Solar Physics

, 293:67 | Cite as

Unusual Cosmic Ray Variations During the Forbush Decreases of June 2015

  • E. Samara
  • A. Smponias
  • I. Lytrosyngounis
  • D. Lingri
  • H. Mavromichalaki
  • C. Sgouropoulos


Although the current Solar Cycle 24 is characterized by low solar activity, an intense geomagnetic storm (G4) was recorded in June 2015. It was a complex phenomenon that began on 22 June 2015 as the result of intense solar activity, accompanied by several flares and coronal mass ejections that interacted with the Earth’s magnetic field. A Forbush decrease was also recorded at the neutron monitors of the worldwide network, with an amplitude of 8.4%, and in its recovery phase, a second Forbush decrease followed, with an amplitude of 4.0% for cosmic rays of 10 GV obtained with the global survey method. The Dst index reached a minimum value of −204 nT that was detected on 23 June 2015 at 05:00 – 06:00 UT, while the Kp index reached the value eight. For our analysis, we used hourly cosmic-ray intensity data recorded by polar, mid-, and high-latitude neutron monitor stations obtained from the High Resolution Neutron Monitor Database. The cosmic-ray anisotropy variation at the ecliptic plane was also estimated and was found to be highly complex. We study and discuss the unusual and complex cosmic-ray and geomagnetic response to these solar events.


Solar activity Cosmic ray intensity Forbush decrease Neutron monitors Geomagnetic activity 



