Solar Physics

, 293:39 | Cite as

Harmonics of Solar Radio Spikes at Metric Wavelengths

  • S. W. Feng
  • Y. Chen
  • C. Y. Li
  • B. Wang
  • Z. Wu
  • X. L. Kong
  • Q. F. Du
  • J. R. Zhang
  • G. Q. Zhao


This paper presents the latest observations from the newly built solar radio spectrograph at the Chashan Solar Observatory. On July 18, 2016, the spectrograph records a solar spike burst event, which has several episodes showing harmonic structures, with the second, third, and fourth harmonics. The lower harmonic radio spike emissions are observed later than the higher harmonic bands, and the temporal delay of the second (third) harmonic relative to the fourth harmonic is about 30 – 40 (10) ms. Based on the electron cyclotron maser emission mechanism, we analyze possible causes of the temporal delay and further infer relevant coronal parameters, such as the magnetic field strength and the electron density at the radio source.


Radio burst Dynamic spectrum Radio spike Electron cyclotron maser emission 



We thank Valentin Melnik for valuable suggestions made to improve the quality of this manuscript. The authors gratefully acknowledge the teams of RSTN and ORFEES for making their data available to us. This work was supported by grants NNSFC-CAS U1431103, and NNSFC 41331068, 11790303 (11790300), 11503014, 41504131, 11703017, NSF of Shandong Province (ZR201702100072, ZR2016AP13), and was supported by the Specialized Research Fund for the State Key Laboratories.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Benz, A.O.: 1986, Millisecond radio spikes. Solar Phys. 104, 99. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Benz, A.O., Guedel, M.: 1987, Harmonic emission and polarization of millisecond radio spikes. Solar Phys. 111, 175. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bingham, R., Speirs, D.C., Kellett, B.J., Vorgul, I., McConville, S.L., Cairns, R.A., Cross, A.W., Phelps, A.D.R., Ronald, K.: 2013, Laboratory astrophysics: investigation of planetary and astrophysical maser emission. Space Sci. Rev. 178, 695. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bouratzis, C., Hillaris, A., Alissandrakis, C.E., Preka-Papadema, P., Moussas, X., Caroubalos, C., Tsitsipis, P., Kontogeorgos, A.: 2015, Fine structure of metric Type IV radio bursts observed with the ARTEMIS-IV radio-spectrograph: association with flares and coronal mass ejections. Solar Phys. 290, 219. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Bouratzis, C., Hillaris, A., Alissandrakis, C.E., Preka-Papadema, P., Moussas, X., Caroubalos, C., Tsitsipis, P., Kontogeorgos, A.: 2016, High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts. Astron. Astrophys. 586, A29. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Chernov, G.P. (ed.): 2011, Fine Structure of Solar Radio Bursts, Astrophysics and Space Science Library 375. DOI. ADS. Google Scholar
  7. Cliver, E.W., White, S.M., Balasubramaniam, K.S.: 2011, The solar decimetric spike burst of 2006 December 6: possible evidence for field-aligned potential drops in post-eruption loops. Astrophys. J. 743, 145. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Dorovskyy, V.V., Melnik, V.N., Konovalenko, A.A., Bubnov, I.N., Gridin, A.A., Shevchuk, N.V., Rucker, H.O., Poedts, S., Panchenko, M.: 2015, Decameter U-burst harmonic pair from a high loop. Solar Phys. 290, 181. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Dory, R.A., Guest, G.E., Harris, E.G.: 1965, Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Lett. 14, 131. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Du, Q.-F., Chen, L., Zhao, Y.-C., Li, X., Zhou, Y., Zhang, J.-R., Yan, F.-B., Feng, S.-W., Li, C.-Y., Chen, Y.: 2017, A solar radio dynamic spectrograph with flexible temporal-spectral resolution. Res. Astron. Astrophys. 17, 098. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Ergun, R.E., Carlson, C.W., McFadden, J.P., Delory, G.T., Strangeway, R.J., Pritchett, P.L.: 2000, Electron-cyclotron maser driven by charged-particle acceleration from magnetic field-aligned electric fields. Astrophys. J. 538, 456. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Fleishman, G.D., Mel’nikov, V.F.: 1998, Millisecond solar radio spikes. Phys. Usp. 41, 1157. DOI. ADS. CrossRefGoogle Scholar
