How's Life in Your Region? Measuring Regional Material Living Conditions, Quality of Life and Subjective Well-Being in OECD Countries Using a Robust, Conditional Benefit-of-the-Doubt Model

Abstract

This paper measures and analyses well-being in the 349 regions in OECD countries. It is argued that the multidimensional nature of well-being and the disparate policy priorities of nations/regions calls for a reconciliatory performance evaluation framework, for which this paper advocates the use of Benefit-of-the-Doubt (BoD) weighting. In particular, using the BoD-model, three multidimensional measures of regional well-being are computed: a material condition measure, a quality of life index and a subjective life satisfaction measure. To account for the presence of certain exogenous conditions in the regional policy environments, the conditional robust order-m version of the BoD-model is applied. Results show considerable between- and within-country disparity in regional performances across the three domains of well-being. Countries such as Australia, Canada, Norway and Iceland show consistently high levels of regional well-being. Consistently low performance levels are observed for Chile, Turkey and Poland.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    For theoretical studies exploring the issue of measuring and/or comparing well-being using welfare-theoretic foundations, we refer the interested reader to Nussbaum and Sen (1993), Sen (1993, 1998), Diener (2002, 2006), Diener and Suh (1997), Costanza et al. (2009), D’Acci (2011), Boarini and D'Ercole (2013) and Robeyns (2005).

  2. 2.

    Further debate on CIs is available in the OECD-JRC (2008) Handbook on constructing composite indicators (see also Saltelli 2007).

  3. 3.

    Note, however, that alternative ways of transforming these sub-indicators are possible to obtain indicator data with higher (lower) data values showing good (bad) performances. For instance, as pointed out by an anonymous referee, opting for the complement of the unemployment rate would be an equally valid way to 'correct the sign' of this variable.

  4. 4.

    As an alternative to transforming the data (e.g., by taking the inverse) so that for all sub-indicators it holds that higher values represent better performances (as transformations might impact the results, see e.g. Thanassoulis et al. 2008), one could also use the directional distance version of the BoD-model of Zanella et al. (2015), which allows to treat both desirable and undesirable indicators in the construction of CIs. An interesting feature of this directional distance version of the BoD-model is that it does not require a transformation of the undesirable sub-indicators in the computations of the CIs. Nevertheless, while the directional distance version of the BoD-model of Zanella et al. (2015) solves the issue of subjectivity in the transformation/normalization of the sub-indicators, it does involve some subjectivity in the choice of the direction vector which specifies the direction in which the improvements in the desirable and undesirable indicators should be realized. Still, as topic for further research, it would be interesting to re-perform the analysis with the conditional robust order-m directional distance version of the BoD-model of Zanella et al. (2015) (see, e.g., Rogge et al. 2017 for a recent application of this model).

  5. 5.

    The term ‘importance weights’ refers to the product of the original country performance value of the sub-indicator \({y}_{r,i}\) and the assigned BoD-weight \({w}_{r,i}\), in DEA/BoD literature referred to as virtual factors or pie shares (pure \({w}_{r,i}\)’s define trade-offs rather than true importance weights, see e.g. Becker et al. 2017). As discussed by Cherchye, Moesen, Rogge and Van Puyenbroeck, the conceptual interpretation of the virtual factors is straightforward with each pie share (\({w}_{r,i}\) x \({y}_{r,i}\)) indicating how much each indicator contributes to the overall composite indicator of region r.

  6. 6.

    In view of the pie share interpretation, discussed above, restrictions on sub-indicator shares allow for an easy and natural representation of prior information about the importance of the CI’s components. As noted by Cherchye et al. (2007), such pie share restrictions may be especially attractive in view of the fact that expert opinion is often collected by a ‘budget allocation’ approach, in which experts are asked to distribute (100) points over the different dimensions to indicate relative importance.

  7. 7.

    Though, practical experience teaches that strong consent, even between experts thoroughly acquainted with the object of study, is unlikely to come about on this matter.

  8. 8.