Special thanks to the colleagues of the NM stations ( ) for kindly providing the cosmic-ray data used in this study in the frame of the high-resolution neutron monitor database NMDB, funded under the European Union’s FP7 Program (contract no. 213007). Thanks are due to the IZMIRAN group of the Russian Academy of Sciences for kindly providing Forbush decrease data. The co-author D. Lingri thanks the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) of the Greek Ministry of Education for supporting her PhD fellowship. Thanks are also due to the anonymous referee for useful suggestions that improved this manuscript significantly.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Akasofu, S.I., Ahn, B.H., Kamide, Y., Allen, J.H.: 1983, A note on the accuracy of the auroral electrojet indices. J. Geophys. Res. 88, 5769. DOI. ADSCrossRefGoogle Scholar
  2. Asipenka, A.S., Belov, A.V., Eroshenko, E.A., Klepach, E.G., Oleneva, V.A., Yanke, V.G.: 2009, Interactive database of cosmic ray anisotropy (DB-A10). Adv. Space Res. 43, 708. DOI. ADSCrossRefGoogle Scholar
  3. Aslam, O.P.M., Badruddin: 2017, Study of the geoeffectiveness and galactic cosmic-ray response of VarSITI-ISEST campaign events in Solar Cycle 24. Solar Phys. 292, 17. DOI. CrossRefGoogle Scholar
  4. Bachelet, F., Balata, P., Iucci, N.: 1965, Some properties of the radiation recorded by the IGY cosmic-ray neutron monitors in the lower atmosphere. Nuovo Cimento A 40, 250. DOI. ADSCrossRefGoogle Scholar
  5. Badruddin: 2006, Transient perturbations and their effects in the heliosphere, the geo-magnetosphere, and the Earth’s atmosphere: space weather perspective. J. Astrophys. Astron. 27, 209. DOI. ADSCrossRefGoogle Scholar
  6. Bartels, J.: 1949, The standardized index Ks and the planetary index Kp. IATME Bull. 12b, 97. Google Scholar
  7. Belov, A.V., Eroshenko, E.A., Oleneva, V.A., Struminsky, A.B., Yanke, V.G.: 2001, What determines the magnitude of Forbush decreases? Adv. Space Res. 27, 625. DOI. ADSCrossRefGoogle Scholar
  8. Belov, A., Baisultanova, L., Eroshenko, E., Mavromichalaki, H., Yanke, V., Pchelkin, V., Plainaki, C., Mariatos, G.: 2005, Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003. J. Geophys. Res. 110, A09. DOI. CrossRefGoogle Scholar
  9. Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55. DOI. ADSCrossRefGoogle Scholar
  10. Davis, T.N., Sugiura, M.: 1966, Auroral electrojet activity index \(AE\) and its universal time variations. J. Geophys. Res. 71, 785. DOI. ADSCrossRefGoogle Scholar
  11. Eroshenko, E., Belov, A., Mavromichalaki, H., Mariatos, G., Oleneva, V., Plainaki, C., Yanke, V.: 2004, Cosmic ray variations during the two great bursts of solar activity in the 23rd solar cycle. Solar Phys. 224, 345. DOI. ADSCrossRefGoogle Scholar
  12. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI. ADSCrossRefGoogle Scholar
  13. Gromova, L.I., Kleimenova, N.L., Levitin, A.E., Gromov, S.V., Dremukhina, L.A., Zelinskii, N.R.: 2016, Daytime geomagnetic disturbances at high latitudes during a strong magnetic storm of June 21 – 23, 2015: the storm initial phase. Geomagn. Aeron. 56, 281. DOI. ADSCrossRefGoogle Scholar
  14. Harrison, R.A.: 1995, The nature of solar-flares associated with coronal mass ejection. Astron. Astrophys. 304, 585. ADSGoogle Scholar
  15. Hundhausen, A.J.: 1999, Coronal mass ejections. In: Strong, K.T., Saba, J.L., Haisch, B.H., Schmelz, J.T. (eds.) The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission, Springer, New York, 143. DOI. CrossRefGoogle Scholar
  16. Joselyn, J.A., Tsurutani, B.T.: 1990, Geomagnetic sudden impulses and storm sudden commencements: a note on terminology. Eos Trans. AGU 71, 1808. DOI. ADSCrossRefGoogle Scholar
  17. Kamide Y., Kusano K.: 2015, No major solar flares but the largest geomagnetic storm in the present solar cycle. Space Weather 13, 365. DOI. ADSCrossRefGoogle Scholar
  18. Kudela, K., Storini, M., Hofer, Y.M., Belov, A.: 2000, Cosmic rays in relation to space weather. Space Sci. Ser. ISSI 10, 153. DOI. ADSCrossRefGoogle Scholar
  19. Kudela, K., Brenkus, R.: 2004, Cosmic ray decreases and geomagnetic activity: list of events 1982 – 2002. J. Atmos. Solar-Terr. Phys. 66, 112. DOI. CrossRefGoogle Scholar
  20. Kumar, A., Badruddin: 2014, Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays. Solar Phys. 289, 2177. DOI. ADSCrossRefGoogle Scholar
  21. Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., Abunina, M.: 2016, Solar activity parameters and associated Forbush decreases during the minimum between Cycles 23 and 24 and the ascending phase of Cycle 24. Solar Phys. 291, 1025. DOI. ADSCrossRefGoogle Scholar
  22. Liu, Y.D., Hu, H., Wang, R., Yang, Z., Zhu, B., Liu, Y.A., Luhmann, J.G., Richardson, J.D.: 2015, Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. Lett. 809, L34. DOI. ADSCrossRefGoogle Scholar
  23. Livada, M., Lingri, D., Mavromichalaki, H.: 2015, Galactic cosmic ray spectrum of the Forbush decreases of March 2012. In: Proc. 12th Hel.A.S. Conf., vol. 1, p. 12. Google Scholar
  24. Lockwood, J.A.: 1971, Forbush decreases in the cosmic radiation. Space Sci. Rev. 12, 658. DOI. ADSCrossRefGoogle Scholar
  25. Mavromichalaki, H., Papaioannou, A., Mariatos, G., Papahliou, M., Belov, A., Eroshenko, E., Yanke, V., Stassinopoulos, E.G.: 2007, Cosmic ray radiation effects on space environment associated to intense solar and geomagnetic activity. IEEE Trans. Nucl. Sci. 54, 1089. DOI. ADSCrossRefGoogle Scholar
  26. Mavromichalaki, H., Eroshenko, E., Belov, A., Yanke, V., Mariatos, G., Laoutaris, A., Kontiza, A.: 2013, Magnetospheric cut-off rigidity variations recorded by neutron monitors in the events from 2001 to 2010. Proc. 23rd ECRS. J. Phys. Conf. Ser. 409. DOI.
  27. Papaioannou, A., Belov, A., Mavromichalaki, H., Eroshenko, E., Oleneva, V.: 2009, The unusual cosmic ray variations in July 2005 resulted from western and behind the limb solar activity. Adv. Space Res. 43, 582. DOI. ADSCrossRefGoogle Scholar
  28. Papaioannou, A., Souvatzoglou, G., Paschalis, P., Gerontidou, M., Mavromichalaki, H.: 2014, Solar Phys. 289, 423. DOI. ADSCrossRefGoogle Scholar
  29. Papailiou, M., Mavromichalaki, H., Eroshenko, E., Belov, A., Yanke, V.: 2012, Precursor effects in different cases of Forbush decreases. Solar Phys. 276, 337. DOI. ADSCrossRefGoogle Scholar
  30. Piersanti, M., Alberti, T., Bemporad, A., Berrilli, F., et al.: 2017, Comprehensive analysis of the geoeffective solar event of 21 June 2015: effects on the magnetosphere, plasmasphere, and ionosphere systems. Solar Phys. 292, 169. DOI. ADSCrossRefGoogle Scholar
  31. Plainaki, C., Belov, A., Eroshenko, E., Mavromichalaki, H., Yanke, V.: 2007, Modeling ground level enhancements: the event of 20 January 2005. J. Geophys. Res. 112, A04. DOI. CrossRefGoogle Scholar
  32. Plainaki, C., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V.: 2009, Neutron monitor asymptotic directions of viewing during the event of 13 December 2006. Adv. Space Res. 43, 518. DOI. ADSCrossRefGoogle Scholar
  33. Sugiura, M.: 1964, Hourly Values of Equatorial Dst for IGY, Annals of the International Geophysical Year 35, Pergamon Press, Oxford, 945. Google Scholar
  34. Tsurutani, B., Lakhina, G.: 2014, An extreme coronal mass ejection and consequences for the magnetosphere and Earth, EGU General Assembly, Vienna, id. 3064. Google Scholar
  35. Tsyganenko, N.A., Stern, D.P.: 1996, Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res. 101, 27187. DOI. ADSCrossRefGoogle Scholar
  36. Venkatesan, D., Badruddin: 1990, Cosmic-ray intensity variations in the 3-dimensional heliosphere. Space Sci. Rev. 52, 121. DOI. ADSCrossRefGoogle Scholar
  37. Wanliss, J.A., Showalter, K.M.: 2006, High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. 111, A02202. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations