Nonlinear Analysis of Radial Evolution of Solar Wind in the Inner Heliosphere

Abstract

We analyzed the radial evolution of solar wind in the inner heliosphere using nonlinear time series tools such as correlation dimension \(D_{2}\), correlation entropy \(K_{2}\) and multifractal analysis, to get information regarding the inherent nonlinearity associated with the solar wind data and to know how it is affected by the radial distance from the Sun. Our study provides some detailed information regarding the change of dynamics of the fast solar wind with radial distance in the inner heliosphere, apart from confirming the previous observation about the chaotic nature in the dynamics of the slow solar wind. Also we found that the fast wind in the inner heliosphere is dominated by stochastic fluctuations. As the wind is flowing radially away from the Sun, stochastic fluctuation in the fast wind decreases. The stochastic fluctuation present in the data is a clear indication of the Alfvénic fluctuation associated with the solar wind. Finally, our analysis suggests that Alfvénic fluctuation strongly influences the solar wind as it flows radially outwards to mask the nonlinear component associated with the fast wind.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Abarbanel, H., Gollub, J.: 1996, Analysis of observed chaotic data. Phys. Today 49(11), 81.

    Article  Google Scholar 

  2. Abarbanel, H.D., Brown, R., Sidorowich, J.J., Tsimring, L.S.: 1993, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331.

    ADS  MathSciNet  Article  Google Scholar 

  3. Atmanspacher, H., Scheingraber, H., Wiedenmann, G.: 1989, Determination of \(f(\alpha)\) for a limited random point set. Phys. Rev. A 40(7), 3954.

    ADS  Article  Google Scholar 

  4. Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 10(1), 2.

    ADS  Google Scholar 

  5. Burlaga, L.: 1991, Multifractal structure of the interplanetary magnetic field: Voyager 2 observations near 25 AU, 1987–1988. Geophys. Res. Lett. 18(1), 69.

    ADS  Article  Google Scholar 

  6. Burlaga, L.: 2001, Lognormal and multifractal distributions of the heliospheric magnetic field. J. Geophys. Res. 106(A8), 15917.

    ADS  Article  Google Scholar 

  7. Carbone, V.: 1993, Cascade model for intermittency in fully developed magnetohydrodynamic turbulence. Phys. Rev. Lett. 71(10), 1546.

    ADS  Article  Google Scholar 

  8. Davies, M.: 1994, Noise reduction schemes for chaotic time series. Physica D 79(2–4), 174.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. De Pontieu, B., McIntosh, S., Carlsson, M., Hansteen, V., Tarbell, T., Schrijver, C., Shine, R., Tsuneta, S., Katsukawa, Y., Ichimoto, K., et al.: 2007, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318(5856), 1574.

    ADS  Article  Google Scholar 

  10. Grassberger, P., Procaccia, I.: 1983a, Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. Grassberger, P., Procaccia, I.: 1983b, Measuring the strangeness of strange attractors. Physica D 9(1–2), 189.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  12. Grassberger, P., Procaccia, I.: 1984, Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D 13(1–2), 34.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. Grassberger, P., Schreiber, T., Schaffrath, C.: 1991, Nonlinear time sequence analysis. Int. J. Bifurc. Chaos 1(03), 521.

    MathSciNet  MATH  Article  Google Scholar 

  14. Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C., Schreiber, T.: 1993, On noise reduction methods for chaotic data. Chaos 3(2), 127.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. Harikrishnan, K., Misra, R., Ambika, G.: 2009, Combined use of correlation dimension and entropy as discriminating measures for time series analysis. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3608.

    ADS  Article  Google Scholar 

  16. Harikrishnan, K., Misra, R., Ambika, G., Kembhavi, A.: 2006, A non-subjective approach to the GP algorithm for analysing noisy time series. Physica D 215(2), 137.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. Harikrishnan, K., Misra, R., Ambika, G., Amritkar, R.: 2009, Computing the multifractal spectrum from time series: An algorithmic approach. Chaos 19(4), 043129.

