A New Tool for Predicting the Solar Cycle: Correlation Between Flux Transport at the Equator and the Poles

Abstract

Magnetic flux cancellation on the Sun plays a crucial role in determining the way in which the net magnetic flux changes in every solar cycle, affecting the large scale evolution of the coronal magnetic field and heliospheric environment. We have investigated the correlation between the solar magnetic flux cancelled at the equator and the solar magnetic flux transported to the poles by comparing the net amount of magnetic flux in the latitude belt 0 – 5 to that of 45 – 60 and 55 – 90, using synoptic magnetograms from the National Solar Observatory at Kitt Peak, during Solar Cycles 21 – 24. We find a good correlation between the net flux in the latitude bands 0 – 5 and 55 – 90 when the net flux for the northern and southern hemispheres are considered together. In addition, we have investigated the correlation between the net flux cancelled at the equator during each cycle and the strength of solar polar field at each cycle minimum and we find a good correlation between the two. We discuss the implication of the correlation between the flux transported across the equator and to the poles, which has an important bearing in the estimation of the residual polar cap field strength at the cycle minimum. This can be used as a predictive tool for estimating the amplitude of subsequent cycles, and we use it to estimate a maximum smoothed sunspot number of 76 ± 5 and 85 ± 5 for the northern and southern hemispheres, respectively, for the upcoming Solar Cycle 25.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J.133, 572. DOI. ADS.

    ADS  Article  Google Scholar 

  2. Bhowmik, P., Nandy, D.: 2018, Prediction of the strength and timing of sunspot Cycle 25 reveal decadal-scale space environmental conditions. Nat. Commun.9, 5209. DOI. ADS.

    ADS  Article  Google Scholar 

  3. Bisoi, S.K., Janardhan, P., Chakrabarty, D., Ananthakrishnan, S., Divekar, A.: 2014, Changes in quasi-periodic variations of solar photospheric fields: precursor to the deep solar minimum in Cycle 23? Solar Phys.289, 41. DOI. ADS.

    ADS  Article  Google Scholar 

  4. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys.7, 3. DOI. ADS.

    ADS  Article  Google Scholar 

  5. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting Solar Cycle 24 with a solar dynamo model. Phys. Rev. Lett.98(13), 131103. DOI. ADS.

    ADS  Article  Google Scholar 

  6. Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys.291, 2629. DOI. ADS.

    ADS  Article  Google Scholar 

  7. Cliver, E.W.: 2016, Comparison of new and old sunspot number time series. Solar Phys.291, 2891. DOI. ADS.

    ADS  Article  Google Scholar 

  8. Gopalswamy, N., Mäkelä, P., Yashiro, S., Akiyama, S.: 2018, Long-term solar activity studies using microwave imaging observations and prediction for Cycle 25. J. Atmos. Solar-Terr. Phys.176, 26. DOI. ADS.

    ADS  Article  Google Scholar 

  9. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, Astrophys. J.49, 153.

    ADS  Article  Google Scholar 

  10. Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys.7(1), 1. DOI. ADS.

    ADS  Article  Google Scholar 

  11. Iijima, H., Hotta, H., Imada, S., Kusano, K., Shiota, D.: 2017, Improvement of solar-cycle prediction: plateau of solar axial dipole moment. Astron. Astrophys.607, L2. DOI. ADS.

    ADS  Article  Google Scholar 

  12. Ingale, M., Janardhan, P., Bisoi, S.K.: 2019, Beyond the mini-solar maximum of Solar Cycle 24: declining solar magnetic fields and the response of the terrestrial magnetosphere. J. Geophys. Res.124, 6363. DOI. ADS.

    Article  Google Scholar 

  13. Janardhan, P., Bisoi, S.K., Gosain, S.: 2010, Solar polar fields during Cycles 21 – 23: correlation with meridional flows. Solar Phys.267, 267. DOI. ADS.

    ADS  Article  Google Scholar 

  14. Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K., Jose, L., Sridharan, R.: 2015a, A 20 year decline in solar photospheric magnetic fields: inner-heliospheric signatures and possible implications. J. Geophys. Res.120, 5306. DOI. ADS.

    Article  Google Scholar 

  15. Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Sridharan, R., Jose, L.: 2015b, Solar and interplanetary signatures of a Maunder-like grand solar minimum around the corner - implications to near-Earth space. Sun Geosph.10, 147. ADS.

    ADS  Google Scholar 

  16. Janardhan, P., Fujiki, K., Ingale, M., Bisoi, S.K., Rout, D.: 2018, Solar Cycle 24: an unusual polar field reversal. Astron. Astrophys.618, A148. DOI. ADS.

    ADS  Article  Google Scholar 

  17. Jiang, J., Cameron, R.H., Schüssler, M.: 2015, The cause of the weak Solar Cycle 24. Astrophys. J. Lett.808, L28. DOI. ADS.

    ADS  Article  Google Scholar 

  18. Jiang, J., Wang, J.-X., Jiao, Q.-R., Cao, J.-B.: 2018, Predictability of the solar cycle over one cycle. Astrophys. J.863, 159. DOI. ADS.

