Abstract
The Juno Microwave Radiometer (MWR) is a six-frequency scientific instrument designed and built to investigate the deep atmosphere of Jupiter. It is one of a suite of instruments on NASA’s New Frontiers Mission Juno launched to Jupiter on August 5, 2011. The focus of this paper is the description of the scientific objectives of the MWR investigation along with the experimental design, observational approach, and calibration that will achieve these objectives, based on the Juno mission plan up to Jupiter orbit insertion on July 4, 2016. With frequencies distributed approximately by octave from 600 MHz to 22 GHz, the MWR will sample the atmospheric thermal radiation from depths extending from the ammonia cloud region at around 1 bar to pressure levels as deep as 1000 bars. The primary scientific objectives of the MWR investigation are to determine the presently unknown dynamical properties of Jupiter’s subcloud atmosphere and to determine the global abundance of oxygen and nitrogen, present in the atmosphere as water and ammonia deep below their respective cloud decks. The MWR experiment is designed to measure both the thermal radiation from Jupiter and its emission-angle dependence at each frequency relative to the atmospheric local normal with high accuracy. The antennas at the four highest frequencies (21.9, 10.0, 5.2, and 2.6 GHz) have ∼12° beamwidths and will achieve a spatial resolution approaching 600 km near perijove. The antennas at the lowest frequencies (0.6 and 1.25 GHz) are constrained by physical size limitations and have 20° beamwidths, enabling a spatial resolution of as high as 1000 km to be obtained. The MWR will obtain Jupiter’s brightness temperature and its emission-angle dependence at each point along the subspacecraft track, over angles up to 60° from the normal over most latitudes, during at least six perijove passes after orbit insertion. The emission-angle dependence will be obtained for all frequencies to an accuracy of better than one part in \(10^{3}\), sufficient to detect small variations in atmospheric temperature and absorber concentration profiles that distinguish dynamical and compositional properties of the deep Jovian atmosphere.
This is a preview of subscription content, access via your institution.
























References
V. Adumitroaie, S.M. Levin, D. Santos-Costa, S. Gulkis, M.A. Janssen, in Aerospace Conference 2016 (IEEE, New York,2016), pp. 1–11
K. Altwegg et al., Science 347, 1261952 (2015)
M. Asplund, N. Grevesse, J. Sauval, P. Scott, Annu. Rev. Astron. Astrophys. 47, 481–522 (2009)
S.K. Atreya, Atmospheres and Ionospheres of the Outer Planets and Their Satellites (Springer, New York, 1986)
S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, Planet. Space Sci. 47, 1243–1262 (1999)
S.K. Atreya, P.R. Mahaffy, H.B. Niemann, T.C. Owen, in Highlights of Astronomy, vol. 12, ed. by H. Rickman (Springer, New York, 2002), pp. 597–601
S.K. Atreya, A. Crida, T. Guillot, J.I. Lunine, N. Madhusudhan, M. Mousis, in Saturn in the 21st Century, ed. by K. Baines, M. Flasar, N. Krupp, T. Stallard (Cambridge Univ. Press, Cambridge, 2017
J.W.M. Baars, R. Genzel, I.I.K. Pauliny-Toth, A. Witzel, Astron. Astrophys. 61, 99–106 (1977)
J.J. Barnes, D.A. Kring, R. Tartese, I.A. Franchi, M. Anand, S.S. Russell, Nat. Commun. 7, 11684 (2016)
A. Bellotti, P.G. Steffes, G. Chinsomboon, Icarus 280, 255–267 (2016)
G.L. Berge, S. Gulkis, in Jupiter, ed. by T. Gehrels (Univ. of Arizona Press, Tucson, 1976), pp. 621–692
G.L. Bjoraker, M.H. Wong, I. de Pater, M. Ádámkovics, Astrophys. J. (2015). doi:10.1088/0004-637X/810/2/122, astro-ph.EP
