Skip to main content
Log in

Long- and Short-Term Evolutions of Magnetic Field Fluctuations in High-Speed Streams

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

High-speed streams (HSSs) are believed to be only slightly affected by different interactions on their path from the Sun to Earth and thus the analysis of their observations can provide information on the structure and temporal variations of the magnetic field and plasma parameters at the source region. We have chosen three coronal holes supplying 14 HSSs recorded by Wind in 2008. For each HSS, we have calculated the average magnetic field and plasma parameters as well as power spectral densities (PSDs) of magnetic field fluctuations in the MHD and kinetic ranges to investigate their long- and short-term variations. We suggest that long-term variations are connected with a time evolution of the source region on the time scale of solar rotations. On the other hand, the short-term variations would reflect a longitudinal structure of the coronal hole. Our study reveals that coronal holes are very stable source of HSSs and their temporal evolution on short- and long-time scales is negligible. This is true for the average parameters as well as for the fluctuation power and PSDs. Observed correlations between bulk and/or thermal velocity and PSD parameters are consistent with already published results. We suggest that they do not originate in the source region but they can be mostly attributed to interaction with the ambient slow wind that affects even the HSS core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alexandrova, O.: 2008, Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys.15, 95. DOI.

    Article  ADS  Google Scholar 

  • Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P.: 2009, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett.103(16), 165003. DOI.

    Article  ADS  Google Scholar 

  • Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., Maksimovic, M.: 2012, Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J.760(2), 121. DOI.

    Article  ADS  Google Scholar 

  • Borovsky, J.E.: 2012, The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties. J. Geophys. Res.117, A05104. DOI.

    Article  ADS  Google Scholar 

  • Borovsky, J.E., Denton, M.H., Smith, S.W.: 2019, Some properties of the solar wind turbulence at 1 AU statistically examined in the different types of solar wind plasma. J. Geophys. Res.124, 4. DOI.

    Article  Google Scholar 

  • Broiles, T.W., Desai, M.I., McComas, D.J.: 2012, Formation, shape, and evolution of magnetic structures in CIRs at 1 AU. J. Geophys. Res.117, A3. DOI.

    Article  Google Scholar 

  • Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys.10, 2. DOI.

    Article  ADS  Google Scholar 

  • Bruno, R., Telloni, D.: 2015, Spectral analysis of magnetic fluctuations at proton scales from fast to slow solar wind. Astrophys. J.2, L17. DOI.

    Article  ADS  Google Scholar 

  • Bruno, R., Trenchi, L., Telloni, D.: 2014, Spectral slope variation at proton scales from fast to slow solar wind. Astrophys. J. Lett.793, L15. DOI.

    Article  ADS  Google Scholar 

  • Bruno, R., Telloni, D., DeIure, D., Pietropaolo, E.: 2017, Solar wind magnetic field background spectrum from fluid to kinetic scales. Mon. Not. Roy. Astron. Soc.472, 1052. DOI.

    Article  ADS  Google Scholar 

  • Chen, C.H.K., Boldyrev, S., Xia, Q., Perez, J.C.: 2013, Nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett.110, 225002. DOI.

    Article  ADS  Google Scholar 

  • Ďurovcová, T., Šafráková, J., Němeček, Z.: 2019, Evolution of relative drifts in the expanding solar wind: Helios observations. Solar Phys.294, 7. DOI.

    Article  Google Scholar 

  • Gallagher, P.T., Moon, Y.J., Wang, H.: 2002, Active-region monitoring and flare forecasting – I. Data processing and first results. Solar Phys.209, 171. DOI.

    Article  ADS  Google Scholar 

  • Heinemann, S.G., Temmer, M., Hofmeister, S.J., Veronig, A.M., Vennerstrøm, S.: 2018a, Three-phase evolution of a coronal hole. I. 360° remote sensing and in situ observations. Astrophys. J.861, 151. DOI.

    Article  ADS  Google Scholar 

  • Heinemann, S.G., Hofmeister, S.J., Veronig, A.M., Temmer, M.: 2018b, Three-phase evolution of a coronal hole, Part II: The magnetic field. Astrophys. J.863, 29. DOI.

    Article  ADS  Google Scholar 

  • Huang, Z., Madjarska, M., Doyle, G., Lamb, D.: 2012, Evolution of magnetic field corresponding to X-ray brightening events in coronal holes and quiet Sun. Proc. Int. Astron. Union8(S294), 155. DOI.

