Space Science Reviews

, 136:67 | Cite as

Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)

  • R. A. Howard
  • J. D. Moses
  • A. Vourlidas
  • J. S. Newmark
  • D. G. Socker
  • S. P. Plunkett
  • C. M. Korendyke
  • J. W. Cook
  • A. Hurley
  • J. M. Davila
  • W. T. Thompson
  • O. C. St Cyr
  • E. Mentzell
  • K. Mehalick
  • J. R. Lemen
  • J. P. Wuelser
  • D. W. Duncan
  • T. D. Tarbell
  • C. J. Wolfson
  • A. Moore
  • R. A. Harrison
  • N. R. Waltham
  • J. Lang
  • C. J. Davis
  • C. J. Eyles
  • H. Mapson-Menard
  • G. M. Simnett
  • J. P. Halain
  • J. M. Defise
  • E. Mazy
  • P. Rochus
  • R. Mercier
  • M. F. Ravet
  • F. Delmotte
  • F. Auchere
  • J. P. Delaboudiniere
  • V. Bothmer
  • W. Deutsch
  • D. Wang
  • N. Rich
  • S. Cooper
  • V. Stephens
  • G. Maahs
  • R. Baugh
  • D. McMullin
  • T. Carter
Open Access
Article

Abstract

The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d’Optique (France) and the Institut d’Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1–1.7 R), two traditional Lyot coronagraphs (COR1: 1.5–4 R and COR2: 2.5–15 R) and two new designs of heliospheric imagers (HI-1: 15–84 R and HI-2: 66–318 R). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2–3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft.

Keywords

Solar corona Lyot coronagraph XUV heliograph Heliospheric imager Coronal loops Coronal mass ejections Stereo Heliosphere 

