Multidimensional Poverty Index with Dependence-Based Weights

Abstract

An important aspect of the multidimensional perception of poverty phenomenon is the dependence among the underlying indicators. However, the commonly applied approaches to multidimensional poverty assessment do not capture this interdependence. In this paper we propose a new multidimensional poverty index accounting for the dependence and innovate over the weighting approach. The weighting method proposed here incorporates the copula-based rank dependence among well-being dimensions and contains necessary normative parameters. In particular, the latter includes the elasticity of substitution among dimensions and the belief-adjusting parameter, which specifies the direction of relation between the dependence and the weights. The results of poverty evaluation in the selected European countries suggest that multidimensional poverty is driven not only by the individual shortfalls, but also by the degree of interdependence among well-being indicators. Moreover, multidimensional poverty is relatively higher, if dimensional weights are in direct proportion to the dependence compared to the cases of inverse relation and equal weighting. Considering the novel weighting approach, this paper contributes to the literature on composite indicators by suggesting a channel to enclose the dependence structure in the multidimensional poverty index.

This is a preview of subscription content, log in to check access.

Fig. 1

Source: authors’ calculations based on the EU-SILC referred to the years 2006, 2010 and 2015

Notes

  1. 1.

    The most recent version of the authors’ working paper titled “Endogenous weights and multidimensional poverty: A cautionary tale” can be retrieved from https://www.isid.ac.in/~epu/acegd2019/papers/IndranilDutta.pdf.

References

  1. Aaberge, R., & Brandolini, A. (2015). Multidimensional poverty and inequality. In A. B. Atkinson & F. Bourguignon (Eds.), Handbook of income distribution (pp. 142–216). Oxford: North-Holland.

    Google Scholar 

  2. Alkire, S., & Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of Public Economics, 95, 476–487.

    Article  Google Scholar 

  3. Alkire, S., & Jahan, S. (2018). The new global MPI 2018: Aligning with the Sustainable Development Goals. HDRO Occasional Paper, United Nations Development Programme (UNDP).

  4. Arcagni, A., di Belgiojoso, E. B., Fattore, M., & Rimoldi, S. M. L. (2019). Multidimensional analysis of deprivation and fragility patterns of migrants in Lombardy, using partially ordered sets and self-organizing maps. Social Indicators Research, 141(2), 551–579.

    Article  Google Scholar 

  5. Atkinson, A., & Bourguignon, F. (1982). The comparison of multidimensional distributions on economic status. Review of Economic Studies, 49, 183–201.

    Article  Google Scholar 

  6. Atkinson, A., & Lugo, M. A. (2010). Growth, poverty and distribution in Tanzania. Working Paper 10/0831. International Growth Centre, United Kingdom.

  7. Blumentritt, T., & Schmid, F. (2014). Nonparametric estimation of copula-based measures of multivariate association from contingency tables. Journal of Statistical Computation and Simulation, 84(4), 781–797.

    Article  Google Scholar 

  8. Bossert, W., Chakravarty, S. R., & D’Ambrosio, C. (2013). Multidimensional poverty and material deprivation with discrete data. Review of Income and Wealth, 59(1), 29–43.

    Article  Google Scholar 

  9. Bourguignon, F., & Chakravarty, S. R. (2003). The measurement of multidimensional poverty. The Journal of Economic Inequality, 1(1), 25–49.

    Article  Google Scholar 

  10. Chakravarty, S. R. (2009). Inequality, polarization and poverty. Advances in distributional analysis. New York: Springer.

    Google Scholar 

  11. Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. Chichester: Wiley.

    Google Scholar 

  12. Ciommi, M., Gigliarano, C., Emili, A., Taralli, S., & Chelli, F. M. (2017). A new class of composite indicators for measuring well-being at the local level: An application to the equitable and sustainable well-being (BES) of the Italian provinces. Ecological Indicators, 76, 281–296.

    Article  Google Scholar 

  13. Czado, C., Schepsmeier, U., & Min, A. (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229–255.

    Article  Google Scholar 

  14. Decancq, K. (2014). Copula-based measurement of dependence between dimensions of well-being. Oxford Economic Papers, 66(3), 681–701.

    Article  Google Scholar 

  15. Decancq, K., & Lugo, M. A. (2012). Inequality of well-being: a multidimensional approach. Economica, 79(316), 721–746.

    Google Scholar 

  16. Decancq, K., & Lugo, M. A. (2013). Weights in multidimensional indices of well-being: an overview. Econometric Reviews, 32(1), 7–34.

    Article  Google Scholar 

  17. Decancq, K., Ootegem, L. V., & Verhofstadt, E. (2013). What if we voted on the weights of a multidimensional well-being index? An illustration with Flemish data. Fiscal Studies, 34(3), 315–332.

    Article  Google Scholar 

  18. Deheuvels, P. (2009). A multivariate Bahadur–Kiefer representation for the empirical copula process. Journal of Mathematical Sciences, 164(4), 382–398.

    Article  Google Scholar 

  19. Deutsch, J., & Silber, J. (2005). Measuring multidimensional poverty: An empirical comparison of various approaches. Review of Income and Wealth, 51(1), 145–174.

    Article  Google Scholar 

  20. Duclos, J. Y., Sahn, D. E., & Younger, S. D. (2006). Robust multidimensional poverty comparisons. The Economic Journal, 116(514), 943–968.

    Article  Google Scholar 

  21. Fattore, M. (2016). Partially ordered sets and the measurement of multidimensional ordinal deprivation. Social Indicators Research, 128(2), 835–858.

