Solar Physics

, 293:68 | Cite as

The Global Survey Method Applied to Ground-level Cosmic Ray Measurements

  • A. Belov
  • E. Eroshenko
  • V. Yanke
  • V. Oleneva
  • A. Abunin
  • M. Abunina
  • A. Papaioannou
  • H. Mavromichalaki


The global survey method (GSM) technique unites simultaneous ground-level observations of cosmic rays in different locations and allows us to obtain the main characteristics of cosmic-ray variations outside of the atmosphere and magnetosphere of Earth. This technique has been developed and applied in numerous studies over many years by the Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN). We here describe the IZMIRAN version of the GSM in detail. With this technique, the hourly data of the world-wide neutron-monitor network from July 1957 until December 2016 were processed, and further processing is enabled upon the receipt of new data. The result is a database of homogeneous and continuous hourly characteristics of the density variations (an isotropic part of the intensity) and the 3D vector of the cosmic-ray anisotropy. It includes all of the effects that could be identified in galactic cosmic-ray variations that were caused by large-scale disturbances of the interplanetary medium in more than 50 years. These results in turn became the basis for a database on Forbush effects and interplanetary disturbances. This database allows correlating various space-environment parameters (the characteristics of the Sun, the solar wind, et cetera) with cosmic-ray parameters and studying their interrelations. We also present features of the coupling coefficients for different neutron monitors that enable us to make a connection from ground-level measurements to primary cosmic-ray variations outside the atmosphere and the magnetosphere. We discuss the strengths and weaknesses of the current version of the GSM as well as further possible developments and improvements. The method developed allows us to minimize the problems of the neutron-monitor network, which are typical for experimental physics, and to considerably enhance its advantages.


Cosmic rays Neutron monitors Forbush decreases Space weather 



This work was performed with partial support of the Program of basic researches of the presidium of RAS No. 23 “High-energy physics and a neutrino astrophysics”, a grant of the Russian Fund of Fundamental investigations No. 17-02-00508. This work is based on experimental data of the unique scientific installation “Russian National Network of Cosmic Ray Stations”. We are also grateful to all staff of the network of cosmic-ray stations, ( ). We further acknowledge the NMDB database ( ), founded under the European Union’s FP7 programme (contract no. 213007) for providing data. A. Papaioannou would like to gratefully acknowledge the hospitality of the IZMIRAN group, which made his working visit at their premises possible. The authors would like to thank the anonymous referee for constructive comments.