    Article  Google Scholar 

  • Kasper, J.C., Lazarus, A.J., Steinberg, J.T., Ogilvie, K.W., Szabo, A.: 2006, Physics-based tests to identify the accuracy of solar wind ion measurements: A case study with the wind Faraday cups. J. Geophys. Res.111, A03105. DOI.

    Article  ADS  Google Scholar 

  • Kiyani, K.H., Osman, K.T., Chapman, S.C.: 2015, Dissipation and heating in solar wind turbulence: From the macro to the micro and back again. Phil. Trans. Roy. Soc. A373, 20140155. DOI.

    Article  ADS  Google Scholar 

  • Kiyani, K.H., Chapman, S.C., Sahraoui, F., Hnat, B., Fauvarque, O., Khotyaintsev, Y.V.: 2013, Enhanced magnetic compressibility and isotropic scale invariance at sub-ion Larmor scales in solar wind turbulence. Astrophys. J.763, 10. DOI.

    Article  ADS  Google Scholar 

  • Koval, A., Szabo, A.: 2013, Magnetic field turbulence spectra observed by the wind spacecraft. AIP Conf. Proc.1539, 211. DOI.

    Article  ADS  Google Scholar 

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys.256(1–2), 87. DOI.

    Article  ADS  Google Scholar 

  • Leamon, J., Smith, C.W., Ness, N.F., Mattaeus, W.H., Wong, H.K.: 1998, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res.103, A3. DOI.

    Article  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrall, W.M., Slavin, J.A., Schatten, K.H., et al.: 1995, The WIND magnetic field investigation. Space Sci. Rev.71, 207. DOI.

    Article  ADS  Google Scholar 

  • Matteini, L., Horbury, T.S., Neugebauer, M., et al.: 2014, Dependence of solar wind speed on the local magnetic field orientation: Role of Alfvénic fluctuations. Geophys. Res. Lett.41(2), 259. DOI.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., et al.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev.71(1–4), 55. DOI.

    Article  ADS  Google Scholar 

  • Pitňa, A., Šafránková, J., Němeček, Z., Franci, L., Pi, G., Montagud, C.V.: 2019, Characteristics of solar wind fluctuations at and below ion scales. Astrophys. J.879, 82. DOI.

    Article  ADS  Google Scholar 

  • Šafránková, J., Němeček, Z., Němec, F., Verscharen, D., Chen, C.H.K., Ďurovcová, T., Riazantseva, M.O.: 2019, Scale-dependent polarization of solar wind velocity fluctuations at the inertial and kinetic scales. Astrophys. J.870(1), 40. DOI.

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: 2010, Three dimensional anisotropic K spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett.105, 131101. DOI.

    Article  ADS  Google Scholar 

  • Sahraoui, F., Huang, S.Y., Belmont, G., Goldstein, M.L., Retinò, A., Robert, P., De Patoul, J.: 2013, Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. Lett.777, 15. DOI.

    Article  ADS  Google Scholar 

  • Smith, C.W., Hamilton, K., Vasquez, B.J., Leamon, R.J.: 2006, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. Lett.645, L85. DOI.

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc.79(1), 61. DOI.

    Article  ADS  Google Scholar 

  • Vasquez, B.J., Smith, C.W., Hamilton, K., MacBride, B.T., Leamon, R.J.: 2007, Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J. Geophys. Res.112, A7. DOI.

    Article  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R., Phillips, J.L., Goldstein, B.E.: 1997, Solar wind stream interactions and the wind speed-expansion factor relationship. Astrophys. J.488, L51. DOI.

    Article  ADS  Google Scholar 

  • Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett.36, L14104. DOI.

    Article  ADS  Google Scholar 

  • Zhou, Y., Matthaeus, W.H., Dmitruk, P.: 2004, Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas. Rev. Mod. Phys.76, 1015. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Wind team for data use via http://cdaweb.gsfc.nasa.gov/cdaweb/. The present work was supported by the Czech Science Foundation under Contract 19-18993S and by the Ministry of Science and Technology in Taiwan under grant MOST-108-2111-M-008-019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jih-Hong Shue.

Ethics declarations

Disclosure of Potential Conflict of Interest

We declare we have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era

Guest Editors: Giovanni Lapenta and Andrei Zhukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, G., Pitňa, A., Němeček, Z. et al. Long- and Short-Term Evolutions of Magnetic Field Fluctuations in High-Speed Streams. Sol Phys 295, 84 (2020). https://doi.org/10.1007/s11207-020-01646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01646-8

Navigation