Skip to main content
Log in

Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Notes

  1. See https://www.helcats-fp7.eu/catalogues/wp2_cat.html .

  2. See ftp://ftp.swpc.noaa.gov/pub/warehouse .

  3. See http://hesperia.gsfc.nasa.gov/hessidata/dbase/hessi_flare_list.txt .

  4. See http://sprg.ssl.berkeley.edu/~jimm/hessi/hsi_flare_list.html .

  5. See https://figshare.com/articles/HELCATS_LOWCAT/4970222 .

  6. See https://www.helcats-fp7.eu/catalogues/wp3_kincat.html .

  7. See https://www.helcats-fp7.eu/catalogues/event_page.html?id=HCME_B__20120305_01 .

  8. See http://api.flarecast.eu .

  9. Properties between this date and September 2017 need to be re-calculated due to defective NRT SHARP data.

References

  • Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R.: 2002, Scaling behavior of structure functions of the longitudinal magnetic field in active regions on the sun. Astrophys. J. 577, 487. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ahmed, O.W., Qahwaji, R., Colak, T., Dudok De Wit, T., Ipson, S.: 2010, A new technique for the calculation and 3d visualisation of magnetic complexities on solar satellite images. Vis. Comput. 26(5), 385. DOI .

    Article  Google Scholar 

  • Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Andrews, M.D.: 2003, A search for CMEs associated with big flares. Solar Phys. 218, 261. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barnes, G., Leka, K.D., Schrijver, C.J., Colak, T., Qahwaji, R., Ashamari, O.W., Yuan, Y., Zhang, J., McAteer, R.T.J., Bloomfield, D.S., Higgins, P.A., Gallagher, P.T., Falconer, D.A., Georgoulis, M.K., Wheatland, M.S., Balch, C., Dunn, T., Wagner, E.L.: 2016, A comparison of flare forecasting methods. I. Results from the ‘all-clear’ workshop. Astrophys. J. 829, 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barnes, D., Byrne, J., Davies, J., Harrison, R., Helcats, E.U.: 2015, HELCATS HCME_WP2_V02. DOI . https://figshare.com/articles/HELCATS_HCME_WP2_V02/1492351 .

  • Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Berghmans, D., Foing, B.H., Fleck, B.: 2002, Automated detection of CMEs in LASCO data. In: Wilson, A. (ed.) From Solar Min to Max: Half a Solar Cycle with SOHO, ESA Special Publication 508, 437. ADS .

    Google Scholar 

  • Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014a, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – Space-Weather HMI Active Region Patches. Solar Phys. 289, 3549. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Byrne, J.P., Maloney, S.A., McAteer, R.T.J., Refojo, J.M., Gallagher, P.T.: 2010, Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun. 1, 74. DOI . ADS .

    Article  ADS  Google Scholar 

  • Byrne, J.P., Morgan, H., Habbal, S.R., Gallagher, P.T.: 2012, Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. Astrophys. J. 752, 145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Campi, C., Benvenuto, F.: 2017, Feature selection for flarecast. Private communication.

  • Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., Hewett, R.J., Maguire, K.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248(2), 297. DOI .

    Article  ADS  Google Scholar 

  • Davies, J.A., Harrison, R.A., Perry, C.H., Möstl, C., Lugaz, N., Rollett, T., Davis, C.J., Crothers, S.R., Temmer, M., Eyles, C.J., Savani, N.P.: 2012, A self-similar expansion model for use in solar wind transient propagation studies. Astrophys. J. 750, 23. DOI . ADS .

    Article  ADS  Google Scholar 

  • Davies, J.A., Perry, C.H., Trines, R.M.G.M., Harrison, R.A., Lugaz, N., Möstl, C., Liu, Y.D., Steed, K.: 2013, Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry. Astrophys. J. 777, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Deng, N., Xu, Y., Yang, G., Cao, W., Liu, C., Rimmele, T.R., Wang, H., Denker, C.: 2006, Multiwavelength study of flow fields in flaring super active region NOAA 10486. Astrophys. J. 644(2), 1278. http://stacks.iop.org/0004-637X/644/i=2/a=1278 .

    Article  ADS  Google Scholar 

  • Drake, J.F.: 1971, Characteristics of soft solar X-ray bursts. Solar Phys. 16, 152. DOI . ADS .

    Article  ADS  Google Scholar 

  • Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R., McKinnell, L.-A., Gibbs, M., Burnett, C.: 2017, The economic impact of space weather: where do we stand? Risk Anal. 37(2), 206. DOI .

