Skip to main content
Log in

Enhanced Acoustic Emission in Relation to the Acoustic Halo Surrounding Active Region 11429

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The use of acoustic holography in the high-frequency \(p\)-mode spectrum can resolve the source distributions of enhanced acoustic emissions within halo structures surrounding active regions. In doing so, statistical methods can then be applied to ascertain relationships with the magnetic field. This is the focus of this study. The mechanism responsible for the detected enhancement of acoustic sources around solar active regions has not yet been explained. Furthermore the relationship between the magnetic field and enhanced acoustic emission has not yet been comprehensively examined. We have used vector magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) to image the magnetic-field properties in the halo. We have studied the acoustic morphology of an active region, with a complex halo and “glories”, and we have linked some acoustic properties to the magnetic-field configuration. In particular, we find that acoustic sources are significantly enhanced in regions of intermediate field strength with inclinations no different from the distributions found in the quiet Sun. Additionally, we have identified a transition region between the active region and the halo, in which the acoustic-source power is hindered by inclined fields of intermediate field strength. Finally, we have compared the results of acoustic-emission maps, calculated from holography, and the commonly used local acoustic maps, finding that the two types of maps have similar properties with respect to the magnetic field but lack spatial correlation when examining the highest-powered regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Borrero, J.M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., Bogart, R.: 2011, VFISV: very fast inversion of the Stokes vector for the helioseismic and magnetic imager. Solar Phys. 273, 267. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C., Lindsey, C.: 1999, Helioseismic images of an active region complex. Astrophys. J. Lett. 513, L79. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C., Lindsey, C.: 2000a, Helioseismic holography of active-region subphotospheres – invited review. Solar Phys. 192, 285. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C., Lindsey, C.: 2000b, Phase-sensitive holography of solar activity. Solar Phys. 192, 307. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C., Lindsey, C.: 2001, Seismic imaging of the far hemisphere of the Sun. Astrophys. J. Lett. 560, L189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C., Labonte, B.J., Duvall, T.L. Jr.: 1990, The spatial distribution of p-mode absorption in active regions. Astrophys. J. 354, 372. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C., Lindsey, C., Fan, Y., Jefferies, S.M.: 1992, Local acoustic diagnostics of the solar interior. Astrophys. J. 392, 739. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brown, T.M., Bogdan, T.J., Lites, B.W., Thomas, J.H.: 1992, Localized sources of propagating acoustic waves in the solar photosphere. Astrophys. J. Lett. 394, L65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2006, Dispersion relations, rays and ray splitting in magnetohelioseismology. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 364, 333. DOI . ADS .

    Article  ADS  Google Scholar 

  • Centeno, R., Schou, J., Hayashi, K., Norton, A., Hoeksema, J.T., Liu, Y., Leka, K.D., Barnes, G.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: optimization of the spectral line inversion code. Solar Phys. 289, 3531. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chou, D.-Y., Liang, Z.-C., Yang, M.-H., Sun, M.-T.: 2009, Acoustic-power maps of solar active regions with direction filters and phase-velocity filters. Solar Phys. 255, 39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Donea, A., Hanson, C.: 2013, Enhanced sources of acoustic power surrounding AR 11429. J. Phys. Conf. Ser. 440(1), 012028. DOI . ADS .

    Article  ADS  Google Scholar 

  • Donea, A., Newington, M.: 2011, Stochastic seismic emission from acoustic glories in solar active regions. J. Phys. Conf. Ser. 271(1), 012004. DOI . ADS .

    Article  ADS  Google Scholar 

  • Donea, A.-C., Lindsey, C.: 2015, Sol. Phys., in preparation.

  • Donea, A.-C., Lindsey, C., Braun, D.C.: 2000, Stochastic seismic emission from acoustic glories and the quiet sun. Solar Phys. 192, 321.

    Article  ADS  Google Scholar 

  • Elmhamdi, A., Kordi, A.S., Al-Trabulsy, H.A., El-Nawawy, M., Ibrahim, A.A., Ben Nessib, N., Abdel-Sabour, M.A., Al-Mostafa, Z.A.: 2013, Observations and analysis of NOAA AR 11429 at KSU-astronomical observatory. New Astron. 23, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gary, G.A., Hagyard, M.J.: 1990, Transformation of vector magnetograms and the problems associated with the effects of perspective and the azimuthal ambiguity. Solar Phys. 126, 21. ADS .