    As a robustness check, the BoD-estimations were also performed with lower weight bound values set equal to 5%. Overall, this implied only minor differences in the resulting CIs.

  9. 9.

    As to the choice of the parameter \(m\), a sensitivity analysis for different m-values pointed out that use of \(m\) = 40 is warranted.

  10. 10.

    For more technical details on the conditional order-m BoD-model, the interested reader is referred to Daraio and Simar (2005, 2007), Bădin et al. (2010) and Verschelde and Rogge (2012).

  11. 11.

    For a more comprehensive discussion of the visualisation procedure, see Daraio and Simar (2007) and Badin, Daraio and Simar (2010). For a more detailed explanation of the unconditional and the conditional order-m method and a discussion of its attractive statistical properties (which carry over to our setting), we refer to the relevant methodological papers (see also Jeong et al. 2010).

  12. 12.

    The partial regression plots are generated from a non-parametric regression analysis in which the ratio \({CI}_{r}^{m}/{CI}_{r}^{m,z}\) (the ratio of the robust, unconditional CI-score and the robust, conditional CI-score) is regressed on the regional background conditions. Note that this method slightly deviates from the methodology suggested by Daraio and Simar (2005, 2007) to non-parametrically regress the ratio of \({CI}_{r}^{m,z}/{CI}_{r}^{m}\) on the exogenous background variables. The reason for using the inverse ratio is that this simplifies the interpretation of the estimated relationships. In particular, whereas the Daraio–Simar method requires one to estimate positive (negative) regression coefficients as negative (positive) associations between background conditions and the composite performance scores, the use of the inverse ratio enables one to interpret estimated positive (negative) regression coefficients as positive (negative) associations. (for more technical specificities, the interested reader is referred to Daraio and Simar 2007).

  13. 13.

    As an alternative procedure to derive country-level well-being measures, one could also opt to aggregate regional well-being CI-scores using the aggregation procedure after Färe and Zelenyuk (2003) presented recently in the BoD-setting by Rogge (2018).

References

  1. Andrews, F. (1983). Population issues and social indicators of well-being. Population and Environment,6(4), 210–230.

    Google Scholar 

  2. Avendano, M., & Kawachi, I. (2014). Why Do Americans have shorter life expectancy and worse health than do people in other high-income countries? Annual Review of Public Health,35(1), 307–325.

    Google Scholar 

  3. Bădin, L., Daraio, C., & Simar, L. (2010). Optimal bandwidth selection for conditional efficiency measures: A data-driven approach. European Journal of Operational Research,201(2), 633–640.

    Google Scholar 

  4. Balestra, C., Boarini, R., & Tosetto, E. (2018). What matters most to people? Evidence from the OECD better life index users’ responses. Social Indicators Research,136(3), 907–930.

    Google Scholar 

  5. Barro, R. (2000). Inequality and growth in a panel of countries. Journal of Economic Growth,5(1), 5–32.

    Google Scholar 

  6. Becker, W., Saisana, M., Paruolo, P., & Vandecasteele, I. (2017). Weights and importance in composite indicators: Closing the gap. Ecological Indicators,80, 12–22.

    Google Scholar 

  7. Blanchflower, D. G., & Oswald, A. J. (2008). Is well-being U-shaped over the life cycle? Social Science New Medicine,66, 1733–1749.

    Google Scholar 

  8. Boarini, R., & D'Ercole, M. (2013). Going beyond GDP: An OECD perspective. Fiscal Studies,34(3), 289–314.

    Google Scholar 

  9. Carone, G., Costello, D., Mourre, G., Przywara, B., & Salomaki, A. (2005). The economic impact of ageing populations in the EU25 Member States. In IDEASworkingpaperseriesfromRePEc.

  10. Cazals, C., Florens, J. P., & Simar, L. (2002). Nonparametric frontier estimation: A robust approach. Journal of Econometrics,106(1), 1–25.

    Google Scholar 

  11. Chakravarty, S. R. (2017). Analyzing multidimensional well-being: A quantitative approach. Hoboken, NJ: Wiley.

    Google Scholar 

  12. Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research,2(6), 429–444.