    Article  Google Scholar 

  • Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., Bewsher, D., Crothers, S.R., Davies, J.A., Simnett, G.M., Howard, R.A., Moses, J.D., Newmark, J.S., Socker, D.G., Halain, J.-P., Defise, J.-M., Mazy, E., Rochus, P.: 2009, The heliospheric imagers onboard the STEREO mission. Solar Phys. 254, 387. DOI . ADS .

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2008, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J. 689, 1433. DOI . ADS .

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Barghouty, A.F., Khazanov, I.: 2012, Prior flaring as a complement to free magnetic energy for forecasting solar eruptions. Astrophys. J. 757, 32. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2010, Pre-eruption magnetic configurations in the active-region solar photosphere. Proc. Int. Astron. Union 6(S273), 495. DOI .

    Article  Google Scholar 

  • Georgoulis, M.: 2013, Toward an efficient prediction of solar flares: which parameters, and how? Entropy 15(11), 5022. DOI .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Titov, V.S., Mikić, Z.: 2012, Non-neutralized electric current patterns in solar active regions: origin of the shear-generating Lorentz force. Astrophys. J. 761(1), 61. http://stacks.iop.org/0004- 637X/761/i=1/a=61 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME Catalog. Earth Moon Planets 104, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guerra, J.A., Pulkkinen, A., Uritsky, V.M., Yashiro, S.: 2015, Spatio-temporal scaling of turbulent photospheric line-of-sight magnetic field in active region NOAA 11158. Solar Phys. 290, 335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guo, J., Zhang, H.Q., Chumak, O.V.: 2007, Magnetic properties of flare-CME productive active regions and CME speed. Astron. Astrophys. 462, 1121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harra, L.K., Schrijver, C.J., Janvier, M., Toriumi, S., Hudson, H., Matthews, S., Woods, M.M., Hara, H., Guedel, M., Kowalski, A., Osten, R., Kusano, K., Lueftinger, T.: 2016, The characteristics of solar X-class flares and CMEs: a paradigm for stellar superflares and eruptions? Solar Phys. 291, 1761. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harrison, R.A.: 1995, The nature of solar flares associated with coronal mass ejection. Astron. Astrophys. 304, 585. ADS .

    ADS  Google Scholar 

  • Harrison, R.A., Davies, J.A., Biesecker, D., Gibbs, M.: 2017, The application of heliospheric imaging to space weather operations: lessons learned from published studies. Space Weather 15(8), 985. DOI .

    Article  ADS  Google Scholar 

  • Haynes, A.L., Parnell, C.E.: 2007, A trilinear method for finding null points in a three-dimensional vector space. Phys. Plasmas 14(8), 082107. DOI .

    Article  ADS  Google Scholar 

  • Hewett, R.J., Gallagher, P.T., McAteer, R.T.J., Young, C.A., Ireland, J., Conlon, P.A., Maguire, K.: 2008, Multiscale analysis of active region evolution. Solar Phys. 248, 311. DOI . ADS .

    Article  ADS  Google Scholar 

  • Higgins, P.A.: 2012, Sunspot group evolution and the global magnetic field of the Sun. Thesis, Trinity College Dublin.

  • Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jing, J., Yurchyshyn, V.B., Yang, G., Xu, Y., Wang, H.: 2004, On the relation between filament eruptions, flares, and coronal mass ejections. Astrophys. J. 614, 1054. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO Mission: an introduction. Space Sci. Rev. 136, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Korsós, M.B., Baranyi, T., Ludmány, A.: 2014, Pre-flare dynamics of sunspot groups. Astrophys. J. 789(2), 107. http://stacks.iop.org/0004-637X/789/i=2/a=107 .

    Article  ADS  Google Scholar 

  • Künzel, H.: 1965, Zur Klassifikation von Sonnenfleckengruppen. Astron. Nachr. 288, 177. ADS .

    ADS  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2002, Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577(1), 501. http://stacks.iop.org/0004-637X/ 577/i=1/a=501 .

    Article  ADS  Google Scholar 

  • Lara, A.: 2008, The source region of coronal mass ejections. Astrophys. J. 688, 647. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lee, K., Moon, Y.-J., Lee, J.-Y.: 2015, Forecast of a daily halo CME occurrence probability depending on class and area change of the associated sunspot. Solar Phys. 290, 1661. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y.: 2008, Magnetic field overlying solar eruption regions and kink and torus instabilities. Astrophys. J. Lett. 679(2), L151. http://stacks.iop.org/1538-4357/679/i=2/a=L151 .

