Skip to main content

Advertisement

Log in

Nonlinear Analysis of Radial Evolution of Solar Wind in the Inner Heliosphere

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyzed the radial evolution of solar wind in the inner heliosphere using nonlinear time series tools such as correlation dimension \(D_{2}\), correlation entropy \(K_{2}\) and multifractal analysis, to get information regarding the inherent nonlinearity associated with the solar wind data and to know how it is affected by the radial distance from the Sun. Our study provides some detailed information regarding the change of dynamics of the fast solar wind with radial distance in the inner heliosphere, apart from confirming the previous observation about the chaotic nature in the dynamics of the slow solar wind. Also we found that the fast wind in the inner heliosphere is dominated by stochastic fluctuations. As the wind is flowing radially away from the Sun, stochastic fluctuation in the fast wind decreases. The stochastic fluctuation present in the data is a clear indication of the Alfvénic fluctuation associated with the solar wind. Finally, our analysis suggests that Alfvénic fluctuation strongly influences the solar wind as it flows radially outwards to mask the nonlinear component associated with the fast wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abarbanel, H., Gollub, J.: 1996, Analysis of observed chaotic data. Phys. Today 49(11), 81.

    Article  Google Scholar 

  • Abarbanel, H.D., Brown, R., Sidorowich, J.J., Tsimring, L.S.: 1993, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331.

    Article  ADS  MathSciNet  Google Scholar 

  • Atmanspacher, H., Scheingraber, H., Wiedenmann, G.: 1989, Determination of \(f(\alpha)\) for a limited random point set. Phys. Rev. A 40(7), 3954.

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 10(1), 2.

    ADS  Google Scholar 

  • Burlaga, L.: 1991, Multifractal structure of the interplanetary magnetic field: Voyager 2 observations near 25 AU, 1987–1988. Geophys. Res. Lett. 18(1), 69.

    Article  ADS  Google Scholar 

  • Burlaga, L.: 2001, Lognormal and multifractal distributions of the heliospheric magnetic field. J. Geophys. Res. 106(A8), 15917.

    Article  ADS  Google Scholar 

  • Carbone, V.: 1993, Cascade model for intermittency in fully developed magnetohydrodynamic turbulence. Phys. Rev. Lett. 71(10), 1546.

    Article  ADS  Google Scholar 

  • Davies, M.: 1994, Noise reduction schemes for chaotic time series. Physica D 79(2–4), 174.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • De Pontieu, B., McIntosh, S., Carlsson, M., Hansteen, V., Tarbell, T., Schrijver, C., Shine, R., Tsuneta, S., Katsukawa, Y., Ichimoto, K., et al.: 2007, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318(5856), 1574.

    Article  ADS  Google Scholar 

  • Grassberger, P., Procaccia, I.: 1983a, Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grassberger, P., Procaccia, I.: 1983b, Measuring the strangeness of strange attractors. Physica D 9(1–2), 189.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grassberger, P., Procaccia, I.: 1984, Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D 13(1–2), 34.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grassberger, P., Schreiber, T., Schaffrath, C.: 1991, Nonlinear time sequence analysis. Int. J. Bifurc. Chaos 1(03), 521.

    Article  MathSciNet  MATH  Google Scholar 

  • Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C., Schreiber, T.: 1993, On noise reduction methods for chaotic data. Chaos 3(2), 127.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Harikrishnan, K., Misra, R., Ambika, G.: 2009, Combined use of correlation dimension and entropy as discriminating measures for time series analysis. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3608.

    Article  ADS  Google Scholar 

  • Harikrishnan, K., Misra, R., Ambika, G., Kembhavi, A.: 2006, A non-subjective approach to the GP algorithm for analysing noisy time series. Physica D 215(2), 137.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Harikrishnan, K., Misra, R., Ambika, G., Amritkar, R.: 2009, Computing the multifractal spectrum from time series: An algorithmic approach. Chaos 19(4), 043129.