    Article  Google Scholar 

  22. Ferreira, F. H. G., & Lugo, M. A. (2013). Multidimensional poverty analysis: Looking for a middle ground. The World Bank Research Observer, 28(2), 220–235.

    Article  Google Scholar 

  23. Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2019). On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Social Indicators Research, 141(1), 61–94.

    Article  Google Scholar 

  24. Gudendorf, G., & Segers, J. (2010). Extreme-value copulas. In P. Jaworski, F. Durante, W. Härdle, & T. Rychlik (Eds.), Copula theory and its applications (pp. 127–145). Berlin: Springer.

    Google Scholar 

  25. Guio, A. C., Fusco, A., & Marlier, E. (2009). A European Union approach to material deprivation using EU-SILC and Eurobarometer data. IRISS Working Paper 2009-19. CEPS/INSTEAD, Differdange, Luxembourg.

  26. Joe, H. (2015). Dependence modeling with copulas. New York: CRS Press.

    Google Scholar 

  27. Maasoumi, E., & Lugo, M. A. (2008). The information basis of multivariate poverty assessments. In N. Kakwani & J. Silber (Eds.), Quantitative approaches to multidimensional poverty measurement (pp. 1–29). London: Palgrave Macmillan.

    Google Scholar 

  28. Maggino, F. (2017). Dealing with syntheses in a system of indicators. In F. Maggino (Ed.), Complexity in society: From indicators construction to their synthesis (pp. 115–137). Cham: Springer.

    Google Scholar 

  29. Maricic, M., Egea, J. A., & Jeremic, V. (2019). A hybrid enhanced scatter search–composite I-distance indicator (eSS-CIDI) optimization approach for determining weights within composite indicators. Social Indicators Research, 144(2), 497–537.

    Article  Google Scholar 

  30. Mitra, S., & Brucker, D. L. (2017). Income poverty and multiple deprivations in a high-income country: The case of the United States. Social Science Quarterly, 98(1), 37–56.

    Article  Google Scholar 

  31. Montenegro, C. E., & Patrinos, H. A. (2014). Comparable estimates of returns to schooling around the world. Policy Research Working Paper 7020. Washington, DC: World Bank Group.

  32. Nelsen, R. B. (2006). An introduction to copulas. New York: Springer.

    Google Scholar 

  33. Nilsson, T. (2010). Health, wealth and wisdom: Exploring multidimensional inequality in a developing country. Social Indicators Research, 95(2), 299–323.

    Article  Google Scholar 

  34. Oreopoulos, P., & Salvanes, K. G. (2011). Priceless: The nonpecuniary benefits of schooling. Journal of Economic Perspectives, 25(1), 159–184.

    Article  Google Scholar 

  35. Paruolo, P., Saisana, M., & Saltelli, A. (2013). Ratings and rankings: Voodoo or science? Journal of the Royal Statistical Society, 176(3), 609–634.

    Article  Google Scholar 

  36. Pèrez, A., & Prieto-Alaiz, M. (2016). Measuring the dependence among dimensions of welfare: A study based on Spearman’s footrule and Gini’s gamma. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 24(1), 87–105.

    Article  Google Scholar 

  37. Pinar, M. (2019). Multidimensional well-being and inequality across the European regions with alternative interactions between the well-being dimensions. Social Indicators Research, 144(1), 31–72.

    Article  Google Scholar 

  38. Saisana, M., & Tarantola, S. (2002). State-of-the-art report on current methodologies and practices for composite indicator development. Institute for the Protection and Security of the Citizen (Joint Research Centre). Retrieved from https://publications.europa.eu/en/publication-detail/-/publication/9253d939-b47b-4428-b792-619e6b6c8645. Accessed 22 June 2019.

  39. Santos, M. E., & Villatoro, P. (2018). A multidimensional poverty index for Latin America. Review of Income and Wealth, 64(1), 52–82.

    Article  Google Scholar 

  40. Schlossarek, M., Syrovátka, M., & Vencálek, O. (2019). The importance of variables in composite indices: A contribution to the methodology and application to development indices. Social Indicators Research, 1–36.

  41. Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris, 8, 229–231.

    Google Scholar 

  42. Somarriba, N., & Pena, B. (2009). Synthetic indicators of quality of life in Europe. Social Indicators Research, 94(1), 115–133.

    Article  Google Scholar 

  43. Stiglitz, J. E., Sen, A., & Fitoussi, J. P. (2009). Report by the commission on the measurement of economic performance and social progress. www.stiglitz-sen-fitoussi.fr.

  44. Terzi, S., & Moroni, L. (2020). Local concordance and some applications. Social Indicators Research.

  45. Tsui, K. Y. (2002). Multidimensional poverty indices. Social Choice and Welfare, 19(1), 69–93.

    Article  Google Scholar 

  46. UNDP. (2017). Human development report: Human development for everyone. New York: UN.

  47. UNESCO. (2012). International standard classification of education ISCED 2011. Montreal: UNESCO Institute for Statistics.

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the two Reviewers for their careful and insightful comments to the earlier version of our manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kateryna Tkach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

see Tables 7, 8 and 9.

Table 7 Tests of rank dependence significance estimated between income-education pair of dimensions, 2015
Table 8 Tests of rank dependence significance estimated between income-health pair of dimensions, 2015
Table 9 Tests of rank dependence significance estimated between education-health pair of dimensions, 2015

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tkach, K., Gigliarano, C. Multidimensional Poverty Index with Dependence-Based Weights. Soc Indic Res (2020). https://doi.org/10.1007/s11205-020-02412-w

Download citation

Keywords

  • Multidimensional poverty index
  • Dependence-based weighting
  • Copula function
  • Copula-based rank dependence