    Article  ADS  Google Scholar 

  • Hanasoge, S.M.: 2008, Seismic halos around active regions: a magnetohydrodynamic theory. Astrophys. J. 680, 1457.

    Article  ADS  Google Scholar 

  • Hanasoge, S.M.: 2009, A wave scattering theory of solar seismic power haloes. Astron. Astrophys. 503, 595. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hindman, B.W., Brown, T.M.: 1998, Acoustic power maps of solar active regions. Astrophys. J. 504, 1029. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D., Barnes, G., Turmon, M.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: overview and performance. Solar Phys. 289, 3483. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jacoutot, L., Kosovichev, A.G., Wray, A.A., Mansour, N.N.: 2008, Numerical simulation of excitation of solar oscillation modes for different turbulent models. Astrophys. J. 682, 1386. DOI . ADS .

    Article  ADS  Google Scholar 

  • Khomenko, E., Collados, M.: 2009, Sunspot seismic halos generated by fast mhd wave refraction. Astron. Astrophys. 506, L5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuridze, D., Zaqarashvili, T.V., Shergelashvili, B.M., Poedts, S.: 2008, Acoustic oscillations in a field-free cavity under solar small-scale bipolar magnetic canopy. Ann. Geophys. 26, 2983. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G., Crouch, A.D., Metcalf, T.R., Gary, G.A., Jing, J., Liu, Y.: 2009, Resolving the 180 degree ambiguity in solar vector magnetic field data: evaluating the effects of noise, spatial resolution, and method assumptions. Solar Phys. 260, 83. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D.C.: 1997, Helioseismic holography. Astrophys. J. 485, 895.

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D.C.: 1998, The acoustic moat and thermal transport in the neighborhoods of sunspots. Astrophys. J. Lett. 499, L99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D.C.: 2000, Basic principles of solar acoustic holography – invited review. Solar Phys. 192, 261. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D.C.: 2005, The acoustic showerglass. I. Seismic diagnostics of photospheric magnetic fields. Astrophys. J. 620, 1107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Donea, A.-C.: 2008, Mechanics of seismic emission from solar flares. Solar Phys. 251, 627. DOI . ADS .

    Article  ADS  Google Scholar 

  • Metcalf, T.R.: 1994, Resolving the 180-degree ambiguity in vector magnetic field measurements: the ‘minimum’ energy solution. Solar Phys. 155, 235. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muglach, K., Hofmann, A., Staude, J.: 2005, Dynamics of solar active regions. II. Oscillations observed with MDI and their relation to the magnetic field topology. Astron. Astrophys. 437, 1055. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rajaguru, S.P., Couvidat, S., Sun, X., Hayashi, K., Schunker, H.: 2013, Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO. Solar Phys. 287, 107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rijs, C., Moradi, H., Przybylski, D., Cally, P.S.: 2015, MHD wave refraction and the acoustic halo effect around solar active regions: a 3D study. Astrophys. J. 801, 27. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schunker, H., Braun, D.C.: 2011, Newly identified properties of surface acoustic power. Solar Phys. 268, 349. DOI . ADS .

    Article  ADS  Google Scholar 

  • Toner, C.G., Labonte, B.J.: 1993, Direct mapping of solar acoustic power. Astrophys. J. 415, 847. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkov, S., Shelyag, S., Fedun, V., Erdélyi, R., Thompson, M.J.: 2013, Photospheric high-frequency acoustic power excess in sunspot umbra: signature of magneto-acoustic modes. Ann. Geophys. 31, 1357. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The data used here are courtesy of NASA/SDO and the HMI science team. Data analysis was performed on the Monash University SunGrid. Research performed by Chris S. Hanson at NWRA was funded by the Monash University Institute of Graduate Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris S. Hanson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, C.S., Donea, A.C. & Leka, K.D. Enhanced Acoustic Emission in Relation to the Acoustic Halo Surrounding Active Region 11429. Sol Phys 290, 2171–2187 (2015). https://doi.org/10.1007/s11207-015-0743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0743-7

Keywords

Navigation