    ADS  Article  Google Scholar 

  19. Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J.156, 1. DOI. ADS.

    ADS  Article  Google Scholar 

  20. Mackay, D.H., Yeates, A.R.: 2012, The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Solar Phys.9, 6. DOI. ADS.

    ADS  Article  Google Scholar 

  21. Muñoz-Jaramillo, A., Balmaceda, L.A., DeLuca, E.E.: 2013, Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields. Phys. Rev. Lett.111(4), 041106. DOI. ADS.

    ADS  Article  Google Scholar 

  22. Parker, E.N.: 1955a, Hydromagnetic dynamo models. Astrophys. J.122, 293. DOI. ADS.

    ADS  MathSciNet  Article  Google Scholar 

  23. Parker, E.N.: 1955b, The formation of sunspots from the solar toroidal field. Astrophys. J.121, 491. DOI. ADS.

    ADS  Article  Google Scholar 

  24. Pulkkinen, T.: 2007, Space weather: terrestrial perspective. Living Rev. Solar Phys.4(1), 1. DOI. ADS.

    ADS  Article  Google Scholar 

  25. Sasikumar Raja, K., Janardhan, P., Bisoi, S.K., Ingale, M., Subramanian, P., Fujiki, K., Maksimovic, M.: 2019, Global solar magnetic field and interplanetary scintillations during the past four solar cycles. Solar Phys.294, 123. DOI. ADS.

    ADS  Article  Google Scholar 

  26. Schatten, K.: 2005, Fair space weather for Solar Cycle 24. Geophys. Res. Lett.32, 21106. DOI. ADS.

    ADS  Article  Google Scholar 

  27. Schatten, K.H., Pesnell, W.D.: 1993, An early solar dynamo prediction: Cycle 23 is approximately Cycle 22. Geophys. Res. Lett.20, 2275. DOI. ADS.

    ADS  Article  Google Scholar 

  28. Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using dynamo theory to predict the sunspot number during Solar Cycle 21. Geophys. Res. Lett.5, 411. DOI. ADS.

    ADS  Article  Google Scholar 

  29. Schwenn, R.: 2006a, Solar wind sources and their variations over the solar cycle. Space Sci. Rev.124(1-4), 51. DOI. ADS.

    ADS  Article  Google Scholar 

  30. Schwenn, R.: 2006b, Space weather: the solar perspective. Living Rev. Solar Phys.3(1), 2. DOI. ADS.

    ADS  Article  Google Scholar 

  31. Sheeley, N.R. Jr.: 2005, Surface evolution of the Sun’s magnetic field: a historical review of the flux-transport mechanism. Living Rev. Solar Phys.2, 5. DOI. ADS.

    ADS  Article  Google Scholar 

  32. Sofia, S., Fox, P., Schatten, K.: 1998, Forecast update for activity Cycle 23 from a dynamo-based method. Geophys. Res. Lett.25, 4149. DOI. ADS.

    ADS  Article  Google Scholar 

  33. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot Cycle 24: smallest cycle in 100 years? Geophys. Res. Lett.32, 1104. DOI. ADS.

    ADS  Article  Google Scholar 

  34. Upton, L.A., Hathaway, D.H.: 2018, An updated Solar Cycle 25 prediction with AFT: the modern minimum. Geophys. Res. Lett.45, 8091. DOI. ADS.

    ADS  Article  Google Scholar 

  35. Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989, Evolution of the sun’s polar fields during Sunspot Cycle 21 - poleward surges and long-term behavior. Astrophys. J.347, 529. DOI. ADS.

    ADS  Article  Google Scholar 

  36. Wang, Y.-M., Robbrecht, E., Sheeley, N.R. Jr.: 2009, On the weakening of the polar magnetic fields during Solar Cycle 23. Astrophys. J.707, 1372. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the free use data policy of the National Solar Observatory (NSO/KP and NSO/SOLIS) and the Wilcox Solar Observatory (WSO) for the synoptic magnetogram data and World Data Center SILSO at the Royal Observatory of Belgium, Brussels, for the sunspot data. The SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the NSO, which is operated by the Association of Universities for Research in Astronomy (AURA) Inc. under a cooperative agreement with the National Science Foundation. We thank the reviewer for his comments that help to improve the paper significantly. SKB acknowledges Dr. Dibyendu Nandi from the Indian Institute of Scientific and Educational Research (IISER), Kolkata, for the scientific discussion and the support where a lot of this study was carried out. SKB also acknowledges the support by the National Natural Science Foundation of China (NSFC) (NSFC grants No. 11750110422, 11433006, 11790301, and 11790305).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susanta Kumar Bisoi.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bisoi, S.K., Janardhan, P. A New Tool for Predicting the Solar Cycle: Correlation Between Flux Transport at the Equator and the Poles. Sol Phys 295, 79 (2020). https://doi.org/10.1007/s11207-020-01645-9

Download citation

Keywords

  • Magnetic fields
  • Photosphere
  • Solar Cycle
  • Observations
  • Surges