Advertisement

Space Science Reviews

, Volume 184, Issue 1–4, pp 87–106 | Cite as

The Energetic Particle Telescope: First Results

  • V. PierrardEmail author
  • G. Lopez Rosson
  • K. Borremans
  • J. Lemaire
  • J. Maes
  • S. Bonnewijn
  • E. Van Ransbeeck
  • E. Neefs
  • M. Cyamukungu
  • S. Benck
  • L. Bonnet
  • S. Borisov
  • J. Cabrera
  • G. Grégoire
  • C. Semaille
  • G. Creve
  • J. De Saedeleer
  • B. Desoete
  • F. Preud’homme
  • M. Anciaux
  • A. Helderweirt
  • K. Litefti
  • N. Brun
  • D. Pauwels
  • C. Quevrin
  • D. Moreau
  • R. Punkkinen
  • E. Valtonen
  • W. Hajdas
  • P. Nieminen
Article

Abstract

The Energetic Particle Telescope (EPT) is a new compact and modular ionizing particle spectrometer that was launched on 7 May 2013 to a LEO polar orbit at an altitude of 820 km onboard the ESA satellite PROBA-V. First results show electron, proton and helium ion fluxes in the South Atlantic Anomaly (SAA) and at high latitudes, with high flux increases during SEP (Solar Energetic Particles) events and geomagnetic storms. These observations help to improve the understanding of generation and loss processes associated to the Van Allen radiation belts.

Keywords

Van Allen belts Space radiations Spectrometer South Atlantic Anomaly Solar Energetic Particle events 

Notes

Acknowledgements

V. Pierrard and the Space Physics Department of BISA thank the Belgian Science Policy—Space Research and Applications (Belspo) for the supplementary researcher program entitled “Scientific analysis of EPT (Energetic Particle Telescope) measurements”. The research leading to these results has also received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement n°263340 SWIFF (www.swiff.eu) and was subsidized by the Scientific Federal Policy in the framework of the program Interuniversity Attraction Pole for the project P7/08 CHARM.

The development of the EPT instrument was realized with the support of the Belspo and of the European Space Agency (ESA) (contracts 20294/06/NL/JD (Phase A/B) and 22582/09/NL/AT (Phase C/D)). The design of the EPT instrument and its integration on the PROBA-V satellite results from a fruitful Consortium between the Université Catholique de Louvain, the Belgian Institute for Space Aeronomy and QinetiQ Space. The B.USOC and the control center in Redu provide data transmission and storage. The authors thank all the scientists who temporarily participated to the development of the EPT instrument and its integration on PROBA-V satellite, as well as the administrative teams of the different institutes. The CSR team also thanks Belspo for supporting the “PROBA-V/EPT – Data Exploitation” project via the PRODEX program under ESA contract C4000107617) and for the PRODEX-7 (N° 90098+ CCN-1/C 90098). They also thank G. Tabordon, L. Kruijfthooft, C. Thielens, B. de Callatay and the radioprotection and cyclotron teams. EPT data can be consulted on the website http://web.csr.ucl.ac.be/csr_web/probav/index.html.

The authors thank the reviewers for their suggestions to improve the manuscript, especially for the comparisons with Van Allen Probes. The authors thank also Drs S. Bourdarie and V. Maget from ONERA in Toulouse (France) for providing the observations of SAC-D and POES that were used for comparisons with EPT measurements and for many useful discussions to improve the analysis of the data.

