Skip to main content
Log in

EMD and LSTM Hybrid Deep Learning Model for Predicting Sunspot Number Time Series with a Cyclic Pattern

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The prediction of a time series such as climate indices and the sunspot number (SSN) with long-term oscillatory behaviors has been a challenging task due to the complex combination of oscillations. Frequency extraction algorithms have been developed to separate a time series into different oscillation components according to frequency, such as empirical model decomposition (EMD) and wavelet analysis. In the current study, the deep learning long short-term memory (LSTM) model was employed to predict the oscillation components extracted using EMD. The SSN series was modeled with the hybrid EMD-LSTM model. The simulation study results indicate that the LSTM model reproduces the smooth cyclic pattern of the sine function, and only a few hidden units are needed to model it. The EMD-LSTM model achieves better performance than does the LSTM model for mid-range SSN predictions while the LSTM achieves better performance within the first few time lags. However, the cyclic prediction of the SSN requires mid-range lags; thus, the superior performance of the EMD-LSTM model for these lags cannot be ignored. Furthermore, the remaining components from the significant EMD signals can be modeled to reveal the variability (or uncertainty) in the prediction. The summed residual is fitted by k-nearest neighbor resampling. The final SSN prediction results show that the EMD-LSTM model predicts a later and larger SSN for Solar Cycle 25 than does the LSTM model. Overall, the results lead to the conclusion that the EMD-LSTM model might be a suitable alternative for modeling complex sunspot time series with cyclic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Barzegar, R., Aalami, M.T., Adamowski, J.: 2020, Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model. Stoch. Environ. Res. Risk Assess. DOI.

    Article  Google Scholar 

  • Cao, J., Li, Z., Li, J.: 2019, Financial time series forecasting model based on CEEMDAN and LSTM. Physica A519, 1. DOI.

    Article  Google Scholar 

  • Chen, L., Chi, Y., Guan, Y., Fan, J.: 2019, A hybrid attention-based EMD-LSTM model for financial time series prediction. In: 2019 2nd International Conference on Artificial Intelligence and Big Data, ICAIBD 2019, 113.

    Google Scholar 

  • Durocher, M., Lee, T.S., Ouarda, T.B.M.J., Chebana, F.: 2015, Hybrid signal detection approach for hydro-meteorological variables combining EMD and cross-wavelet analysis. Int. J. Climatol. DOI.

    Article  Google Scholar 

  • Foufoula-Georgiou, E., Kumar, P. (eds.): 1994, Wavelets in Geophysics, Academic Press, San Diego, 373.

    MATH  Google Scholar 

  • Gonçalves, Í.G., Echer, E., Frigo, E.: 2020, Sunspot cycle prediction using warped Gaussian process regression. Adv. Space Res.65(1), 1. DOI.

    Article  Google Scholar 

  • Goodfellow, I., Bengion, Y., Courville, A.: 2016, Deep Learning775, MIT Press, Cambridge, 9780262035613.

    Google Scholar 

  • Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J.: 2017, LSTM: a search space Odyssey. IEEE Trans. Neural Netw. Learn. Syst.28(10), 17189090.

    Article  MathSciNet  Google Scholar 

  • Hochreiter, S., Schmidhuber, J.: 1997, Long short-term memory. Neural Comput.9(8), 1735.

    Article  Google Scholar 

  • Huang, N.E., et al.: 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc., Math. Phys. Eng. Sci.454(1971), 903.

    Article  ADS  MathSciNet  Google Scholar 

  • Huang, N.E., Wu, M.L., Qu, W.D., Long, S.R., Shen, S.S.P.: 2003, Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl. Stoch. Models Bus. Ind.19(3), 245. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Kane, R.P.: 2007, A preliminary estimate of the size of the coming solar cycle 24, based on Ohl’s precursor method. Solar Phys.243(2), 205. DOI.

    Article  ADS  Google Scholar 

  • Kwon, H.H., Lall, U., Khalil, A.F.: 2007, Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: applications to rainfall and temperature. Water Resour. Res.43(5), W05407. DOI.

    Article  ADS  Google Scholar 

  • Lee, T., Ouarda, T.B.M.J.: 2010, Long-term prediction of precipitation and hydrologic extremes with nonstationary oscillation processes. J. Geophys. Res., Atmos.115(13), D13107. DOI.

    Article  ADS  Google Scholar 

  • Lee, T., Ouarda, T.B.M.J.: 2011, Prediction of climate nonstationary oscillation processes with empirical mode decomposition. J. Geophys. Res., Atmos.116(6), D06107. DOI.