  13. Guedel, M.: 1990, Solar radio spikes – radiation at harmonics \(s = 2\mbox{--}6\). Astron. Astrophys. 239, L1. ADS. ADSGoogle Scholar
  14. Kong, X., Chen, Y., Feng, S., Du, G., Li, C., Koval, A., Vasanth, V., Wang, B., Guo, F., Li, G.: 2016, Observation of a metric Type N solar radio burst. Astrophys. J. 830, 37. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Krucker, S., Benz, A.O.: 1994, The frequency ratio of bands of microwave spikes during solar flares. Astron. Astrophys. 285, 1038. ADS. ADSGoogle Scholar
  16. Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Melnik, V.N., Shevchuk, N.V., Konovalenko, A.A., Rucker, H.O., Dorovskyy, V.V., Poedts, S., Lecacheux, A.: 2014, Solar decameter spikes. Solar Phys. 289, 1701. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Messmer, P., Benz, A.O., Monstein, C.: 1999, PHOENIX-2: a new broadband spectrometer for decimetric and microwave radio bursts first results. Solar Phys. 187, 335. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Morosan, D.E., Zucca, P., Bloomfield, D.S., Gallagher, P.T.: 2016, Conditions for electron-cyclotron maser emission in the solar corona. Astron. Astrophys. 589, L8. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Newkirk, G. Jr.: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Shevchuk, N.V., Melnik, V.N., Poedts, S., Dorovskyy, V.V., Magdalenic, J., Konovalenko, A.A., Brazhenko, A.I., Briand, C., Frantsuzenko, A.V., Rucker, H.O., Zarka, P.: 2016, The storm of decameter spikes during the event of 14 June 2012. Solar Phys. 291, 211. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Trievelpiece, A.W., Pechacek, R.E., Kapetanakos, C.A.: 1968, Trapping of a 0.5-MeV electron ring in a 15-kG pulsed magnetic mirror field. Phys. Rev. Lett. 21, 1436. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Wu, C.S.: 1985, Kinetic cyclotron and synchrotron maser instabilities – radio emission processes by direct amplification of radiation. Space Sci. Rev. 41, 215. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Wu, C.S., Lee, L.C.: 1979, A theory of the terrestrial kilometric radiation. Astrophys. J. 230, 621. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Wu, C.S., Wang, C.B., Yoon, P.H., Zheng, H.N., Wang, S.: 2002, Generation of Type III solar radio bursts in the low corona by direct amplification. Astrophys. J. 575, 1094. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Wu, C.S., Wang, C.B., Zhou, G.C., Wang, S., Yoon, P.H.: 2005, Altitude-dependent emission of Type III solar radio bursts. Astrophys. J. 621, 1129. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Xie, H., Madjarska, M.S., Li, B., Huang, Z., Xia, L., Wiegelmann, T., Fu, H., Mou, C.: 2017, The plasma parameters and geometry of cool and warm active region loops. Astrophys. J. 842, 38. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Zhao, G.Q., Feng, H.Q., Wu, D.J., Chen, L., Tang, J.F., Liu, Q.: 2016a, Cyclotron maser emission from power-law electrons with strong pitch-angle anisotropy. Astrophys. J. 822, 58. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Zhao, G.Q., Chu, Y.H., Feng, H.Q., Wu, D.J.: 2016b, The effect of electron holes on cyclotron maser emission driven by horseshoe distributions. Phys. Plasmas 23(11), 114505. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space SciencesShandong UniversityWeihaiChina
  2. 2.State Key Laboratory of Space WeatherChinese Academy of SciencesBeijingChina
  3. 3.School of Mechanical, Electrical & Information EngineeringShandong UniversityWeihaiChina
  4. 4.Institute of Space PhysicsLuoyang Normal UniversityLuoyangChina

Personalised recommendations