Advertisement

Solar Physics

, 293:56 | Cite as

Probing the Quiet Solar Atmosphere from the Photosphere to the Corona

  • Ioannis Kontogiannis
  • Costis Gontikakis
  • Georgia Tsiropoula
  • Kostas Tziotziou
Article

Abstract

We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with \(\mbox{H}\upalpha\) observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from \(8\times 10^{4}~\mbox{K}\) to \(6\times 10^{5}~\mbox{K}\). Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by \(\mbox{H}\upalpha\) upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.

Keywords

Chromosphere, quiet Corona, quiet Transition region 

Notes

Acknowledgements

The authors would like to thank the anonymous referee, whose valuable comments greatly improved the manuscript. The observations have been funded by the Optical Infrared Coordination network (OPTICON, http://www.ing.iac.es/opticon ), a major international collaboration supported by the Research Infrastructures Program of the European Commission’s sixth Framework Program. The research was partly funded through the project “SOLAR-4068”, which is implemented under the “ARISTEIA II” Action of the operational program “Education and Lifelong Learning” and is cofunded by the European Social Fund (ESF) and Greek national funds. The DOT was operated at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The authors thank P. Sütterlin for the DOT observations and R. Rutten for the data reduction. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway). Hinode SOT/SP Inversions were conducted at NCAR under the framework of the Community Spectro-polarimetric Analysis Center (CSAC; http://www.csac.hao.ucar.edu ). The authors would like to thank S.H. Park for valuable help in the magnetic field extrapolation.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Andretta, V., Jordan, S.D., Brosius, J.W., Davila, J.M., Thomas, R.J., Behring, W.E., Thompson, W.T., Garcia, A.: 2000, The role of velocity redistribution in enhancing the intensity of the HE II 304 Å line in the quiet-sun spectrum. Astrophys. J. 535, 438. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Barczynski, K., Peter, H., Savage, S.L.: 2017, Miniature loops in the solar corona. Astron. Astrophys. 599, A137. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bewsher, D., Parnell, C.E., Pike, C.D., Harrison, R.A.: 2003, Dynamics of blinkers. Solar Phys. 215, 217. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Brueckner, G.E., Bartoe, J.-D.F.: 1983, Observations of high-energy jets in the corona above the quiet Sun, the heating of the corona, and the acceleration of the solar wind. Astrophys. J. 272, 329. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Brynildsen, N., Brekke, P., Fredvik, T., Haugan, S.V.H., Kjeldseth-Moe, O., Maltby, P., Harrison, R.A., Wilhelm, K.: 1998, SOHO observations of the connection between line profile parameters in active and quiet regions and the net red shift in EUV emission lines. Solar Phys. 181, 23. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19. DOI. ADS. ADSCrossRefGoogle Scholar
  7. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., Schrijver, C.J., Title, A.M.: 2011, The origins of hot plasma in the solar corona. Science 331, 55. DOI. ADS. ADSCrossRefGoogle Scholar
  8. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Dowdy, J.F. Jr.: 1993, Observational evidence for hotter transition region loops within the supergranular network. Astrophys. J. 411, 406. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Dowdy, J.F. Jr., Rabin, D., Moore, R.L.: 1986, On the magnetic structure of the quiet transition region. Solar Phys. 105, 35. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Feldman, U.: 1983, On the unresolved fine structures of the solar atmosphere in the 30,000 – 200,000 K temperature region. Astrophys. J. 275, 367. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Gabriel, A.H.: 1976, A magnetic model of the solar transition region. Phil. Trans. Roy. Soc. London Ser. A 281, 339. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Gallagher, P.T., Phillips, K.J.H., Harra-Murnion, L.K., Baudin, F., Keenan, F.P.: 1999, Transient events in the EUV transition region and chromosphere. Astron. Astrophys. 348, 251. ADS. ADSGoogle Scholar
  14. Golding, T.P., Leenaarts, J., Carlsson, M.: 2017, Formation of the helium extreme-UV resonance lines. Astron. Astrophys. 597, A102. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Gontikakis, C., Dara, H.C.: 2000, Dynamics of the transition region. New Astron. Rev. 44, 599. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Gontikakis, C., Peter, H., Dara, H.C.: 2003, Sizes of quiet Sun transition region structures. Astron. Astrophys. 408, 743. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Guerreiro, N., Hansteen, V., De Pontieu, B.: 2013, The cycling of material between the solar corona and chromosphere. Astrophys. J. 769, 47. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Hansteen, V., De Pontieu, B., Carlsson, M., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Pereira, T.M.D., De Luca, E.E., Golub, L., McKillop, S., Reeves, K., Saar, S., Testa, P., Tian, H., Kankelborg, C., Jaeggli, S., Kleint, L., Martínez-Sykora, J.: 2014, The unresolved fine structure resolved: IRIS observations of the solar transition region. Science 346, 1255757. DOI. ADS. CrossRefGoogle Scholar
