space Sci. 119, 233–249 (2015a).  https://doi.org/10.1016/j.pss.2015.10.003 ADSCrossRefGoogle Scholar
  131. A.C. Vandaele, Y. Willame, C. Depiesse, I.R. Thomas, S. Robert, D. Bolsée, M.R. Patel, J.P. Mason, M. Leese, S. Lesschaeve, P. Antoine, F. Daerden, S. Delanoye, R. Drummond, E. Neefs, B. Ristic, J.J. Lopez-Moreno, G. Bellucci, N. Team, Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. Opt. Express 23(23), 30,028–30,042 (2015b).  https://doi.org/10.1364/OE.23.030028 CrossRefGoogle Scholar
  132. A. Vandaele (The NOMAD Team), NOMAD, an integrated suite of three spectrometers for the ExoMars trace gas mission: technical description, science objectives and expected performances. Space Sci. Rev. (2018). Submitted Google Scholar
  133. G.L. Villanueva, F. Altieri, R.T. Clancy, T. Encrenaz, T. Fouchet, P. Hartogh, E. Lellouch, M.A. Lopéz-Valverde, M.J. Mumma, R.E. Novak, M.D. Smith, A.C. Vandaele, M.J. Wolff, P. Ferruit, S.N. Milam, Unique spectroscopy and imaging of Mars with the James Webb Space Telescope. Publ. Astron. Soc. Pac. 128(959), 018004 (2016).  https://doi.org/10.1088/1538-3873/128/959/018004 ADSGoogle Scholar
  134. L. Wang, D.C. Fritts, R.H. Tolson, Nonmigrating tides inferred from the Mars Odyssey and Mars Global Surveyor aerobraking data. Geophys. Res. Lett. 33(23), L23201 (2006).  https://doi.org/10.1029/2006GL027753 ADSCrossRefGoogle Scholar
  135. V. Wilquet, A. Fedorova, F. Montmessin, R. Drummond, A. Mahieux, A.C. Vandaele, E. Villard, O. Korablev, J.L. Bertaux, Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus Express. J. Geophys. Res., Planets 114, E00B42 (2009).  https://doi.org/10.1029/2008JE003186 Google Scholar
  136. R.J. Wilson, S.D. Guzewich, Influence of water ice clouds on nighttime tropical temperature structure as seen by the Mars Climate Sounder. Geophys. Res. Lett. 41(10), 3375–3381 (2014).  https://doi.org/10.1002/2014GL060086 ADSCrossRefGoogle Scholar
  137. R.J. Wilson, G.A. Neumann, M.D. Smith, Diurnal variation and radiative influence of Martian water ice clouds. Geophys. Res. Lett. 34(2), L02710 (2007).  https://doi.org/10.1029/2006GL027976 ADSCrossRefGoogle Scholar
  138. P. Withers, Mars Global Surveyor and Mars Odyssey Accelerometer observations of the Martian upper atmosphere during aerobraking. Geophys. Res. Lett. 33(2), L02201 (2006).  https://doi.org/10.1029/2005GL024447 ADSCrossRefGoogle Scholar
  139. P. Withers, S.W. Bougher, G.M. Keating, The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer. Icarus 164, 14–32 (2003).  https://doi.org/10.1016/S0019-1035(03)00135-0 ADSCrossRefGoogle Scholar
  140. M.J. Wolff, M.D. Smith, R.T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, H. Savijärvi, Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res., Planets 114(E2), E00D04 (2009).  https://doi.org/10.1029/2009JE003350 Google Scholar
  141. M.J. Wolff, R.T. Clancy, J.D. Goguen, M.C. Malin, B.A. Cantor, Ultraviolet dust aerosol properties as observed by MARCI. Icarus 208(1), 143–155 (2010).  https://doi.org/10.1016/j.icarus.2010.01.010 ADSCrossRefGoogle Scholar