References

  1. S. Benck, L. Mazzino, M. Cyamukungu, J. Cabrera, V. Pierrard, Low altitude energetic electron lifetimes after enhanced magnetic activity as deduced from SAC-C and DEMETER data. Ann. Geophys. 28, 848–859 (2010). www.ann-geophys.net/28/849/2010/ CrossRefADSGoogle Scholar
  2. S. Benck, M. Cyamukungu, J. Cabrera, L. Mazzino, V. Pierrard, The Transient Observation-based Particle (TOP) model and its potential application in radiation effects evaluation. J. Space Weather Space Clim. 3, 1–10 (2013). doi: 10.1051/SWSC/2013024 CrossRefGoogle Scholar
  3. J. Cabrera, M. Cyamukungu, P. Stauning, A. Leonov, P. Leleux, J. Lemaire, G. Grégoire, Fluxes of energetic protons and electrons measured on board the Oersted satellite. Ann. Geophys. 23, 2975–2982 (2005). doi: 10.5194/angeo-23-2975-2005 CrossRefADSGoogle Scholar
  4. M. Cyamukungu, G. Grégoire, The Energetic Particle Telescope (EPT) concept and performances, in Proc. SPIE, vol. 8148, Solar Physics and Space Weather Instrumentation IV (2011), 814803. doi: 10.1117/12.892420
  5. M. Cyamukungu, S. Benck, I. Brivitch, W. Hajdas, G. Santin, A. Zadeh, A. Meniucci, P. Nieminen, R. Punkkinen, E. Valtonen, C. Semaille, B. Desoete, J. De Saedeleer, G. Creve, E. Van Ransbeeck, J. Maes, S. Bonnewijn, G. Grégoire, J. Cabrera, Perspectives for provision of high quality space radiation environment data using the Energetic Particle Telescope (EPT), in RADECS 2011, ed. by J. Schwank (Institute of Electrical and Electronics Engineers, 2011), pp. 569–572. doi: 10.1109/RADECS.2011.6131438
  6. M. Cyamukungu, S. Benck, S. Borisov, G. Grégoire, J. Cabrera, J.-L. Bonnet, B. Desoete, F. Preud’homme, C. Semaille, G. Creve, J. De Saedeleer, S. Ilsen, L. De Busser, V. Pierrard, S. Bonnewijn, J. Maes, E. Van Ransbeeck, E. Neefs, J. Lemaire, E. Valtonen, R. Punkkinen, M. Anciaux, K. Litefti, N. Brun, D. Pauwels, C. Quevrin, D. Moreau, A. Helderweirt, W. Hajdas, P. Nieminen, The Energetic Particle Telescope (EPT) on board PROBA-V: description of a new science-class instrument for particle detection in space. IEEE Trans. Nucl. Sci. (2014, submitted) Google Scholar
  7. F. Darrouzet, V. Pierrard, S. Benck, G. Lointier, J. Cabrera, K. Borremans, N. Ganushkina, J. De Keyser, Links between the plasmapause and the radiation belts boundaries as observed by the instruments CIS, RAPID and WHISPER on CLUSTER. J. Geophys. Res. 118, 4176–4188 (2013). doi: 10.1002/jgra.50239 CrossRefGoogle Scholar
  8. D. Evans, H. Garett, I. Jun, R. Evans, J. Chow, Long-term observations of the trapped high-energy proton population (L<4) by the NOAA Polar Orbiting Environmental Satellite (POES). Adv. Space Res. 41, 1261–1268 (2008) CrossRefADSGoogle Scholar
  9. G.P. Ginet, T.P. O’Brien, S.L. Huston, W.R. Johnston, T.B. Guild, R. Friedel, C.D. Lindstrom, C.J. Roth, P. Whelan, R.A. Quinn, D. Madden, S. Morley, Y.-J. Su, AE9, AP9 and SPM: new models for specifying the trapped energetic particle and space plasma environment. Space Sci. Rev. 179(1–4), 579–615 (2013). doi: 10.1007/s11214-013-9964-y CrossRefADSGoogle Scholar
  10. D. Heynderickx, Comparison between methods to compensate for the secular motion of the South Atlantic Anomaly. Nucl. Tracks Radiat. Meas. 26, 325–331 (1996) CrossRefGoogle Scholar
  11. D. Heynderickx, M. Kruglanski, V. Pierrard, J. Lemaire, M.D. Looper, J.B. Blake, A low altitude trapped proton model for solar minimum conditions based on SAMPEX/PET data. IEEE Trans. Nucl. Sci. 46, 1475–1480 (1999) CrossRefADSGoogle Scholar
  12. M. Kruglanski, Engineering tool for trapped proton flux anisotropy evaluation. Radiat. Meas. 26, 953 (1996) CrossRefGoogle Scholar