    Google Scholar 

  13. Cherchye, L., Moesen, W., Rogge, N., & Van Puyenbroeck, T. (2007). An Introduction to "Benefit of the Doubt" Composite Indicators. Social Indicators Research,82(1), 111–145.

    Google Scholar 

  14. Chowdhury, S., & Squire, L. (2006). Setting weights for aggregate indices: An application to the commitment to development index and human development index. The Journal of Development Studies,42(5), 761–771.

    Google Scholar 

  15. Costanza, R., Hart, M., Posner, S., & Talberth, J. (2009). Beyond GDP: The need for new measures of progress. In: Pardeepaperno.4, Boston, MA: Pardee Center for the Study of the Longer-Range Future

  16. D’Acci, L. (2011). Measuring well-being and progress. Social Indicators Research,104(47), 65.

    Google Scholar 

  17. Daraio, C., & Simar, L. (2005). Introducing environmental variables in nonparametric frontier models: A probabilistic approach. Journal of Productivity Analysis,24(1), 93–121.

    Google Scholar 

  18. Daraio, C., & Simar, L. (2007). Advanced robust and nonparametric methods in efficiency analysis: Methodology and applications, Studies in productivity and efficiency. Series: Springer.

    Google Scholar 

  19. Decancq, K. (2017). Measuring multidimensional inequality in the OECD member countries with a distribution-sensitive Better Life Index. Social Indicators Research,131(3), 1057–1086.

    Google Scholar 

  20. Decancq, K., & Lugo, M. A. (2013). Weights in multidimensional indices of wellbeing: An overview. Econometric Reviews,32(1), 7–34.

    Google Scholar 

  21. Diener, E. (2002). Will money increase subjective well-being? Social Indicators Research,57, 119–169.

    Google Scholar 

  22. Diener, E. (2006). Guidelines for national indicators of subjective well-being and Ill-being. Applied Research in Quality of Life,1(2), 151–157.

    Google Scholar 

  23. Diener, E., & Suh, E. M. (1997). Measuring quality of life: Economic, social and subjective indicators. Social Indicators Research,40(1–2), 189–216.

    Google Scholar 

  24. Diener, E., & Suh, E. M. (1999). National differences in subjective well-being. In D. Kahneman, E. Diener, & N. Schwarz (Eds.), Well-being: The foundations of hedonic psychology (pp. 434–450). New York: Russell Sage Foundation.

    Google Scholar 

  25. Diener, E., Suh, E., Lucas, R., Smith, H., & Eisenberg, N. (1999). Subjective well-being: Three decades of progress. Psychological Bulletin,125(2), 276–302.

    Google Scholar 

  26. Diener, E., Sandvik, E., Seidlitz, L., & Diener, M. (1993). The relationship between income and subjective well-being: Relative or absolute? Social Indicators Research,28(3), 195–223.

    Google Scholar 

  27. do Carvalhal Monteiro, R. L., Pereira, V., & Costa, H. G. (2019). Analysis of the Better Life Index trough a cluster algorithm. Social Indicators Research,142(2), 477–506.

    Google Scholar 

  28. Easterlin, R. (2001). Subjective well-being and economic analysis: A brief introduction. Journal of Economic Behavior and Organization,45, 225–226.

    Google Scholar 

  29. Färe, R., & Zelenyuk, V. (2003). On aggregate Farrell efficiencies. European Journal of Operational Research,146(3), 615–620.

    Google Scholar 

  30. Fleurbaey, M. (2009). Beyond GDP: The quest for a measure of social welfare. Journal of Economic literature,47(4), 1029–1075.

    Google Scholar 

  31. Fusco, E., Vidoli, F., & Rogge, N. (2020). Spatial directional robust benefit of the doubt approach in presence of undesirable output: An application to Italian waste sector. Omega. Forthcoming.

  32. Grasl, T. (2016). Demographic Structure and Macroeconomic Trends. In CESifoworkingpaperseries (Vol. 5872). CESifo Group Munich.