S.T. Brown, S. Desai, W. Lu, A. Tanner, IEEE Trans. Geosci. Remote Sens. 45(7), 1908–1920 (2007). doi:10.1109/TGRS.2006.888098
S.T. Brown, IEEE Trans. Geosci. Remote Sens. 51, 1531–1543 (2013)
N.F. Chamberlain, J.C. Chen, R.E. Hodges, R.C. Hughes, J.K. Jakoboski, in IEEE APS/URSI Conference, Toronto, Canada (2010)
J.E.P. Connerney, M. Benn, J.B. Bjarno, T. Denver, j. Espley, J.L. Jorgensen, P.S. Jorgensen, P. Lawton, A. Malinnikova, J.M. Merayo, S. Murphy, J. Odom, R. Oliversen, R. Schurr, D. Sheppard, E.J. Smith, Space Sci. Rev. (2017). doi:10.1007/s11214-017-0334-z
I. de Pater, S.T. Massie, Icarus 62, 143–171 (1985)
I. de Pater, J.R. Dickel, Astrophys. J. 308, 459–471 (1986)
I. de Pater, D. Dunn, P. Romani, K. Zahnle, Icarus 149, 66–78 (2001)
I. de Pater, D. DeBoer, M. Marley, R. Freedman, R. Young, Icarus 173, 425–438 (2005)
I. de Pater, R.J. Sault, B. Butler, D. DeBoer, M.H. Wong, Science 352, 1198–1201 (2016)
K. Devaraj, P.G. Steffes, D. Duong, Icarus 241, 165–179 (2014)
D.T. Duong, P.G. Steffes, S. Noorizadeh, Icarus 229, 121–131 (2014)
G.B. Field, J. Geophys. Res. 64, 1169–1177 (1959)
W.M. Folkner, R. Woo, S. Nandi, J. Geophys. Res. 103(E10), 22,847–22,855 (1998)
J. Gibson, W.J. Welch, I. de Pater, Icarus 173, 439–446 (2005)
H.B. Garrett, S.M. Levin, S.J. Bolton, R.W. Evans, B. Bhattacharya, Geophys. Res. Lett. 32, 4104–4108 (2005)
D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Astrophys. J. 550, L227–L230 (2001)
S. Gulkis, T.R. McDonough, H. Craft, Icarus 10, 421–427 (1969)
S. Gulkis, R. Poynter, Phys. Earth Planet. Inter. 6, 36–43 (1972)
T.R. Hanley, P.G. Steffes, B.M. Karpowicz, Icarus 202, 316–335 (2009)
J. Harrington, I. de Pater, S.H. Brecht, D. Deming, V. Meadows, K. Zahnle, P.D. Nicholson, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), p. 159–184
M. Heimpel, T. Gastine, J. Wicht, Nat. Geosci. 9, 19–23 (2016)
F. Hersant, D. Gautier, J.I. Lunine, Planet. Space Sci. 52, 623–641 (2004)
M.A. Janssen, Atmospheric Remote Sensing by Microwave Radiometry (Wiley, New York, 1993)
M.A. Janssen, C.S. Ruf, S.J. Keihm, IEEE Trans. Geosci. Remote Sens. 33, 138–146 (1995)
M.A. Janssen, M.D. Hofstadter, S. Gulkis, A.P. Ingersoll, M. Allison, S.J. Bolton, L.W. Kamp, Icarus 173, 447–453 (2005)
M.A. Janssen, A. Ingersoll, M.D. Allison, S. Gulkis, A. Laraia, K. Baines, S. Edgington, Y. Anderson, K. Kelleher, Icarus 226, 522–535 (2013)
B.M. Karpowicz, P.G. Steffes, Icarus 212, 210–223 (2011a)
B.M. Karpowicz, P.G. Steffes, Icarus 214, 783 (2011b)
K.I. Kellerman, Astron. Astrophys. 500, 143–144 (2009)
S.M. Levin, S. Bolton, B. Bhattacharya, S. Gulkis, M. Klein, R. Thorne, Geophys. Res. Lett. 28, 903–906 (2001)
Y. Lian, A.P. Showman, Icarus 207, 373–393 (2010)
G.F. Lindal, G.E. Wood, G.S. Levy, J.D. Anderson, D.N. Sweetnam, H.B. Hotz, B.J. Buckles, D.P. Holmes, P.E. Doms, V.R. Eshleman, G.L. Tyler, T.A. Croft, J. Geophys. Res. 86, 8721 (1981)
C.H. Lineweaver, L. Tenario, G.F. Smoot, P. Keegstra, A.J. Banday, P. Lubin, Astrophys. J. 470, 38–42 (1996)
J. Liu, T. Schneider, J. Atmos. Sci. 67, 3652–3672 (2010)
J.J. Liu, T. Schneider, J. Atmos. Sci. 72, 389–408 (2015)
E. Lorenz, Tellus 7, 157–167 (1955)
J.I. Lunine, D.J. Stevenson, Astrophys. J. Suppl. Ser. 58, 493–531 (1985)
V. Lucarini, S. Pascale, R. Boschi, E. Kirk, N. Iro, Astron. Nachr. 334, 576–588 (2013)
P.R. Mahaffy, H.B. Niemann, J.E. Demick, Bull. Am. Astron. Soc. 31, 5205 (1999)
P.R. Mahaffy, H.B. Niemann, A. Alpert, S.K. Atreya, J. Demick, T.M. Donahue, D.N. Harpold, T.C. Owen, J. Geophys. Res., Planets 105(E6), 15061–15071 (2000)