    Article  ADS  Google Scholar 

  • Lee, T., Ouarda, T.B.M.J.: 2012a, Stochastic simulation of nonstationary oscillation hydroclimatic processes using empirical mode decomposition. Water Resour. Res.48(2), W02514. DOI.

    Article  ADS  Google Scholar 

  • Lee, T., Ouarda, T.B.M.J.: 2012b, An EMD and PCA hybrid approach for separating noise from signal, and signal in climate change detection. Int. J. Climatol.32(4), 624. DOI.

    Article  Google Scholar 

  • Lee, T., Ouarda, T.B.M.J.: 2019, Multivariate nonstationary oscillation simulation of climate indices with empirical mode decomposition. Water Resour. Res.55(6), 5033. DOI.

    Article  ADS  Google Scholar 

  • Lee, T., Ouarda, T.B.M.J., Li, J.: 2013, An orchestrated climate song from the Pacific and Atlantic oceans and its implication on climatological processes. Int. J. Climatol.33(4), 793. DOI.

    Article  Google Scholar 

  • Lee, T., Ouarda, T.B.M.J., Yoon, S.: 2017, KNN-based local linear regression for the analysis and simulation of low flow extremes under climatic influence. Clim. Dyn.49, 9. DOI.

    Article  Google Scholar 

  • Lee, T., Singh, V.P.: 2018, Statistical Downscaling for Hydrological and Environmental Applications165, CRC Press, Boca Raton, 165. ISBN 9781138625969

    Book  Google Scholar 

  • Lee, T., Shin, J.Y., Kim, J.S., Singh, V.P.: 2020, Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. J. Hydrol.582, 124540. DOI.

    Article  Google Scholar 

  • Messerotti, M., et al.: 2009, Solar weather event modelling and prediction. Space Sci. Rev.147(3–4), 121. DOI.

    Article  ADS  Google Scholar 

  • Okoh, D.I., Seemala, G.K., Rabiu, A.B., Uwamahoro, J., Habarulema, J.B., Aggarwal, M.: 2018, A hybrid regression-neural network (HR-NN) method for forecasting the solar activity. Space Weather16(9), 1424. DOI.

    Article  ADS  Google Scholar 

  • Pala, Z., Atici, R.: 2019, Forecasting sunspot time series using deep learning methods. Solar Phys.294(5), 50. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2012, Solar cycle predictions. Solar Phys.281(1), 507. DOI (Invited Review)

    Article  ADS  Google Scholar 

  • Rigozo, N.R., Souza Echer, M.P., Evangelista, H., Nordemann, D.J.R., Echer, E.: 2011, Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25. J. Atmos. Solar-Terr. Phys.73(11–12), 1294. DOI.

    Article  ADS  Google Scholar 

  • Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: 2015 January, Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation, C3. Adv. Neural Inf. Process. Syst. arXiv.

  • Wang, H., Zhao, X., Zhang, X., Wu, D., Du, X.: 2019, Long time series land cover classification in China from 1982 to 2015 based on Bi-LSTM deep learning. Remote Sens.11(14), 1639. DOI.

    Article  ADS  Google Scholar 

  • Wu, Z., Huang, N.E.: 2004, A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc., Math. Phys. Eng. Sci.460(2046), 1597.

    Article  ADS  Google Scholar 

  • Wu, Z.H., Huang, N.E.: 2005, In: Huang, N.E., Shen, S.P. (eds.) Hilbert-Huang Transform and Its Applications, World Scientific, Hackensack, 125.

    Google Scholar 

  • Wu, Z.H., Huang, N.E.: 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal.1(1), 1.

    Article  Google Scholar 

  • Xu, T., Wu, J., Wu, Z.S., Li, Q.: 2008, Long-term sunspot number prediction based on EMD analysis and AR model. Chin. J. Astron. Astrophys.8(3). DOI.

  • Yuan, X., Chen, C., Lei, X., Yuan, Y., Muhammad Adnan, R.: 2018, Monthly runoff forecasting based on LSTM–ALO model. Stoch. Environ. Res. Risk Assess.32(8), 2199. DOI.

    Article  Google Scholar 

  • Zhang, B.: 2018, Foreign exchange rates forecasting with an EMD-LSTM neural networks model. J. Phys. Conf. Ser.1053(1), 012005.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) through a grant funded by the Korean Government (MEST) (2018R1A2B6001799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesam Lee.

Ethics declarations

Declaration of Potential Conflicts of Interest

The author has no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T. EMD and LSTM Hybrid Deep Learning Model for Predicting Sunspot Number Time Series with a Cyclic Pattern. Sol Phys 295, 82 (2020). https://doi.org/10.1007/s11207-020-01653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01653-9

Keywords

Navigation