  20. Harrison, R.A.: 1997, EUV blinkers: The significance of variations in the extreme ultraviolet quiet Sun. Solar Phys. 175, 467. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Henriques, V.M.J., Kuridze, D., Mathioudakis, M., Keenan, F.P.: 2016, Quiet-sun \(\mbox{H}\upalpha\) transients and corresponding small-scale transition region and coronal heating. Astrophys. J. 820, 124. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Judge, P.G., Pietarila, A.: 2004, On the formation of extreme-ultraviolet helium lines in the Sun: Analysis of SOHO data. Astrophys. J. 606, 1258. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Kayshap, P., Banerjee, D., Srivastava, A.K.: 2015, Diagnostics of a coronal hole and the adjacent quiet Sun by the Hinode/EUV Imaging Spectrometer (EIS). Solar Phys. 290, 2889. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Klimchuk, J.A.: 2012, The role of type II spicules in the upper solar atmosphere. J. Geophys. Res. 117, A12102. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Klimchuk, J.A., Bradshaw, S.J.: 2014, Are chromospheric nanoflares a primary source of coronal plasma? Astrophys. J. 791, 60. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Kontogiannis, I., Tsiropoula, G., Tziotziou, K.: 2011, Hinode SOT/SP and SoHO/MDI quiet Sun magnetic field. Implications of their differences on the extrapolated chromospheric field and the height of the magnetic canopy. Astron. Astrophys. 531, A66. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Kontogiannis, I., Tsiropoula, G., Tziotziou, K., Georgoulis, M.K.: 2010, Oscillations in a network region observed in the \(\mbox{H}\upalpha \) line and their relation to the magnetic field. Astron. Astrophys. 524, A12. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Leenaarts, J., Rutten, R.J., Sütterlin, P., Carlsson, M., Uitenbroek, H.: 2006, DOT tomography of the solar atmosphere. VI. Magnetic elements as bright points in the blue wing of \(\mbox{H}\upalpha \). Astron. Astrophys. 449, 1209. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Levens, P.J., Labrosse, N., Fletcher, L., Schmieder, B.: 2015, A solar tornado observed by EIS. Plasma diagnostics. Astron. Astrophys. 582, A27. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Lites, B.W., Kubo, M., Socas-Navarro, H., Berger, T., Frank, Z., Shine, R., Tarbell, T., Title, A., Ichimoto, K., Katsukawa, Y., Tsuneta, S., Suematsu, Y., Shimizu, T., Nagata, S.: 2008, The horizontal magnetic flux of the quiet-sun internetwork as observed with the Hinode spectro-polarimeter. Astrophys. J. 672, 1237. DOI. ADS. ADSCrossRefGoogle Scholar
  31. MacPherson, K.P., Jordan, C.: 1999, The anomalous intensities of helium lines in the quiet solar transition region. Mon. Not. Roy. Astron. Soc. 308, 510. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Madjarska, M.S., Doyle, J.G.: 2003, Simultaneous observations of solar transition region blinkers and explosive events by SUMER, CDS and BBSO. Are blinkers, explosive events and spicules the same phenomenon? Astron. Astrophys. 403, 731. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Madjarska, M.S., Doyle, J.G., Hochedez, J.-F., Theissen, A.: 2006, Macrospicules and blinkers as seen in shutterless EIT 304 Å. Astron. Astrophys. 452, L11. DOI. ADS. ADSCrossRefGoogle Scholar
  34. McIntosh, S.W., De Pontieu, B.: 2009a, High-speed transition region and coronal upflows in the quiet Sun. Astrophys. J. 707, 524. DOI. ADS. ADSCrossRefGoogle Scholar
  35. McIntosh, S.W., De Pontieu, B.: 2009b, Observing episodic coronal heating events rooted in chromospheric activity. Astrophys. J. Lett. 706, L80. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Nelson, C.J., Doyle, J.G.: 2013, Excitation of an outflow from the lower solar atmosphere and a co-temporal EUV transient brightening. Astron. Astrophys. 560, A31. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Patsourakos, S., Gouttebroze, P., Vourlidas, A.: 2007, The quiet Sun network at subarcsecond resolution: VAULT observations and radiative transfer modeling of cool loops. Astrophys. J. 664, 1214. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Pereira, T.M.D., De Pontieu, B., Carlsson, M., Hansteen, V., Tarbell, T.D., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Wülser, J.P., Martínez-Sykora, J., Kleint, L., Golub, L., McKillop, S., Reeves, K.K., Saar, S., Testa, P., Tian, H., Jaeggli, S., Kankelborg, C.: 2014, An interface region imaging spectrograph first view on solar spicules. Astrophys. J. Lett. 792, L15. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Peter, H.: 2001, On the nature of the transition region from the chromosphere to the corona of the Sun. Astron. Astrophys. 374, 1108. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Peter, H., Judge, P.G.: 1999, On the Doppler shifts of solar ultraviolet emission lines. Astrophys. J. 522, 1148. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Rouppe van der Voort, L., Leenaarts, J., de Pontieu, B., Carlsson, M., Vissers, G.: 2009, On-disk counterparts of type II spicules in the Ca II 854.2 nm and \(\mbox{H} \upalpha\) lines. Astrophys. J. 705, 272. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Rouppe van der Voort, L., De Pontieu, B., Pereira, T.M.D., Carlsson, M., Hansteen, V.: 2015, Heating signatures in the disk counterparts of solar spicules in interface region imaging spectrograph observations. Astrophys. J. Lett. 799, L3. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Rutten, R.J., Hammerschlag, R.H., Bettonvil, F.C.M., Sütterlin, P., de Wijn, A.G.: 2004, DOT tomography of the solar atmosphere. I. Telescope summary and program definition. Astron. Astrophys. 413, 1183. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Sasso, C., Andretta, V., Spadaro, D.: 2015, Modelling low-lying, cool solar loops with optically thick radiative losses. Astron. Astrophys. 583, A54. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Sasso, C., Andretta, V., Spadaro, D., Susino, R.: 2012, Solar low-lying cool loops and their contribution to the transition region EUV output. Astron. Astrophys. 537, A150. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Schmidt, H.U.: 1964, On the observable effects of magnetic energy storage and release connected with solar flares. NASA Spec. Publ. 50, 107. ADS. ADSGoogle Scholar
  48. Schmit, D.J., De Pontieu, B.: 2016, What is the source of quiet Sun transition region emission? Astrophys. J. 831, 158. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Schrijver, C.J., Title, A.M.: 2003, The magnetic connection between the solar photosphere and the corona. Astrophys. J. Lett. 597, L165. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J., Shine, R.A.: 1997, Sustaining the quiet photospheric network: The balance of flux emergence, fragmentation, merging, and cancellation. Astrophys. J. 487, 424. ADS. ADSCrossRefGoogle Scholar
  51. Tian, H., Tu, C.-Y., Xia, L.-D., He, J.-S.: 2008a, Radiance and Doppler shift distributions across the network of the quiet Sun. Astron. Astrophys. 489, 1297. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Tian, H., Marsch, E., Tu, C.-Y., Xia, L.-D., He, J.-S.: 2008b, Sizes of transition-region structures in coronal holes and in the quiet Sun. Astron. Astrophys. 482, 267. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Tian, H., Marsch, E., Tu, C., Curdt, W., He, J.: 2010, New views on the emission and structure of the solar transition region. New Astron. Rev. 54, 13. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Tian, H., DeLuca, E.E., Cranmer, S.R., De Pontieu, B., Peter, H., Martínez-Sykora, J., Golub, L., McKillop, S., Reeves, K.K., Miralles, M.P., McCauley, P., Saar, S., Testa, P., Weber, M., Murphy, N., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Kleint, L., Kankelborg, C., Jaeggli, S., Carlsson, M., Hansteen, V., McIntosh, S.W.: 2014, Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346(27), 1255711. DOI. ADS. CrossRefGoogle Scholar
  55. Tsiropoula, G.: 2000, Determination of the line-of-sight velocities in the dark penumbral fibrils. New Astron. Rev. 5, 1. DOI. ADS. CrossRefGoogle Scholar
  56. Tsiropoula, G., Tziotziou, K.: 2004, The role of chromospheric mottles in the mass balance and heating of the solar atmosphere. Astron. Astrophys. 424, 279. DOI. ADS. ADSCrossRefGoogle Scholar
  57. Tsiropoula, G., Tziotziou, K., Kontogiannis, I., Madjarska, M.S., Doyle, J.G., Suematsu, Y.: 2012, Solar fine-scale structures. I. Spicules and other small-scale, jet-like events at the chromospheric level: Observations and physical parameters. Space Sci. Rev. 169, 181. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the Hinode mission: An overview. Solar Phys. 249, 167. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Ugarte-Urra, I., Doyle, J.G., Nakariakov, V.M., Foley, C.R.: 2004, CDS wide slit time-series of EUV coronal bright points. Astron. Astrophys. 425, 1083. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Vourlidas, A., Sanchez Andrade-Nuño, B., Landi, E., Patsourakos, S., Teriaca, L., Schühle, U., Korendyke, C.M., Nestoras, I.: 2010, The structure and dynamics of the upper chromosphere and lower transition region as revealed by the subarcsecond VAULT observations. Solar Phys. 261, 53. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Young, P.R., Del Zanna, G., Mason, H.E., Dere, K.P., Landi, E., Landini, M., Doschek, G.A., Brown, C.M., Culhane, L., Harra, L.K., Watanabe, T., Hara, H.: 2007, EUV emission lines and diagnostics observed with Hinode/EIS. Publ. Astron. Soc. Japan 59, S857. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for Astronomy and Applied Mathematics (RCAAM)Academy of AthensAthensGreece
  2. 2.Institute for Astronomy, Astrophysics, Space Applications and Remote SensingNational Observatory of AthensPenteliGreece

Personalised recommendations