References

  1. D. Akin, R. Horber, C.J. Wolfson, Three high duty cycle, space-qualified mechanisms, in NASA Conf. Pub., vol. 3205 (1993) Google Scholar
  2. G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, J.D. Moses, D.G. Socker, K.P. Dere, P.L. Lamy, A. Llebaria, M.V. Bout, R. Schwenn, G.M. Simnett, D.K. Bedford, C.J. Eyles, Solar Phys. 162, 357–402 (1995) CrossRefADSGoogle Scholar
  3. A. Buffington, B.V. Jackson, C.M. Korendyke, Appl. Opt. 35, 6669–6673 (1996) ADSCrossRefGoogle Scholar
  4. K.P. Dere, E. Landi, H.E. Mason, B.C. Monsignori Fossi, P.R. Young, CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149 (1997) CrossRefADSGoogle Scholar
  5. J.M. Defise, J.P. Halain, E. Mazy, P. Rochus, R.A. Howard, J.D. Moses, D.G. Socker, R.A. Harrison, G.M. Simnett, Design and tests for the heliospheric imager of the STEREO mission, in Innovative Telescopes and Instrumentation for Solar Astrophysics, ed. by S.L. Keil, S.V. Avakyan. Proc. SPIE, vol. 4853 (SPIE, Bellington, 2003), pp. 12–22 Google Scholar
  6. J.P. Delaboudinière et al., EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995) CrossRefADSGoogle Scholar
  7. C.J. Eyles, G.M. Simnett, M.P. Cooke, B.V. Jackson, A. Buffington, P.P. Hick, N.R. Waltham, J.M. King, P.A. Anderson, P.E. Holladay, Sol. Phys. 217, 319–347 (2003) CrossRefADSGoogle Scholar
  8. E.G. Gibson, The Quiet Sun, SP-303, National Aeronautics and Space Administration (1973) Google Scholar
  9. B.N. Handy et al., The transition region and coronal explorer. Sol. Phys. 187, 229–260 (1999) CrossRefADSGoogle Scholar
  10. R.A. Harrison, C.J. Davis, C.J. Eyles, The STEREO heliospheric imager: how to detect CMEs in the heliosphere. Adv. Space Res. 36, 1512–1523 (2005) CrossRefADSGoogle Scholar
  11. R.A. Howard, Historical perspective on coronal mass ejections, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy. Geophysical Monograph Series, vol. 165 (American Geophysical Union, Washington, 2006), pp. 7–13 Google Scholar
  12. R.A. Howard, J.D. Moses, D.G. Socker, the SECCHI consortium, Sun-Earth connection coronal and heliospheric investigation (SECCHI), in Instrumentation for UV/EUV Astronomy and Solar Missions, vol. 4139, ed. by S. Fineschi, C.M. Korendyke, O.H. Siegmund, B.E. Woodgate (SPIE, Bellingham, 2000), pp. 259–283 Google Scholar
  13. B. Lyot, The study of the solar corona and prominences without eclipses (George Darwin Lecture, 1939). Mon. Not. R. Astron. Soc. 99, 580–594 (1939) MATHADSGoogle Scholar
  14. J.S. Morrill et al., Calibration of the SOHO/LASCO C3 white light coronagraph. Sol. Phys. 233, 331–372 (2006) CrossRefADSGoogle Scholar
  15. E. Pitz, C. Leinert, H. Link, N. Salm, HELIOS zodiacal light experiment, in Interplanetary Dust and Zodiacal Light. IAU Colloq., vol. 31 (Cambridge University Press, Cambridge, 1976), pp. 19–23 CrossRefGoogle Scholar
  16. M.F. Ravet, F. Bridou, X. Zhang-Song, A. Jerome, F. Delmotte, M. Bougnet, J.P. Delaboudinière, Ion beam deposited Mo/Si multilayers for EUV imaging applications in astrophysics. Proc. SPIE 5250 (2003) Google Scholar
  17. K. Saito, A.I. Poland, R.H. Munro, A study of the background corona near solar minimum. Sol. Phys. 55, 121–134 (1977) CrossRefADSGoogle Scholar
  18. D.G. Socker, R.A. Howard, C.M. Korendyke, G.M. Simnett, D.F. Webb, The NASA solar terrestrial relations observatory (STEREO) mission heliospheric imager, in Instrumentation for UV/EUV Astronomy and Solar Missions, vol. 4139, ed. by S. Fineschi, C.M. Korendyke, O.H. Siegmund, B.E. Woodgate (SPIE, Bellingham, 2000), pp. 284–293 Google Scholar
  19. R.A. Stern, the SXI Team, Solar X-ray imager for GOES. Proc. SPIE 5171 (2003) Google Scholar
  20. K. Strong, T. Bruner, M. Tarbell, A. Title, C. Wolfson, TRACE—the transition region and coronal explorer. Space Sci. Rev. 70, 119 (1994) CrossRefADSGoogle Scholar
  21. S.J. Tappin, A. Buffington, M.P. Cooke, C.J. Eyles, P.P. Hick, P.E. Holladay, B.V. Jackson, J.C. Johnston, T. Kuchar, D. Mizuno, J.B. Mozer, S. Price, R.R. Radick, G.M. Simnett, D. Sinclair, N.R. Waltham, D.F. Webb, Geophys. Res. Lett. 31, L02802 (2003). doi:10.1029/2003GL018766 CrossRefGoogle Scholar
  22. W.T. Thompson, J.M. Davila, R.R. Fisher, L.E. Orwig, J.E. Mentzell, S.E. Hetherington, R.J. Derro, R.E. Federline, D.C. Clark, P.T.C. Chen, J.L. Tveekrem, A.J. Martino, J. Novello, R.P. Wesenberg, O.C. St Cyr, N.L. Reginald, R.A. Howard, K.I. Mehalick, M.J. Hersh, M.D. Newman, D.L. Thomas, G.L. Card, D.F. Elmore, COR1 inner coronagraph for STEREO-SECCHI, in Innovative Telescopes and Instrumentation for Solar Astrophysics, ed. by S.L. Keil, S.V. Avakyan. Proc. SPIE, vol. 4853 (SPIE, Bellingham, 2003), pp. 1–11 Google Scholar
  23. D.L. Windt, R.C. Catura, Multilayer characterization at LPARL. Proc. SPIE 984, 132–139 (1988) Google Scholar
  24. J.-P. Wülser et al., EUVI: the STEREO-SECCHI extreme ultraviolet imager. Proc. SPIE 5171 (2003) Google Scholar
  25. P.R. Young, G. Del Zanna, E. Landi, K.P. Dere, H.E. Mason, M. Landini, CHIANTI—an atomic database for emission lines. Astrophys. J. Suppl. Ser. 144, 135–152 (2003) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • R. A. Howard
    • 1
  • J. D. Moses
    • 1
  • A. Vourlidas
    • 1
  • J. S. Newmark
    • 1
  • D. G. Socker
    • 1
  • S. P. Plunkett
    • 1
  • C. M. Korendyke
    • 1
  • J. W. Cook
    • 1
  • A. Hurley
    • 1
  • J. M. Davila
    • 2
  • W. T. Thompson
    • 2
  • O. C. St Cyr
    • 2
  • E. Mentzell
    • 2
  • K. Mehalick
    • 2
  • J. R. Lemen
    • 3
  • J. P. Wuelser
    • 3
  • D. W. Duncan
    • 3
  • T. D. Tarbell
    • 3
  • C. J. Wolfson
    • 3
  • A. Moore
    • 3
  • R. A. Harrison
    • 4
  • N. R. Waltham
    • 4
  • J. Lang
    • 4
  • C. J. Davis
    • 4
  • C. J. Eyles
    • 5
  • H. Mapson-Menard
    • 5
  • G. M. Simnett
    • 5
  • J. P. Halain
    • 6
  • J. M. Defise
    • 6
  • E. Mazy
    • 6
  • P. Rochus
    • 6
  • R. Mercier
    • 7
  • M. F. Ravet
    • 7
  • F. Delmotte
    • 7
  • F. Auchere
    • 8
  • J. P. Delaboudiniere
    • 8
  • V. Bothmer
    • 9
  • W. Deutsch
    • 10
  • D. Wang
    • 11
  • N. Rich
    • 11
  • S. Cooper
    • 12
  • V. Stephens
    • 12
  • G. Maahs
    • 12
  • R. Baugh
    • 13
  • D. McMullin
    • 13
  • T. Carter
    • 13
  1. 1.E.O. Hulburt Center for Space ResearchNaval Research LaboratoryWashingtonUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Lockheed Martin Solar and Astrophysics Lab.Palo AltoUSA
  4. 4.Space Science and Technology Dept.Rutherford Appleton LaboratoryDidcotUK
  5. 5.Astrophysics and Space Research GroupUniversity of BirminghamEdgbastonUK
  6. 6.Centre Spatiale de LiègeUniversité de LiègeAngleurBelgium
  7. 7.Laboratoire Charles-Fabry de l’Institut d’Optique (IOTA)Palaiseau CedexFrance
  8. 8.Institut d’Astrophysique SpatialeCentre universitaire d’OrsayOrsay CedexFrance
  9. 9.Max-Planck-Institute for Solar System Research, Institute for AstrophysicsUniversity of GöttingenGöttingenGermany
  10. 10.Max-Planck-Institut for Solar System ResearchKatlenburg-LindauGermany
  11. 11.Interferometrics, Inc.HerndonUSA
  12. 12.HYTEC Inc.Los AlamosUSA
  13. 13.Praxis, Inc.AlexandriaUSA

Personalised recommendations