  33. Huppert, F. (2009). Psychological well-being: Evidence regarding its causes and consequences. Applied Psychology-Health And Well Being,1(2), 137–164.

    Google Scholar 

  34. Jeong, S. O., Park, B. U., & Simar, L. (2010). Nonparametric conditional efficiency measures: Asymptotic properties. Annals of Operations Research,173(1), 105–122.

    Google Scholar 

  35. Keeley, B. (2015). Income inequality: The gap between rich and poor. Paris: OECD Publishing.

    Google Scholar 

  36. Lorenz, J., Brauer, C., & Lorenz, D. (2017). Rank-optimal weighting or “How to be best in the OECD Better Life Index?”. Social Indicators Research,134(1), 75–92.

    Google Scholar 

  37. Marković, M., Zdravković, S., Mitrović, M., & Radojičić, A. (2016). An iterative multivariate post hoc I-distance approach in evaluating OECD Better Life Index. Social Indicators Research,126(1), 1–19.

    Google Scholar 

  38. Mayer, S. E., & Jencks, C. (1989). Poverty and the distribution of material hardship. Journal of Human Resources,24, 88–114.

    Google Scholar 

  39. Mehdi, T. (2019). Stochastic dominance approach to OECD’s Better Life Index. Social Indicators Research,143(3), 917–954.

    Google Scholar 

  40. Mizobuchi, H. (2014). Measuring world better life frontier: a composite indicator for OECD better life index. Social Indicators Research,118(3), 987–1007.

    Google Scholar 

  41. Mizobuchi, H. (2017). Incorporating sustainability concerns in the Better Life Index: Application of corrected convex non-parametric least squares method. Social Indicators Research,131(3), 947–971.

    Google Scholar 

  42. Nussbaum, M., & Sen, A. (Eds.). (1993). The quality of life. Oxford: Oxford University Press.

    Google Scholar 

  43. OECD. (2013a). How's life? 2013: Measuring well-being. Paris: OECD Publishing.

    Google Scholar 

  44. OECD. (2013b). OECD framework for statistics on the distribution of household income, consumption and wealth. Paris: OECD Publishing.

    Google Scholar 

  45. OECD (2013c). Gender differences in well-being: Can women and men have it all? In: How'slife?2013:Measuringwell-being. OECD Publishing, Paris.

  46. OECD. (2013d). Better Life Index 2013: A user’s guide. Paris: OECD Publishing.

    Google Scholar 

  47. OECD. (2014). Better Life Index 2014: Definitions and Metadata. Paris: OECD Publishing.

    Google Scholar 

  48. OECD. (2015). How's Life? 2015: Measuring Well-being. Paris: OECD Publishing.

    Google Scholar 

  49. OECD. (2016). OECD Regions at a Glance 2016. Paris: OECD Publishing.

    Google Scholar 

  50. OECD. (2017). Migrationpolicydebates:Whobearsthecostofintegratingrefugees? OECD, No. 13 Jan 2017

  51. OECD-JRC. (2008). Handbook on constructing composite indicators: methodology and user guide. Paris: OECD Publishing.

    Google Scholar 

  52. Peiró-Palomino, J. (2019). Regional well-being in the OECD. The Journal of Economic Inequality,17(2), 195–218.

    Google Scholar 

  53. Ravallion, M. (2011). On multidimensional indices of poverty. Journal of Economic Inequality,9(2), 235–248.

    Google Scholar 

  54. Robeyns, I. (2005). The capability approach: a theoretical survey. Journal of Human Development,6(1), 93–117.

    Google Scholar 

  55. Rogge, N. (2018). On aggregating benefit of the doubt composite indicators. European Journal of Operational Research,264(1), 364–369.

    Google Scholar 

  56. Rogge, N., & Konttinen, E. (2018). Social Inclusion in the EU since the Enlargement: Progress or regress? Social Indicators Research,135(2), 563–584.