    Article  ADS  MATH  Google Scholar 

  • Hegger, R., Kantz, H., Schreiber, T.: 1999, Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 9(2), 413.

    Article  ADS  MATH  Google Scholar 

  • Hegger, R., Schreiber, T.: 2002, The TISEAN software package.

  • Hentschel, H., Procaccia, I.: 1983, The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8(3), 435.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jess, D.B., Mathioudakis, M., Erdélyi, R., Crockett, P.J., Keenan, F.P., Christian, D.J.: 2009, Alfvén waves in the lower solar atmosphere. Science 323(5921), 1582.

    Article  ADS  Google Scholar 

  • Kantz, H., Schreiber, T.: 2004, Nonlinear Time Series Analysis 7, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Kantz, H., Schreiber, T., Hoffmann, I., Buzug, T., Pfister, G., Flepp, L.G., Simonet, J., Badii, R., Brun, E.: 1993, Nonlinear noise reduction: A case study on experimental data. Phys. Rev. E 48(2), 1529.

    Article  ADS  Google Scholar 

  • Kaplan, D., Glass, L.: 1995, Time-series analysis. In: Understanding Nonlinear Dynamics, Springer, New York, 278.

    Chapter  MATH  Google Scholar 

  • Kennel, M.B., Isabelle, S.: 1992, Method to distinguish possible chaos from colored noise and to determine embedding parameters. Phys. Rev. A 46(6), 3111.

    Article  ADS  Google Scholar 

  • Kostelich, E.J., Schreiber, T.: 1993, Noise reduction in chaotic time-series data: A survey of common methods. Phys. Rev. E 48(3), 1752.

    Article  ADS  MathSciNet  Google Scholar 

  • Kugiumtzis, D., Lillekjendlie, B., Christophersen, N.D.: 1994, Chaotic time series: Part 1: Estimation of some invariant properties in state space. Model. Identif. Control 15(4), 205.

    Article  MATH  Google Scholar 

  • Kurths, J., Herzel, H.: 1987, An attractor in a solar time series. Physica D 25(1–3), 165.

    Article  ADS  MATH  Google Scholar 

  • Lillekjendlie, B., Kugiumtzis, D., Christophersen, N.: 1994, Chaotic time series part II: System identification and prediction. arXiv preprint. arXiv.

  • Macek, W.M.: 2002, Multifractality and chaos in the solar wind. In: AIP Conference Proceedings 622, 74.

    Chapter  Google Scholar 

  • Macek, W.M.: 2003, The multifractal spectrum for the solar wind flow. In: AIP Conference Proceedings 679, 530.

    Chapter  Google Scholar 

  • Macek, W.M.: 2007, Multifractality and intermittency in the solar wind. Nonlinear Process. Geophys. 14(6), 695.

    Article  ADS  Google Scholar 

  • Macek, W.M., Obojska, L.: 1997, Fractal analysis of the solar wind flow in the inner heliosphere. Chaos Solitons Fractals 8(10), 1601.

    Article  ADS  Google Scholar 

  • Macek, W.M., Obojska, L.: 1998, Testing for nonlinearity in the solar wind flow. Chaos Solitons Fractals 9(1–2), 221.

    Article  ADS  Google Scholar 

  • Macek, W.M., Redaelli, S.: 2000, Estimation of the entropy of the solar wind flow. Phys. Rev. E 62(5), 6496.

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.: 1994, Non-Gaussian probability distributions of solar wind fluctuations. Ann. Geophys. 12, 1127.

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.-Y.: 1997, Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear Process. Geophys. 4(2), 101.

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.-Y., Rosenbauer, H.: 1996, Multifractal scaling of the kinetic energy flux in solar wind turbulence. Ann. Geophys. 14, 259.

