Long- and Short-Term Evolutions of Magnetic Field Fluctuations in High-Speed Streams

Abstract

High-speed streams (HSSs) are believed to be only slightly affected by different interactions on their path from the Sun to Earth and thus the analysis of their observations can provide information on the structure and temporal variations of the magnetic field and plasma parameters at the source region. We have chosen three coronal holes supplying 14 HSSs recorded by Wind in 2008. For each HSS, we have calculated the average magnetic field and plasma parameters as well as power spectral densities (PSDs) of magnetic field fluctuations in the MHD and kinetic ranges to investigate their long- and short-term variations. We suggest that long-term variations are connected with a time evolution of the source region on the time scale of solar rotations. On the other hand, the short-term variations would reflect a longitudinal structure of the coronal hole. Our study reveals that coronal holes are very stable source of HSSs and their temporal evolution on short- and long-time scales is negligible. This is true for the average parameters as well as for the fluctuation power and PSDs. Observed correlations between bulk and/or thermal velocity and PSD parameters are consistent with already published results. We suggest that they do not originate in the source region but they can be mostly attributed to interaction with the ambient slow wind that affects even the HSS core.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Alexandrova, O.: 2008, Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys.15, 95. DOI.

    ADS  Article  Google Scholar 

  2. Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P.: 2009, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett.103(16), 165003. DOI.

    ADS  Article  Google Scholar 

  3. Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., Maksimovic, M.: 2012, Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J.760(2), 121. DOI.

    ADS  Article  Google Scholar 

  4. Borovsky, J.E.: 2012, The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties. J. Geophys. Res.117, A05104. DOI.

    ADS  Article  Google Scholar 

  5. Borovsky, J.E., Denton, M.H., Smith, S.W.: 2019, Some properties of the solar wind turbulence at 1 AU statistically examined in the different types of solar wind plasma. J. Geophys. Res.124, 4. DOI.

    Article  Google Scholar 

  6. Broiles, T.W., Desai, M.I., McComas, D.J.: 2012, Formation, shape, and evolution of magnetic structures in CIRs at 1 AU. J. Geophys. Res.117, A3. DOI.

    Article  Google Scholar 

  7. Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys.10, 2. DOI.

    ADS  Article  Google Scholar 

  8. Bruno, R., Telloni, D.: 2015, Spectral analysis of magnetic fluctuations at proton scales from fast to slow solar wind. Astrophys. J.2, L17. DOI.

    ADS  Article  Google Scholar 

  9. Bruno, R., Trenchi, L., Telloni, D.: 2014, Spectral slope variation at proton scales from fast to slow solar wind. Astrophys. J. Lett.793, L15. DOI.

    ADS  Article  Google Scholar 

  10. Bruno, R., Telloni, D., DeIure, D., Pietropaolo, E.: 2017, Solar wind magnetic field background spectrum from fluid to kinetic scales. Mon. Not. Roy. Astron. Soc.472, 1052. DOI.

    ADS  Article  Google Scholar 

  11. Chen, C.H.K., Boldyrev, S., Xia, Q., Perez, J.C.: 2013, Nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett.110, 225002. DOI.

    ADS  Article  Google Scholar 

  12. Ďurovcová, T., Šafráková, J., Němeček, Z.: 2019, Evolution of relative drifts in the expanding solar wind: Helios observations. Solar Phys.294, 7. DOI.

    Article  Google Scholar 

  13. Gallagher, P.T., Moon, Y.J., Wang, H.: 2002, Active-region monitoring and flare forecasting – I. Data processing and first results. Solar Phys.209, 171. DOI.

    ADS  Article  Google Scholar 

  14. Heinemann, S.G., Temmer, M., Hofmeister, S.J., Veronig, A.M., Vennerstrøm, S.: 2018a, Three-phase evolution of a coronal hole. I. 360° remote sensing and in situ observations. Astrophys. J.861, 151. DOI.

    ADS  Article  Google Scholar 

  15. Heinemann, S.G., Hofmeister, S.J., Veronig, A.M., Temmer, M.: 2018b, Three-phase evolution of a coronal hole, Part II: The magnetic field. Astrophys. J.863, 29. DOI.

    ADS  Article  Google Scholar 

  16. Huang, Z., Madjarska, M., Doyle, G., Lamb, D.: 2012, Evolution of magnetic field corresponding to X-ray brightening events in coronal holes and quiet Sun. Proc. Int. Astron. Union8(S294), 155. DOI.

    Article  Google Scholar 

  17. Kasper, J.C., Lazarus, A.J., Steinberg, J.T., Ogilvie, K.W., Szabo, A.: 2006, Physics-based tests to identify the accuracy of solar wind ion measurements: A case study with the wind Faraday cups. J. Geophys. Res.111, A03105. DOI.