    Google Scholar 

  57. Rogge, N., De Jaeger, S., & Lavigne, C. (2017). Waste Performance of NUTS 2-regions in the EU: A conditional directional distance benefit-of-the-doubt model. Ecological Economics,139, 19–32.

    Google Scholar 

  58. Rogge, N., & Self, R. (2019). Measuring regional social inclusion performances in the EU: Looking for unity in diversity. Journal of European Social Policy,29(3), 325–344.

    Google Scholar 

  59. Saltelli, A. (2007). Composite indicators between analysis and advocacy. Social Indicators Research,81(1), 65–77.

    Google Scholar 

  60. Sen, A. (1993). Capability and well-being. In M. C. Nussbaum & A. Sen (Eds.), The quality of life. Oxford: United Nations University, Oxford University Press.

    Google Scholar 

  61. Sen, A. (1998). Development as freedom. Oxford: Oxford University Press.

    Google Scholar 

  62. Stiglitz, J., Sen, A., & Fitoussi, J. P. (2009). The measurement of economic performance and social progress revisited. In TechnicalReport.Commissiononthemeasurementofeconomicperformanceandsocialprogress, Paris.

  63. Thanassoulis, E., Portela, M. C., & Despic, O. (2008). Data envelopment analysis: The mathematical programming approach to efficiency analysis. In: Themeasurementofproductiveefficiencyandproductivitygrowth (pp. 251–420).

  64. Veenhoven, R. (1991). Is happiness relative? Social Indicators Research,24(1), 1–34.

    Google Scholar 

  65. Veenhoven, R. (1997). Advances in understanding happiness. Revue Québécoise de Psychologie,18(2), 29–74.

    Google Scholar 

  66. Veenhoven, R. (2000). The four qualities of life: Ordering concepts and measures of the good life. Journal of Happiness Studies,1(1), 1–39.

    Google Scholar 

  67. Webb, D., & Wills-Herrera, E. (Eds.). (2012). Subjective well-being and security (Vol. 46). New York: Springer.

    Google Scholar 

  68. Verbunt, P., & Rogge, N. (2018). Geometric composite indicators with compromise benefit-of-the-doubt weights. European Journal of Operational Research,264(1), 388–401.

    Google Scholar 

  69. Verschelde, M., & Rogge, N. (2012). An environment-adjusted evaluation of citizen satisfaction with local police effectiveness: Evidence from a conditional Data Envelopment Analysis approach. European Journal of Operational Research,223(1), 214–225.

    Google Scholar 

  70. Zanella, A., Camanho, A. S., & Dias, T. G. (2015). Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis. European Journal of Operational Research,245, 517–530.

    Google Scholar 

  71. Zhou, P., Ang, B. W., & Poh, K. L. (2007). A mathematical programming approach to constructing composite indicators. Ecological Economics,62(2), 291–297.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicky Rogge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The Non-robust Unconditional CIr, Robust Unconditional CIrm, and Robust Conditional CIrm,z: OECD Country Rank Changes

figurea
figureb

Appendix 2: The Non-robust Unconditional, Robust Unconditional and Robust Conditional BoD CI-Scores and Ranks: Regional Results for the OECD Countries