    ADS  MATH  Article  Google Scholar 

  18. Hegger, R., Kantz, H., Schreiber, T.: 1999, Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 9(2), 413.

    ADS  MATH  Article  Google Scholar 

  19. Hegger, R., Schreiber, T.: 2002, The TISEAN software package.

  20. Hentschel, H., Procaccia, I.: 1983, The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8(3), 435.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. Jess, D.B., Mathioudakis, M., Erdélyi, R., Crockett, P.J., Keenan, F.P., Christian, D.J.: 2009, Alfvén waves in the lower solar atmosphere. Science 323(5921), 1582.

    ADS  Article  Google Scholar 

  22. Kantz, H., Schreiber, T.: 2004, Nonlinear Time Series Analysis 7, Cambridge University Press, Cambridge.

    Google Scholar 

  23. Kantz, H., Schreiber, T., Hoffmann, I., Buzug, T., Pfister, G., Flepp, L.G., Simonet, J., Badii, R., Brun, E.: 1993, Nonlinear noise reduction: A case study on experimental data. Phys. Rev. E 48(2), 1529.

    ADS  Article  Google Scholar 

  24. Kaplan, D., Glass, L.: 1995, Time-series analysis. In: Understanding Nonlinear Dynamics, Springer, New York, 278.

    Google Scholar 

  25. Kennel, M.B., Isabelle, S.: 1992, Method to distinguish possible chaos from colored noise and to determine embedding parameters. Phys. Rev. A 46(6), 3111.

    ADS  Article  Google Scholar 

  26. Kostelich, E.J., Schreiber, T.: 1993, Noise reduction in chaotic time-series data: A survey of common methods. Phys. Rev. E 48(3), 1752.

    ADS  MathSciNet  Article  Google Scholar 

  27. Kugiumtzis, D., Lillekjendlie, B., Christophersen, N.D.: 1994, Chaotic time series: Part 1: Estimation of some invariant properties in state space. Model. Identif. Control 15(4), 205.

    MATH  Article  Google Scholar 

  28. Kurths, J., Herzel, H.: 1987, An attractor in a solar time series. Physica D 25(1–3), 165.

    ADS  MATH  Article  Google Scholar 

  29. Lillekjendlie, B., Kugiumtzis, D., Christophersen, N.: 1994, Chaotic time series part II: System identification and prediction. arXiv preprint. arXiv.

  30. Macek, W.M.: 2002, Multifractality and chaos in the solar wind. In: AIP Conference Proceedings 622, 74.

    Google Scholar 

  31. Macek, W.M.: 2003, The multifractal spectrum for the solar wind flow. In: AIP Conference Proceedings 679, 530.

    Google Scholar 

  32. Macek, W.M.: 2007, Multifractality and intermittency in the solar wind. Nonlinear Process. Geophys. 14(6), 695.

    ADS  Article  Google Scholar 

  33. Macek, W.M., Obojska, L.: 1997, Fractal analysis of the solar wind flow in the inner heliosphere. Chaos Solitons Fractals 8(10), 1601.

    ADS  Article  Google Scholar 

  34. Macek, W.M., Obojska, L.: 1998, Testing for nonlinearity in the solar wind flow. Chaos Solitons Fractals 9(1–2), 221.

    ADS  Article  Google Scholar 

  35. Macek, W.M., Redaelli, S.: 2000, Estimation of the entropy of the solar wind flow. Phys. Rev. E 62(5), 6496.

    ADS  Article  Google Scholar 

  36. Marsch, E., Tu, C.: 1994, Non-Gaussian probability distributions of solar wind fluctuations. Ann. Geophys. 12, 1127.

    ADS  Article  Google Scholar 

  37. Marsch, E., Tu, C.-Y.: 1997, Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear Process. Geophys. 4(2), 101.

    ADS  Article  Google Scholar 

  38. Marsch, E., Tu, C.-Y., Rosenbauer, H.: 1996, Multifractal scaling of the kinetic energy flux in solar wind turbulence. Ann. Geophys. 14, 259.