    ADS  Article  Google Scholar 

  18. Kiyani, K.H., Osman, K.T., Chapman, S.C.: 2015, Dissipation and heating in solar wind turbulence: From the macro to the micro and back again. Phil. Trans. Roy. Soc. A373, 20140155. DOI.

    ADS  Article  Google Scholar 

  19. Kiyani, K.H., Chapman, S.C., Sahraoui, F., Hnat, B., Fauvarque, O., Khotyaintsev, Y.V.: 2013, Enhanced magnetic compressibility and isotropic scale invariance at sub-ion Larmor scales in solar wind turbulence. Astrophys. J.763, 10. DOI.

    ADS  Article  Google Scholar 

  20. Koval, A., Szabo, A.: 2013, Magnetic field turbulence spectra observed by the wind spacecraft. AIP Conf. Proc.1539, 211. DOI.

    ADS  Article  Google Scholar 

  21. Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys.256(1–2), 87. DOI.

    ADS  Article  Google Scholar 

  22. Leamon, J., Smith, C.W., Ness, N.F., Mattaeus, W.H., Wong, H.K.: 1998, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res.103, A3. DOI.

    Article  Google Scholar 

  23. Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrall, W.M., Slavin, J.A., Schatten, K.H., et al.: 1995, The WIND magnetic field investigation. Space Sci. Rev.71, 207. DOI.

    ADS  Article  Google Scholar 

  24. Matteini, L., Horbury, T.S., Neugebauer, M., et al.: 2014, Dependence of solar wind speed on the local magnetic field orientation: Role of Alfvénic fluctuations. Geophys. Res. Lett.41(2), 259. DOI.

    ADS  Article  Google Scholar 

  25. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., et al.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev.71(1–4), 55. DOI.

    ADS  Article  Google Scholar 

  26. Pitňa, A., Šafránková, J., Němeček, Z., Franci, L., Pi, G., Montagud, C.V.: 2019, Characteristics of solar wind fluctuations at and below ion scales. Astrophys. J.879, 82. DOI.

    ADS  Article  Google Scholar 

  27. Šafránková, J., Němeček, Z., Němec, F., Verscharen, D., Chen, C.H.K., Ďurovcová, T., Riazantseva, M.O.: 2019, Scale-dependent polarization of solar wind velocity fluctuations at the inertial and kinetic scales. Astrophys. J.870(1), 40. DOI.

    ADS  Article  Google Scholar 

  28. Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: 2010, Three dimensional anisotropic K spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett.105, 131101. DOI.

    ADS  Article  Google Scholar 

  29. Sahraoui, F., Huang, S.Y., Belmont, G., Goldstein, M.L., Retinò, A., Robert, P., De Patoul, J.: 2013, Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. Lett.777, 15. DOI.

    ADS  Article  Google Scholar 

  30. Smith, C.W., Hamilton, K., Vasquez, B.J., Leamon, R.J.: 2006, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. Lett.645, L85. DOI.

    ADS  Article  Google Scholar 

  31. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc.79(1), 61. DOI.

    ADS  Article  Google Scholar 

  32. Vasquez, B.J., Smith, C.W., Hamilton, K., MacBride, B.T., Leamon, R.J.: 2007, Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J. Geophys. Res.112, A7. DOI.

    Article  Google Scholar 

  33. Wang, Y.-M., Sheeley, N.R., Phillips, J.L., Goldstein, B.E.: 1997, Solar wind stream interactions and the wind speed-expansion factor relationship. Astrophys. J.488, L51. DOI.

    ADS  Article  Google Scholar 

  34. Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett.36, L14104. DOI.

    ADS  Article  Google Scholar 

  35. Zhou, Y., Matthaeus, W.H., Dmitruk, P.: 2004, Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas. Rev. Mod. Phys.76, 1015. DOI.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Wind team for data use via http://cdaweb.gsfc.nasa.gov/cdaweb/. The present work was supported by the Czech Science Foundation under Contract 19-18993S and by the Ministry of Science and Technology in Taiwan under grant MOST-108-2111-M-008-019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jih-Hong Shue.

Ethics declarations

Disclosure of Potential Conflict of Interest

We declare we have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era

Guest Editors: Giovanni Lapenta and Andrei Zhukov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pi, G., Pitňa, A., Němeček, Z. et al. Long- and Short-Term Evolutions of Magnetic Field Fluctuations in High-Speed Streams. Sol Phys 295, 84 (2020). https://doi.org/10.1007/s11207-020-01646-8

Download citation