  Material conditions Quality of life Subjective well-being
Australia CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
New South Wales 0.8102 86 0.8734 92 0.8905 112 1.1435 9 1.0519 8 0.9509 77 0.9509 77 0.9658 81 0.9678 97
Victoria 0.8014 97 0.8590 103 0.8601 133 1.0984 13 1.0453 11 0.9651 41 0.9651 41 0.9804 43 0.9828 60
Queensland 0.8218 71 0.8849 79 0.8997 103 1.2053 5 1.1185 4 0.9479 86 0.9479 86 0.9635 86 0.9651 106
South Australia 0.8025 94 0.8655 100 0.8790 120 1.0755 17 1.0138 28 0.9506 78 0.9506 78 0.9667 78 0.9703 89
Western Australia 0.8779 27 0.9475 39 0.8871 116 1.1228 12 1.0055 54 0.9420 99 0.9420 99 0.9564 104 0.9446 173
Tasmania 0.7871 110 0.8478 112 0.8862 118 1.1567 9 1.0553 8 0.9648 43 0.9648 43 0.9854 32 0.9842 56
Northern Territory 0.8423 57 0.9211 57 0.9996 34 0.9183 235 0.8900 303 0.9882 10 0.9882 10 1.0013 15 1.0000 26
Australian Capital Territory 1.0000 1 1.1539 4 1.0459 7 1.4174 4 1.0649 7 0.9831 18 0.9831 18 1.0003 18 1.0010 13
Austria CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Burgenland 0.7655 129 0.8272 125 0.7961 190 0.9692 132 0.9122 286 0.9380 114 0.9380 114 0.9533 119 0.9557 142
Lower Austria 0.7909 108 0.8491 111 0.8904 114 0.9514 181 0.9544 221 0.9321 135 0.9321 135 0.9483 135 0.9505 158
Vienna 0.6938 185 0.7420 187 0.7634 209 0.9368 210 0.9486 237 0.9243 153 0.9243 153 0.9401 154 0.9492 164
Carinthia 0.7533 139 0.8091 140 0.8057 186 0.9488 185 0.9543 222 0.9447 94 0.9447 94 0.9609 94 0.9674 102
Styria 0.7709 123 0.8274 124 0.8382 151 1.0228 35 1.0376 16 0.9522 74 0.9522 74 0.9687 73 0.9736 78
Upper Austria 0.8120 86 0.8806 82 0.9019 102 0.9689 133 0.9695 180 0.9554 60 0.9554 60 0.9722 63 0.9716 85
Salzburg 0.8005 99 0.8798 84 0.9048 98 0.9724 125 0.9825 145 0.9479 87 0.9479 87 0.9628 92 0.9642 109
Tyrol 0.7977 101 0.8821 81 0.8984 106 0.9617 154 0.9673 185 0.9742 26 0.9742 26 0.9893 26 0.9928 45
Vorarlberg 0.8156 80 0.9075 70 0.8947 109 0.9779 110 1.0034 60 0.9329 133 0.9329 133 0.9474 138 0.9513 157
Belgium CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Brussels Capital Region 0.6327 242 0.6827 237 0.7369 234 0.9327 215 1.0026 66 0.9087 197 0.9087 197 0.9231 200 0.9402 188
Flemish Region 0.7522 140 0.8203 131 0.8691 128 0.9767 116 0.9964 106 0.9541 63 0.9541 63 0.9696 70 0.9712 86
Wallonia 0.6908 190 0.7493 179 0.7484 223 0.9272 220 0.9187 278 0.9087 197 0.9087 197 0.9223 203 0.9240 223
Canada CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Newfoundland and Labrador 0.8190 77 0.8898 76 0.8832 120 1.0423 27 1.0389 15 0.9847 15 0.9847 15 1.0150 8 1.0084 4
Prince Edward Island 0.7758 118 0.8439 114 0.8559 136 1.3021 5 1.1445 3 0.9526 72 0.9526 72 0.9842 36 0.9753 76
Nova Scotia 0.8028 94 0.8718 95 0.8722 125 1.0467 25 1.0148 26 0.9414 102 0.9414 102 0.9594 99 0.9624 111
New Brunswick 0.7984 100 0.8687 97 0.8656 130 1.0299 30 1.0143 28 0.9479 87 0.9479 87 0.9628 91 0.9676 101