    Article  ADS  Google Scholar 

  • Magdalenić, J., Marqué, C., Krupar, V., Mierla, M., Zhukov, A.N., Rodriguez, L., Maksimović, M., Cecconi, B.: 2014, Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission. Astrophys. J. 791, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723, 634. DOI . ADS .

    Article  ADS  Google Scholar 

  • McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the Solar Dynamics Observatory: statistical properties, kinematics, and online catalog. Solar Phys. 290, 1703. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moestl, C., Isavnin, A., Boakes, P.D., Kilpua, E.K.J., Davies, J.A., Harrison, R.A., Barnes, D., Krupar, V., Eastwood, J.P., Good, S.W., Forsyth, R.J., Bothmer, V., Reiss, M.A., Amerstorfer, T., Winslow, R.M., Anderson, B.J., Philpott, L.C., Rodriguez, L., Rouillard, A.P., Gallagher, P., Nieves-Chinchilla, T., Zhang, T.L.: 2017, Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the heliophysics system observatory. Space Weather 15(7), 955. DOI .

    Article  ADS  Google Scholar 

  • Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G., Yashiro, S.: 2002, A statistical study of two classes of coronal mass ejections. Astrophys. J. 581, 694. DOI . ADS .

    Article  ADS  Google Scholar 

  • Morgan, H., Byrne, J.P., Habbal, S.R.: 2012, Automatically detecting and tracking coronal mass ejections. I. Separation of dynamic and quiescent components in coronagraph images. Astrophys. J. 752, 144. DOI . ADS .

    Article  ADS  Google Scholar 

  • Murray, S.A., Bingham, S., Sharpe, M., Jackson, D.R.: 2017a, Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather 15, 577. DOI . ADS .

    Article  ADS  Google Scholar 

  • Murray, S.A., Zucca, P., Carley, E., Gallagher, P.: 2017b, HELCATS LOWCAT. figshare. DOI .

  • Pant, V., Willems, S., Rodriguez, L., Mierla, M., Banerjee, D., Davies, J.A.: 2016, Automated detection of coronal mass ejections in STEREO Heliospheric Imager data. Astrophys. J. 833, 80. DOI . ADS .

    Article  ADS  Google Scholar 

  • Park, S.-H., Chae, J., Wang, H.: 2010, Productivity of solar flares and magnetic helicity injection in active regions. Astrophys. J. 718(1), 43. http://stacks.iop.org/0004-637X/718/i=1/a=43 .

    Article  ADS  Google Scholar 

  • Park, S.-H., Cho, K.-S., Bong, S.-C., Kumar, P., Chae, J., Liu, R., Wang, H.: 2012, The occurrence and speed of CMEs related to two characteristic evolution patterns of helicity injection in their solar source regions. Astrophys. J. 750(1), 48. http://stacks.iop.org/0004-637X/750/i=1/a=48 .

    Article  ADS  Google Scholar 

  • Plotnikov, I., Rouillard, A.P., Davies, J.A., Bothmer, V., Eastwood, J.P., Gallagher, P., Harrison, R.A., Kilpua, E., Möstl, C., Perry, C.H., Rodriguez, L., Lavraud, B., Génot, V., Pinto, R.F., Sanchez-Diaz, E.: 2016, Long-term tracking of corotating density structures using heliospheric imaging. Solar Phys. 291, 1853. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pontin, D.I., Priest, E.R., Galsgaard, K.: 2013, On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys. J. 774(2), 154. http://stacks.iop.org/0004-637X/774/i=2/a=154 .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Lavraud, B., Genot, V., Bouchemit, M., Dufourg, N., Plotnikov, I., Pinto, R.F., Sanchez-Diaz, E., Lavarra, M., Penou, M., Jacquey, C., Andre, N., Caussarieu, S., Toniutti, J.-P., Popescu, D., Buchlin, E., Caminade, S., Alingery, P., Davies, J.A., Odstrcil, D., Mays, L.: 2017, A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures. ArXiv e-prints. ADS .

  • Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The Solar Oscillations Investigation – Michelson Doppler Imager. Solar Phys. 162, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6. ADS .