Disclosure of Potential Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Alania, M.V., Szabelski, J., Wawrzynczak, A.: 2003. In: Kajita, T., Asaoka, Y., Kawachi, A., Matsubara, Y., Sasaki, M. (eds.) 28th International Cosmic Ray Conference 6, 3585. Google Scholar
  2. Aleksanyan, T., Bednazhevsky, V., Blokh, Y.L., Dorman, L., Starkov, F.: 1979. In: Miyake, S. (ed.) 16th International Cosmic Ray Conference 4, 315. Google Scholar
  3. Altukhov, A.M., Krymsky, G.F., Kuzmin, A.I.: 1970, The method of “global survey” for investigating cosmic ray modulation. In: Somogyi, A., Nagy, E., Posch, M., Telbisz, F., Vesztergombi, G. (eds.) 11th International Conference on Cosmic Rays 4, 457. Google Scholar
  4. Asipenka, A., Belov, A., Eroshenko, E., Klepach, E., Oleneva, V., Yanke, V.: 2009, Adv. Space Res. 43(4), 708. ADSCrossRefGoogle Scholar
  5. Belov, A., Baisultanova, L., Eroshenko, E., Mavromichalaki, H., Yanke, V., Pchelkin, V., Plainaki, C., Mariatos, G.: 2005, J. Geophys. Res. 110(A9). Google Scholar
  6. Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., Yashiro, S.: 2014, Solar Phys. 289(10), 3949. DOI. ADSCrossRefGoogle Scholar
  7. Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H.: 2015, Solar Phys. 290(5), 1429. DOI. ADSCrossRefGoogle Scholar
  8. Belov, A.: 1980, Diss. Cand. Fiz.-mat. Sciences, IZMIRAN. Google Scholar
  9. Belov, A.: 2000, Space Sci. Rev. 93(1), 79. ADSCrossRefGoogle Scholar
  10. Belov, A.: 2008, Proc. Int. Astron. Union 4(S257), 439. CrossRefGoogle Scholar
  11. Belov, A., Eroshenko, E.: 1981. In: International Cosmic Ray Conference 4, 97. Google Scholar
  12. Belov, A., Blokh, Y.A., Dorman, L., Eroshenko, E., Inozemtseva, O., Kaminer, N.: 1973. In: International Cosmic Ray Conference 2, 1247. Google Scholar
  13. Belov, A., Blokh, I.L., Dorman, L., Eroshenko, E., Inozemtseva, O., Kaminer, N.: 1974, Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 1867. ADSGoogle Scholar
  14. Belov, A., Eroshenko, E., Heber, B., Yanke, V., Raviart, A., Müller-Mellin, R., Kunow, H.: 2003, Ann. Geophys. 21, 1295. ADSCrossRefGoogle Scholar
  15. Belov, A., Eroshenko, E., Oleneva, V., Yanke, V.: 2008, J. Atmos. Solar-Terr. Phys. 70(2), 342. ADSCrossRefGoogle Scholar
  16. Bieber, J., Evenson, P.: 1995. In: International Cosmic Ray Conference 4, 1316. Google Scholar
  17. Cane, H.V.: 2000, Space Sci. Rev. 93(1), 55. ADSCrossRefGoogle Scholar
  18. Chirkov, N.P., Altukhov, A.I., Krymsky, G.F., Krivoshapkin, P.A., Kuzmin, A.I., Skripin, G.V.: 1967, Geomagn. Aeron. 7, 621. Google Scholar
  19. Clem, J.M., Dorman, L.I.: 2000, Space Sci. Rev. 93(1), 335. ADSCrossRefGoogle Scholar
  20. Dorman, L.: 1972, Meteorological Effects of Cosmic Rays, Nauka, Moscow, 211 p. Google Scholar
  21. Dorman, L., Yanke, V.: 1971a, Izv. Akad. Nauk SSSR, Ser. Fiz. 35(12), 2556. Google Scholar
  22. Dorman, L., Yanke, V.: 1971b, Izv. Akad. Nauk SSSR, Ser. Fiz. 35(12), 2571. Google Scholar
  23. Dorman, L.I., Smirnov, V.S., Tyasto, M.: 1971, Cosmic Rays in the Earth’s Magnetic Field, Nauka, Moscow, 400 p. Google Scholar
  24. Dorman, L.: 1957, Variations of Cosmic Rays, Gosteichteorizdat, Moscow. zbMATHGoogle Scholar
  25. Dorman, L.: 2009, Cosmic Rays in Magnetospheres of the Earth and Other Planets 358, Springer, Dordrecht. DOI. Google Scholar
  26. Dorman, L.: 2013, Cosmic Rays in the Earth’s Atmosphere and Underground 303, Springer, Netherlands. DOI. Google Scholar
  27. Dorman, L., Fedchenko, S., Granitsky, L., Rishe, G.: 1970. In: International Cosmic Ray Conference 2, 233. Google Scholar
  28. Dvornikov, V., Kravtsova, M., Sdobnov, V.: 2006, Bull. Russ. Acad. Sci., Phys. 70(10), 1504. Google Scholar
  29. Dvornikov, V., Sdobnov, V., Sergeev, A.: 1983. In: International Cosmic Ray Conference 3, 249. Google Scholar
  30. Forsythe, J., Malcolm, M., Mouler, K.: 1980, Numerical Methods of Mathematical Calculations, Mir, Moscow. Google Scholar
  31. Jung, J., Oh, S., Yi, Y., Evenson, P., Pyle, R., Jee, G., Kim, J.-H., Lee, C., Sohn, J.: 2016, J. Astron. Space Sci. 33(4), 345. ADSCrossRefGoogle Scholar
  32. Kobelev, P., Belov, A., Eroshenko, E., Yanke, V.: 2013. In: Proc. 33rd ICRC, Rio de Janeiro. Google Scholar
  33. Korotkov, V., Berkova, M., Belov, A., Eroshenko, E., Yanke, V., Pyle, R.: 2013, J. Geophys. Res. 118(11), 6852. CrossRefGoogle Scholar
  34. Korotkov, V., Berkova, M., Belov, A., Eroshenko, E., Kobelev, P., Yanke, V.: 2011, Geomagn. Aeron. 51(2), 247. DOI. ADSCrossRefGoogle Scholar
  35. Krymsky, G.F., Kuzmin, A.I., Chirkov, N.P., Krivoshapkin, P.A., Skripin, G.V.: 1966a, Geomagn. Aeron. 6(8), 991. Google Scholar