Quebec 0.7505 141 0.8114 138 0.8238 170 1.0095 48 0.9994 96 0.9546 62 0.9546 62 0.9713 65 0.9744 77
Ontario 0.7649 131 0.8271 126 0.8358 154 1.0065 53 1.0033 62 0.9367 121 0.9367 121 0.9534 117 0.9555 146
Manitoba 0.7571 136 0.8187 132 0.8448 145 0.9240 225 0.9292 260 0.9745 25 0.9745 25 0.9918 22 0.9941 40
Saskatchewan 0.8377 59 0.9419 43 0.8652 131 0.9452 192 0.9408 244 0.9255 152 0.9255 152 0.9474 137 0.9269 217
Alberta 0.8541 39 0.9259 53 1.0000 24 0.9936 77 0.9995 95 0.9388 109 0.9388 109 0.9576 103 0.9560 141
British Columbia 0.7668 126 0.8340 119 0.8337 155 1.0534 24 1.0317 17 0.9793 20 0.9793 20 0.9961 20 0.9979 34
Chile CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Tarapacá 0.6472 226 0.6941 224 0.6512 292 0.8686 298 0.8594 318 0.8399 290 0.8399 290 0.8560 288 0.8410 320
Antofagasta 0.6005 264 0.6458 267 0.6600 285 0.8851 280 0.8912 301 0.8941 231 0.8941 231 0.9104 228 0.9060 261
Atacama 0.5946 268 0.6354 274 0.5990 327 0.8749 290 0.8613 316 0.8620 272 0.8620 272 0.8738 276 0.8643 305
Coquimbo 0.6166 256 0.6589 256 0.6896 264 0.8702 296 0.8716 311 0.9095 196 0.9095 196 0.9226 202 0.9329 204
Valparaíso 0.6151 257 0.6573 257 0.6859 267 0.9121 243 0.9111 289 0.8989 221 0.8989 221 0.9162 215 0.9262 220
O'Higgins 0.6319 243 0.6767 242 0.7168 246 0.8315 314 0.8497 322 0.8255 300 0.8255 300 0.8394 301 0.8714 300
Maule 0.6074 261 0.6511 263 0.7348 237 0.8299 315 0.9137 285 0.8021 316 0.8021 316 0.8277 310 0.8775 292
Bío-Bío 0.5610 300 0.5977 304 0.6741 281 0.8657 301 1.0147 27 0.8320 294 0.8320 294 0.8457 295 0.8720 299
Araucanía 0.6389 236 0.6844 233 0.7981 189 0.8451 312 1.0130 31 0.8408 288 0.8408 288 0.8538 289 0.9116 251
Los Lagos 0.6828 199 0.7349 194 0.9991 35 0.8831 283 0.9995 94 0.8776 250 0.8776 250 0.8903 251 0.9468 168
Aysén 0.7139 163 0.7687 162 0.7221 245 0.8477 311 0.8236 327 0.8956 229 0.8956 229 0.9285 187 0.9140 246
Magallanes y Antártica 0.6696 213 0.7587 171 0.6858 268 0.9633 147 0.8739 310 0.8670 263 0.8670 263 0.8971 246 0.8920 274
Santiago Metropolitan 0.6246 249 0.6694 247 0.6585 287 0.8832 282 0.8915 300 0.8773 251 0.8773 251 0.8923 249 0.8950 269
Czech Republic CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Prague 0.7764 116 0.8663 99 0.8287 161 0.9832 98 0.9490 236 0.9144 186 0.9144 186 0.9279 189 0.9324 205
Central Bohemian Region 0.7160 162 0.7640 166 0.7457 226 0.9651 144 0.9354 253 0.7992 321 0.7992 321 0.8126 320 0.8150 332
Southwest 0.7070 169 0.7563 172 0.7743 201 0.9761 121 0.9723 175 0.8698 260 0.8698 260 0.8823 263 0.8839 281
Northwest 0.6533 221 0.6948 223 0.6944 259 0.9023 261 0.9101 290 0.9017 212 0.9017 212 0.9141 219 0.9187 235
Northeast 0.6913 189 0.7388 189 0.7623 211 0.9625 150 0.9724 173 0.9171 178 0.9171 178 0.9298 182 0.9315 208
Southeast 0.6944 183 0.7435 185 0.7282 239 0.9680 136 0.9414 243 0.8991 219 0.8991 219 0.9116 225 0.9140 245