    ADS  Article  Google Scholar 

  39. Mayer-Kress, G.: 2012, Dimensions and entropies in chaotic systems: quantification of complex behavior. In: Proceeding of an International Workshop at the Pecos River Ranch, New Mexico, September 11–16, 1985 32, Springer, Berlin.

    Google Scholar 

  40. McIntosh, S.W., De Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., Goossens, M.: 2011, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475(7357), 477.

    ADS  Article  Google Scholar 

  41. Morton, R.J., Verth, G., Jess, D.B., Kuridze, D., Ruderman, M.S., Mathioudakis, M., Erdélyi, R.: 2012, Observations of ubiquitous compressive waves in the Sun’s chromosphere. Nat. Commun. 3(1), 1.

    Article  Google Scholar 

  42. Ott, E.: 2002, Chaos in Dynamical Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  43. Ovenden, C., Shah, H., Schwartz, S.: 1983, Alfvén solitons in the solar wind. J. Geophys. Res. 88(A8), 6095.

    ADS  Article  Google Scholar 

  44. Pavlos, G., Kyriakou, G., Rigas, A., Liatsis, P., Trochoutsos, P., Tsonis, A.: 1992, Evidence for strange attractor structures in space plasmas. Ann. Geophys. 10, 309.

    ADS  Google Scholar 

  45. Polygiannakis, J., Moussas, X.: 1994a, Fractal properties of the interplanetary magnetic field fluctuations: indications of chaotic dynamics. Astron. Astrophys. 283, 990.

    ADS  Google Scholar 

  46. Polygiannakis, J., Moussas, X.: 1994b, On experimental evidence of chaotic dynamics over short time scales in solar wind and cometary data using nonlinear prediction techniques. Solar Phys. 151(2), 341.

    ADS  Article  Google Scholar 

  47. Redaelli, S., Plewczyński, D., Macek, W.M.: 2002, Influence of colored noise on chaotic systems. Phys. Rev. E 66(3), 035202.

    ADS  Article  Google Scholar 

  48. Sauer, T., Yorke, J., Casdagli, M.: 1991, Embedology. J. Stat. Phys. 65(3–4), 579.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. Schreiber, T.: 1993, Extremely simple nonlinear noise-reduction method. Phys. Rev. E 47(4), 2401.

    ADS  Article  Google Scholar 

  50. Schreiber, T.: 1999, Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308(1), 1.

    ADS  MathSciNet  Article  Google Scholar 

  51. Schreiber, T., Schmitz, A.: 1996, Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635.

    ADS  Article  Google Scholar 

  52. Schuster, H.G.: 1988, Deterministic chaos: An introduction, 2nd revised edn. Verlagsgesellschaft mbH/VCH Publishers, Weinheim.

    Google Scholar 

  53. Schwenn, R.: 1990, Large-scale structure of the interplanetary medium. In: Physics of the Inner Heliosphere I, Springer, Berlin, 99.

    Google Scholar 

  54. Takens, F.: 1981, Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, Springer, Berlin, 366.

    Google Scholar 

  55. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.: 1992, Testing for nonlinearity in time series: The method of surrogate data. Physica D 58(1–4), 77.

    ADS  MATH  Article  Google Scholar 

  56. Tomczyk, S., McIntosh, S., Keil, S., Judge, P., Schad, T., Seeley, D., Edmondson, J.: 2007, Alfvén waves in the solar corona. Science 317(5842), 1192.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the plasma instrument team of Helios 2 for providing the solar wind data. The data used in our study are available from https://cdaweb.gsfc.nasa.gov. We thank the referees for their suggestions to improve our manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to K. Kiran or K. C. Ajithprasad or V. M. Ananda Kumar or K. P. Harikrishnan.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiran, K., Ajithprasad, K.C., Ananda Kumar, V.M. et al. Nonlinear Analysis of Radial Evolution of Solar Wind in the Inner Heliosphere. Sol Phys 296, 23 (2021). https://doi.org/10.1007/s11207-021-01761-0

Download citation

Keywords

  • Solar wind
  • Waves, Alfvén
  • Turbulence