  142. M.J. Wolff, R.T. Clancy, B.A. Cantor, Four Mars years of mapping water ice clouds with MRO/MARCI, in AGU Fall Meeting Abstracts (2013) Google Scholar
  143. M.J. Wolff, M. López-Valverde, J.B. Madeleine, R.J. Wilson, M.D. Smith, T. Fouchet, G.T. Delory, Radiative processes: techniques and applications, in The Atmosphere and Climate of Mars, ed. by B. Haberle, M. Smith, T. Clancy, F. Forget, R. Zurek (Cambridge University Press, Cambridge, 2017), pp. 106–171. Chap. 6.  https://doi.org/10.1017/9781139060172 CrossRefGoogle Scholar
  144. E. Yiǧit, A.D. Aylward, A.S. Medvedev, Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: sensitivity study. J. Geophys. Res. 113, D19106 (2008).  https://doi.org/10.1029/2008JD010135 ADSCrossRefGoogle Scholar
  145. E. Yiǧit, S.L. England, G. Liu, A.S. Medvedev, P.R. Mahaffy, T. Kuroda, B.M. Jakosky, High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophys. Res. Lett. 42, 8993–9000 (2015).  https://doi.org/10.1002/2015GL065307 ADSCrossRefGoogle Scholar
  146. R.W. Zurek, S.E. Smrekar, An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J. Geophys. Res. (2007).  https://doi.org/10.1029/2006JE002701 Google Scholar
  147. R.W. Zurek, R.H. Tolson, D. Baird, M.Z. Johnson, S.W. Bougher, Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization. Space Sci. Rev. 195(1), 303–317 (2015).  https://doi.org/10.1007/s11214-014-0095-x ADSCrossRefGoogle Scholar
  148. R.W. Zurek, R.A. Tolson, S.W. Bougher, R.A. Lugo, D.T. Baird, J.M. Bell, B.M. Jakosky, Mars thermosphere as seen in MAVEN accelerometer data. J. Geophys. Res. Space Phys. 122(3), 3798–3814 (2017).  https://doi.org/10.1002/2016JA023641 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Miguel A. López-Valverde
    • 1
  • Jean-Claude Gerard
    • 2
  • Francisco González-Galindo
    • 1
  • Ann-Carine Vandaele
    • 3
  • Ian Thomas
    • 3
  • Oleg Korablev
    • 4
  • Nikolai Ignatiev
    • 4
  • Anna Fedorova
    • 4
  • Franck Montmessin
    • 5
  • Anni Määttänen
    • 5
  • Sabrina Guilbon
    • 5
  • Franck Lefevre
    • 6
  • Manish R. Patel
    • 7
  • Sergio Jiménez-Monferrer
    • 1
  • Maya García-Comas
    • 1
  • Alejandro Cardesin
    • 8
  • Colin F. Wilson
    • 9
  • R. T. Clancy
    • 10
  • Armin Kleinböhl
    • 11
  • Daniel J. McCleese
    • 11
  • David M. Kass
    • 11
  • Nick M. Schneider
    • 12
  • Michael S. Chaffin
    • 12
  • José Juan López-Moreno
    • 1
  • Julio Rodríguez
    • 1
  1. 1.Instituto de Astrofìsica de Andalucía/CSICGranadaSpain
  2. 2.Laboratoire de Physique Atmosphérique et PlanétaireUniversité de LiègeLiègeBelgium
  3. 3.IASBBrusselsBelgium
  4. 4.IKIMoscowRussia
  5. 5.LATMOS/IPSLUVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRSGuyancourtFrance
  6. 6.LATMOS/IPSLUPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRSParisFrance
  7. 7.Open UniversityMilton-KeynesUK
  8. 8.ESACMadridSpain
  9. 9.Physics DepartmentOxford UniversityOxfordUK
  10. 10.Space Science InstituteBoulderUSA
  11. 11.JPLCaltechPasadenaUSA
  12. 12.LASPBoulderUSA

Personalised recommendations