    Article  ADS  Google Scholar 

  • Mayer-Kress, G.: 2012, Dimensions and entropies in chaotic systems: quantification of complex behavior. In: Proceeding of an International Workshop at the Pecos River Ranch, New Mexico, September 11–16, 1985 32, Springer, Berlin.

    MATH  Google Scholar 

  • McIntosh, S.W., De Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., Goossens, M.: 2011, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475(7357), 477.

    Article  ADS  Google Scholar 

  • Morton, R.J., Verth, G., Jess, D.B., Kuridze, D., Ruderman, M.S., Mathioudakis, M., Erdélyi, R.: 2012, Observations of ubiquitous compressive waves in the Sun’s chromosphere. Nat. Commun. 3(1), 1.

    Article  Google Scholar 

  • Ott, E.: 2002, Chaos in Dynamical Systems, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Ovenden, C., Shah, H., Schwartz, S.: 1983, Alfvén solitons in the solar wind. J. Geophys. Res. 88(A8), 6095.

    Article  ADS  Google Scholar 

  • Pavlos, G., Kyriakou, G., Rigas, A., Liatsis, P., Trochoutsos, P., Tsonis, A.: 1992, Evidence for strange attractor structures in space plasmas. Ann. Geophys. 10, 309.

    ADS  Google Scholar 

  • Polygiannakis, J., Moussas, X.: 1994a, Fractal properties of the interplanetary magnetic field fluctuations: indications of chaotic dynamics. Astron. Astrophys. 283, 990.

    ADS  Google Scholar 

  • Polygiannakis, J., Moussas, X.: 1994b, On experimental evidence of chaotic dynamics over short time scales in solar wind and cometary data using nonlinear prediction techniques. Solar Phys. 151(2), 341.

    Article  ADS  Google Scholar 

  • Redaelli, S., Plewczyński, D., Macek, W.M.: 2002, Influence of colored noise on chaotic systems. Phys. Rev. E 66(3), 035202.

    Article  ADS  Google Scholar 

  • Sauer, T., Yorke, J., Casdagli, M.: 1991, Embedology. J. Stat. Phys. 65(3–4), 579.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schreiber, T.: 1993, Extremely simple nonlinear noise-reduction method. Phys. Rev. E 47(4), 2401.

    Article  ADS  Google Scholar 

  • Schreiber, T.: 1999, Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308(1), 1.

    Article  ADS  MathSciNet  Google Scholar 

  • Schreiber, T., Schmitz, A.: 1996, Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635.

    Article  ADS  Google Scholar 

  • Schuster, H.G.: 1988, Deterministic chaos: An introduction, 2nd revised edn. Verlagsgesellschaft mbH/VCH Publishers, Weinheim.

    MATH  Google Scholar 

  • Schwenn, R.: 1990, Large-scale structure of the interplanetary medium. In: Physics of the Inner Heliosphere I, Springer, Berlin, 99.

    Chapter  Google Scholar 

  • Takens, F.: 1981, Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, Springer, Berlin, 366.

    Chapter  Google Scholar 

  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.: 1992, Testing for nonlinearity in time series: The method of surrogate data. Physica D 58(1–4), 77.

    Article  ADS  MATH  Google Scholar 

  • Tomczyk, S., McIntosh, S., Keil, S., Judge, P., Schad, T., Seeley, D., Edmondson, J.: 2007, Alfvén waves in the solar corona. Science 317(5842), 1192.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the plasma instrument team of Helios 2 for providing the solar wind data. The data used in our study are available from https://cdaweb.gsfc.nasa.gov. We thank the referees for their suggestions to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Kiran, K. C. Ajithprasad, V. M. Ananda Kumar or K. P. Harikrishnan.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, K., Ajithprasad, K.C., Ananda Kumar, V.M. et al. Nonlinear Analysis of Radial Evolution of Solar Wind in the Inner Heliosphere. Sol Phys 296, 23 (2021). https://doi.org/10.1007/s11207-021-01761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01761-0

Keywords

Navigation