  13. P. Maisongrande, J. Vandenabeele, J.-P. Malingreau, A. Lobo, P. de Fourny, E. Gonthier, K. Mellab, R. Kleihorst, PROBA-V, a satellite for the continuity of the SPOT/VEGETATION mission. Geophys. Res. Abstr. 12, EGU2010-14202-1 (2010) Google Scholar
  14. C.E. McIlwain, Coordinates for mapping the distribution of magnetically trapped particles. J. Geophys. Res. 66, 3681–3691 (1961) CrossRefADSGoogle Scholar
  15. V. Pierrard, S. Benck, The dynamics of the terrestrial radiation belts and its links to the plasmasphere, in Space Weather: the Space Environment. AIP Conf. Proc., vol. 1500 (2012), p. 216. doi: 10.1063/1.4768769 Google Scholar
  16. V. Pierrard, K. Borremans, Fitting the AP8 spectra to determine the proton momentum distribution functions in space radiations. Radiat. Meas. 47, 401–405 (2012). doi: 10.1016/j.radmeas.2012.04.002 CrossRefGoogle Scholar
  17. V. Pierrard, J. Lemaire, Fitting the AE-8 energy spectra with two maxwellian functions. Radiat. Meas. 26(3), 333–337 (1996) CrossRefGoogle Scholar
  18. V. Pierrard, J. Lemaire, D. Heynderickx, M. Kruglanski, M. Looper, B. Blake, D. Mewaldt, Statistical analysis of SAMPEX/PET proton measurements. Nucl. Instrum. Methods Phys. Res. 449, 378–382 (2000) CrossRefADSGoogle Scholar
  19. J.-A. Sauvaud et al., Radiation belt electron precipitation due to VLF transmitters: satellite observations. Geophys. Res. Lett. 35, L09101 (2008). doi: 10.1029/2008GL033194 ADSGoogle Scholar
  20. J.-A. Sauvaud et al., Inner radiation belt particle acceleration and energy structuring by drift resonance with ULF waves during geomagnetic storms. J. Geophys. Res. 118, 1723–1736 (2013). doi: 10.1002/jgra.50125 CrossRefGoogle Scholar
  21. Y.Y. Shprits, S.R. Elkington, N.P. Meredith, D.A. Subbotin, Review of modeling of losses and sources of relativistic electrons in the outer belt I: radial transport. J. Atmos. Sol.-Terr. Phys. 70, 1679–1693 (2008a). doi: 10.1016/j.jastp.2008.06.008 CrossRefADSGoogle Scholar
  22. Y.Y. Shprits, S.R. Elkington, N.P. Meredith, D.A. Subbotin, Review of modeling of losses and sources of relativistic electrons in the outer belt II: local acceleration and loss. J. Atmos. Sol.-Terr. Phys. 70, 1694–1713 (2008b). doi: 10.1016/j.jastp.2008.06.014 CrossRefADSGoogle Scholar
  23. A.L. Vampola, VLF transmission-induced slot electron precipitation. Geophys. Res. Lett. 4, 569–572 (1977) CrossRefADSGoogle Scholar
  24. J.I. Vette, The AE-8 trapped electron model environment. NSSDC/WDC-A-R&S 91-24 (1991) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • V. Pierrard
    • 1
    • 2
    Email author
  • G. Lopez Rosson
    • 1
  • K. Borremans
    • 1
  • J. Lemaire
    • 1
    • 2
  • J. Maes
    • 1
  • S. Bonnewijn
    • 1
  • E. Van Ransbeeck
    • 1
  • E. Neefs
    • 1
  • M. Cyamukungu
    • 2
  • S. Benck
    • 2
  • L. Bonnet
    • 2
  • S. Borisov
    • 2
  • J. Cabrera
    • 2
  • G. Grégoire
    • 2
  • C. Semaille
    • 3
  • G. Creve
    • 3
  • J. De Saedeleer
    • 3
  • B. Desoete
    • 3
  • F. Preud’homme
    • 3
  • M. Anciaux
    • 4
  • A. Helderweirt
    • 4
  • K. Litefti
    • 4
  • N. Brun
    • 4
  • D. Pauwels
    • 4
  • C. Quevrin
    • 4
  • D. Moreau
    • 4
  • R. Punkkinen
    • 5
  • E. Valtonen
    • 6
  • W. Hajdas
    • 7
  • P. Nieminen
    • 8
  1. 1.Belgian Institute for Space Aeronomy (BISA)BrusselsBelgium
  2. 2.Center for Space RadiationsUniversité Catholique de Louvain (UCL)Louvain-La-NeuveBelgium
  3. 3.QinetiQ SpaceKruibekeBelgium
  4. 4.Belgian User Support and Operations Centre (B.USOC)BISABrusselsBelgium
  5. 5.Department of Information TechnologyUniversity of TurkuTurkuFinland
  6. 6.Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  7. 7.Laboratory for Particle PhysicsPaul Scherrer InstitutVilligenSwitzerland
  8. 8.ESAESTEC European Space & Technology CentreNoordwijkThe Netherlands

Personalised recommendations