B. Marty, Earth Planet. Sci. Lett. 313, 56–66 (2012)
E.C. Morris, R.W. Parsons, Aust. J. Phys. 23, 335–349 (1970)
H.B. Niemann, S.K. Atreya, G.R. Carignan, T.M. Donahue, J.A. Haberman, D.N. Harpold, R.E. Hartle, D.M. Hunten, W.T. Kasprzak, P.R. Mahaffy, T.C. Owen, N.W. Spencer, S.H. Way, Science 272, 846–849 (1996)
H.B. Niemann et al., J. Geophys. Res., Planets 103, 22831–22845 (1998)
T. Owen, A. Barnun, I. Kleinfeld, Nature 358, 43–46 (1992)
T. Owen, A. Barnum, Icarus 116, 215–226 (1995)
T.C. Owen, P.R. Mahaffy, H.B. Niemann, S.K. Atreya, T.M. Donahue, A. Bar-Nun, I. de Pater, Nature 402, 269–270 (1999)
B.M. Partridge, B.M. Lopez-Caniego, R.A. Perley, J. Stevens, B.J. Butler, G. Rocha, B. Waler, A. Zacchei, arXiv:1506.02892 [astro-ph.CO] (2016)
J.P. Peixoto, A.H. Oort, Physics of Climate (Am. Inst. of Physics, New York, 1992)
J. Peng, C.S. Ruf, S.T. Brown, J. Piepmeier, in IEEE International Geoscience and Remote Sensing Symposium, Barcelona (2007), pp. 2416–2418
R.A. Perley, B.J. Butler, Astrophys. J. Suppl. Ser. 204, 1–20 (2013)
J.B. Pollack, O. Hubickyj, P. Bodenheimer, J. Lissauer, M. Podolak, Y. Greenzweig, Icarus 124, 62–85 (1996)
D. Santos-Costa, S.J. Bolton, Planet. Space Sci. 56, 326–345 (2009)
D. Santos-Costa, I. de Pater, R.J. Sault, M.A. Janssen, S.M. Levin, S.J. Bolton, Astron. Astrophys. 568(A61), 1–11 (2014)
R.J. Sault, C. Engel, I. de Pater, Icarus 168, 336–343 (2004)
G. Schubert, J. Mitchell, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (Univ. of Arizona Press, Tuscon, 2013), pp. 181–191
A. Seiff, D.B. Kirk, T.C.D. Knight, R.E. Young, J.D. Mihalov, L.A. Young, F.S. Milos, G. Schubert, R.C. Blanchard, D. Atkinson, J. Geophys. Res. 103, 22857 (1998)
A.P. Showman, I. de Pater, Icarus 174, 192–204 (2005)
S.S. Sobjaerg, N. Skou, J.E. Balling, IEEE Trans. Geosci. Remote Sens. 47(9), 3134–3139 (2009)
P.G. Steffes, T.R. Hanley, B.M. Karpowicz, K. Devaraj, S. Noorizadeh, D. Duong, G. Chinsomboon, A. Bellotti, M.A. Janssen, S.J. Bolton, Space Sci. Rev. (2017). doi:10.1007/s11214-016-0265-0
L.A. Sromovsky, A.D. Collard, P.M. Fry, G.S. Orton, M.T. Lemmon, M.G. Tomasko, R.S. Freedman, J. Geophys. Res. 103, 22929–22978 (1998)
K. Sugiyama, K. Nakajima, M. Odaka, K. Kuramoto, Y.Y. Hayashi, Icarus 229, 71–91 (2014)
F. Tabataba-Vakili, P.L. Read, S.R. Lewis, L. Montabone, T. Ruan, Y. Wang, A. Valeanu, R. Young, Geophys. Res. Lett. 42, 8320–8327 (2015)
S.I. Thomson, M.E. McIntyre, J. Atmos. Sci. 73, 1119–1141 (2016)
A.R. Vasavada, A.P. Showman, Rep. Prog. Phys. 68, 1935–1996 (2005)
F. Wentz, D. Levine, Remote sensing systems. Technical report 011811 (2011)
M.H. Weatherspoon, L.P. Dunleavy, IEEE Trans. Microw. Theory Tech. 54(2), 608–614 (2006)
M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Icarus 171, 153–170 (2004)
G.T. Wrixon, W.J. Welch, D. Thornton, Astrophys. J. 169, 171–183 (1971)
Acknowledgements
The work described in this paper was conducted at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The author wishes to thank the numerous contributors from the Juno Project and the Lockheed-Martin spacecraft team, without whom this ambitious project would not have been possible.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Janssen, M.A., Oswald, J.E., Brown, S.T. et al. MWR: Microwave Radiometer for the Juno Mission to Jupiter. Space Sci Rev 213, 139–185 (2017). https://doi.org/10.1007/s11214-017-0349-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-017-0349-5
Keywords
- Jupiter
- Microwave radiometry
- Synchrotron emission
- Atmosphere
- Atmospheric composition
- Atmospheric dynamics