    Article  ADS  Google Scholar 

  • Singh, Y.P., Badruddin: 2006, Statistical considerations in superposed epoch analysis and its applications in space research. J. Atmos. Solar-Terr. Phys. 68, 803. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tiwari, S.K., Falconer, D.A., Moore, R.L., Venkatakrishnan, P., Winebarger, A.R., Khazanov, I.G.: 2015, Near-Sun speed of CMEs and the magnetic nonpotentiality of their source active regions. Geophys. Res. Lett. 42, 5702. DOI . ADS .

    Article  ADS  Google Scholar 

  • Venkatakrishnan, P., Ravindra, B.: 2003, Relationship between CME velocity and active region magnetic energy. Geophys. Res. Lett. 30, 2181. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A.: 2006, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations. Astrophys. J. 642, 1216. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S.: 2011, Statistical study of coronal mass ejection source locations: understanding CMEs viewed in coronagraphs. J. Geophys. Res. 116, A04104. DOI . ADS .

    ADS  Google Scholar 

  • Wang, S., Liu, C., Deng, N., Wang, H.: 2014, Sudden photospheric motion and sunspot rotation associated with the X2.2 flare on 2011 February 15. Astrophys. J. Lett. 782(2), L31. http://stacks.iop.org/2041-8205/ 782/i=2/a=L31 .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yang, G., Xu, Y., Cao, W., Wang, H., Denker, C., Rimmele, T.R.: 2004, Photospheric shear flows along the magnetic neutral line of active region 10486 prior to an X10 flare. Astrophys. J. Lett. 617(2), L151. http://stacks.iop.org/1538-4357/617/i=2/a=L151 .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., Howard, R.A.: 2005, Visibility of coronal mass ejections as a function of flare location and intensity. J. Geophys. Res. 110, A12S05. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yashiro, S., Michalek, G., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2008, Spatial relationship between solar flares and coronal mass ejections. Astrophys. J. 673, 1174. DOI . ADS .

    Article  ADS  Google Scholar 

  • Youssef, M.: 2012, On the relation between the CMEs and the solar flares. NRIAG J. Astron. Geophys. 1, 172. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H., Gopalswamy, N.: 2005, Statistical distributions of speeds of coronal mass ejections. Astrophys. J. 619, 599. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zheng, Y.: 2013, Improving CME forecasting capability: an urgent need. Space Weather 11(11), 641. DOI .

    Article  ADS  Google Scholar 

  • Zuccarello, F.P., Seaton, D.B., Mierla, M., Poedts, S., Rachmeler, L.A., Romano, P., Zuccarello, F.: 2014, Observational evidence of torus instability as trigger mechanism for coronal mass ejections: the 2011 August 4 filament eruption. Astrophys. J. Lett. 785(2), 88. http://stacks.iop.org/0004-637X/785/i=2/a=88 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The FLARECAST database is available at http://api.flarecast.eu/ , HICAT catalogue at https://www.helcats-fp7.eu/catalogues/wp2_cat.html , and LOWCAT at https://figshare.com/articles/HELCATS_LOWCAT/4970222 . The code used to analyse these datasets to create the figures in this paper can be found on GitHub ( https://github.com/sophiemurray/helcats-flarecast ). The authors wish to acknowledge the use of Overleaf to prepare the manuscript, and also the following Python libraries and packages used when creating the figures in this paper: Astropy, Matplotlib, NumPy, pandas, Plotly, SciPy, and SunPy. The STEREO/SECCHI data used here are produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Laboratory (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut für Sonnensystemforschung (Germany), Centre Spatial de Liège (Belgium), Institut d’Optique Théorique et Appliqué (France), and Institut d’Astrophysique Spatiale (France). SDO is a mission for NASA’s Living With a Star (LWS) program, with the SDO/HMI data provided by the Joint Science Operation Center (JSOC). E.C., P.Z., and S.A.M were supported by the European Union Seventh Framework Program under grant agreement No. 606692 (HELCATS project). J.G.A., S.A.M., and S.-H.P were supported by the European Union Horizon 2020 research and innovation program under grant agreement No. 640216 (FLARECAST project). VB acknowledges support of the CGAUSS (Coronagraphic German and US Solar Probe Plus Survey) project for WISPR by the German Space Agency DLR under grant 50 OL 1601. S.A.M. acknowledges the IRC Postdoctoral Fellowship Scheme and AFOSR award FA9550-17-1-039. The authors would like to thank the anonymous referee for their suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie A. Murray.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, S.A., Guerra, J.A., Zucca, P. et al. Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects. Sol Phys 293, 60 (2018). https://doi.org/10.1007/s11207-018-1287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1287-4

Keywords

Navigation