  36. Krymsky, G.F., Altukhov, A.M., Kuzmin, A.I., Skripin, G.V.: 1966b, A New Method for Studying the Anisotropy of Cosmic Rays – Investigation of Geomagnetism and Aeronomy, Nauka, Moscow, 105 Google Scholar
  37. Krymsky, G.F., Kuzmin, A.I., Krivoshapkin, P.A., Samsonov, I.S., Skripin, G.V., Transkii, I.A., Chirkov, N.P.: 1981, Cosmic Rays and Solar Wind, Nauka, Novosibirsk. Google Scholar
  38. Lockwood, J.: 1990, Solar-Geophys. Data 549, 154. Google Scholar
  39. Lockwood, J.A.: 1971, Space Sci. Rev. 12(5), 658. ADSCrossRefGoogle Scholar
  40. Lukovnikova, A.: 2012, Diss. Cand. Fiz.-mat. Sciences, Irkutsk. Google Scholar
  41. McCracken, K., Rao, U., Shea, M.: 1962, The Trajectories of Cosmic Rays in a High Degree Simulation of the Geomagnetic Field 77, Massachusetts Inst. of Tech., Lab. for Nuclear Science, Cambridge. Google Scholar
  42. McCracken, K., Rao, U., Fowler, B., Shea, M., Smart, D.: 1965, IQSY Instruction Manual No. 10, IQSY Committee, Washington. Google Scholar
  43. Moraal, H., Belov, A., Clem, J.: 2000, Space Sci. Rev. 93(1), 285. ADSCrossRefGoogle Scholar
  44. Nagashima, K.: 1971, Rep. Ionos. Space Res. Jpn. 25, 189. ADSGoogle Scholar
  45. Nagashima, K., Sakakibara, S., Murakami, K., Morishita, I.: 1989, Nuovo Cimento C 12(2), 173. ADSCrossRefGoogle Scholar
  46. Papailiou, M., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V.: 2012a, Solar Phys. 280(2), 641. DOI. ADSCrossRefGoogle Scholar
  47. Papailiou, M., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V.: 2012b, Solar Phys. 276(1), 337. DOI. ADSCrossRefGoogle Scholar
  48. Papailiou, M., Mavromichalaki, H., Abunina, M., Belov, A., Eroshenko, E., Yanke, V., Kryakunova, O.: 2013, Solar Phys. 283(2), 557. DOI. ADSCrossRefGoogle Scholar
  49. Papaioannou, A., Mavromichalaki, H., Eroshenko, E., Belov, A., Oleneva, V.: 2009a, Ann. Geophys. 27, 1019. DOI. ADSCrossRefGoogle Scholar
  50. Papaioannou, A., Belov, A., Mavromichalaki, H., Eroshenko, E., Oleneva, V.: 2009b, Adv. Space Res. 43(4), 582. DOI. ADSCrossRefGoogle Scholar
  51. Papaioannou, A., Malandraki, O., Belov, A., Skoug, R., Mavromichalaki, H., Eroshenko, E., Abunin, A., Lepri, S.: 2010, Solar Phys. 266(1), 181. DOI. ADSCrossRefGoogle Scholar
  52. Pomerantz, M., Duggal, S.: 1972, J. Geophys. Res. 77(1), 263. ADSCrossRefGoogle Scholar
  53. Richardson, I., Dvornikov, V., Sdobnov, V., Cane, H.: 2000, J. Geophys. Res. 105(A6), 12579. DOI. ADSCrossRefGoogle Scholar
  54. Sergeev, A.V.: 1974, Diss. Cand. Fiz.-mat. Sciences, Research Institute of Nuclear Physics of the Moscow State University. Google Scholar
  55. Shea, M.A., Smart, D.F., McCall, J.R.: 1968, Can. J. Phys. 46(10), S1098. DOI. ADSCrossRefGoogle Scholar
  56. Shea, M.A., Smart, D.F., McCracken, K.G., Rao, U.R.: 1968, Supplement to IQSY Instruction Manual No. 10 Cosmic Ray Tables: Asymptotic Directions, Variational Coefficients and Cutoff Rigidities, Air Force Cambridge Research Labs LG Hanscom Field Mass. Google Scholar
  57. Shea, M.A., Smart, D.F., Humble, J.E., Fluckiger, E.O., Gentile, L.C., Humble, J.E., Nichol, M., Shea, M.A., Smart, D.F.: 1987. In: Kozyarivsky, V.A., Lidvansky, A.S., Tulupova, T.I., Tayabuk, A.L., Voevodsky, A.V., Volgemut, N.S. (eds.) Proc. 20th Int. Cosmic Rays Conf. 3, Nauka, Moscow, 171. Google Scholar
  58. Simpson, J.A.: 2000, The cosmic ray nucleonic component: the invention and scientific uses of the neutron monitor. Space Sci. Rev. 93, 11. DOI. Cosmic Rays and Earth, Springer ADSCrossRefGoogle Scholar
  59. Smart, D.F.: 1997. In: Potgieter, M.S., Raubenheimer, B.C., van der Walt, D.J. (eds.) 25th International Cosmic Ray Conference 2, 401. Google Scholar
  60. Wenzel, K., Marsden, R., Page, D., Smith, E.: 1992, Astron. Astrophys. Suppl. Ser. 92, 207. ADSGoogle Scholar
  61. Yasue, S., Mori, S., Sakakibara, S., Nagashima, K.: 1982, Report of Cosmic-Ray Research Laboratory, Nagoya, 7. Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. Belov
    • 1
  • E. Eroshenko
    • 1
  • V. Yanke
    • 1
  • V. Oleneva
    • 1
  • A. Abunin
    • 1
  • M. Abunina
    • 1
  • A. Papaioannou
    • 2
    • 3
  • H. Mavromichalaki
    • 2
  1. 1.Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation by N.V. Pushkov RAS (IZMIRAN)Moscow TroitskRussia
  2. 2.Nuclear and Particle Physics Department, Faculty of PhysicsNational and Kapodistrian University of AthensAthensGreece
  3. 3.Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS)National Observatory of AthensPenteliGreece

Personalised recommendations