Central Moravia 0.6663 214 0.7131 214 0.7240 241 0.9534 177 0.9632 196 0.9235 158 0.9235 158 0.9358 165 0.9408 184
Moravia-Silesia 0.6460 227 0.6890 229 0.6793 274 0.9353 213 0.9375 250 0.8403 289 0.8403 289 0.8523 291 0.8529 312
Denmark CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Capital (DK) 0.7734 121 0.8250 128 0.8544 137 0.9885 84 0.9997 92 0.9869 12 0.9869 12 1.0037 14 1.0060 7
Zealand 0.7626 133 0.8181 133 0.8244 169 0.9767 115 0.9676 184 0.9614 46 0.9614 46 0.9787 47 0.9783 67
Southern Denmark 0.7487 144 0.7993 147 0.8331 156 0.9762 119 0.9937 114 0.9718 28 0.9718 28 0.9879 27 0.9874 51
Central Jutland 0.7594 134 0.8126 137 0.8429 146 0.9995 67 1.0098 41 0.9834 17 0.9834 17 0.9992 19 0.9995 29
Northern Jutland 0.7680 125 0.8218 130 0.8500 142 1.0015 61 0.9603 205 0.9877 11 0.9877 11 1.0050 11 0.9997 28
Estonia CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
North Estonia 0.7310 154 0.7803 156 0.8899 115 0.9762 120 1.0097 42 0.8735 257 0.8735 257 0.8853 259 0.9143 244
West Estonia 0.6725 210 0.7173 210 0.8143 176 0.9484 186 1.0153 25 0.8293 295 0.8293 295 0.8402 300 0.8670 301
Central Estonia 0.6809 202 0.7264 202 0.8255 165 0.8898 273 0.9624 198 0.8872 240 0.8872 240 0.8995 243 0.9282 214
Northeast Estonia 0.5719 291 0.6077 294 0.6797 273 0.9054 254 0.9324 257 0.7949 324 0.7949 324 0.8063 325 0.8316 326
Southern Estonia 0.6750 208 0.7225 205 0.8255 166 0.9365 211 0.9819 147 0.8481 283 0.8481 283 0.8597 284 0.8868 277
Finland CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Western Finland 0.7217 159 0.7696 161 0.7668 205 1.0272 31 1.0201 21 0.9608 48 0.9608 48 0.9782 49 0.9841 57
Southern Finland 0.7055 170 0.7554 173 0.7574 218 1.0157 41 1.0117 37 0.9582 52 0.9582 52 0.9766 53 0.9821 63
Eastern and Northern Finland 0.6886 194 0.7348 195 0.7265 240 1.0166 40 1.0280 19 0.9576 55 0.9576 55 0.9743 58 0.9775 68
France CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Ile de France 0.7033 174 0.7507 178 0.8318 159 1.0013 64 0.9975 104 0.9146 185 0.9146 185 0.9276 191 0.9298 212
Champagne-Ardenne 0.6579 217 0.7037 215 0.7067 250 0.9384 207 0.9458 240 0.8620 271 0.8620 271 0.8750 272 0.8813 286
Picardy 0.6522 222 0.6940 225 0.6931 260 0.9234 226 0.9324 258 0.9018 211 0.9018 211 0.9145 217 0.9203 231
Upper Normandy 0.6559 218 0.6991 220 0.7362 235 0.9546 174 0.9658 187 0.9007 213 0.9007 213 0.9130 220 0.9156 241
Centre (FR) 0.6879 195 0.7324 198 0.7589 217 0.9718 126 0.9534 227 0.8999 217 0.8999 217 0.9124 222 0.9143 243
Lower Normandy 0.7045 172 0.7546 174 0.7600 214 0.9815 103 1.0036 57 0.9168 179 0.9168 179 0.9290 186 0.9356 198
Burgundy 0.6821 200 0.7295 201 0.7230 244 0.9538 176 0.9619 201 0.9197 173 0.9197 173 0.9327 179 0.9356 199
Nord-Pas-de-Calais 0.6182 254 0.6603 253 0.6488 295 0.9153 239 0.9207 272 0.9286 145 0.9286 145 0.9409 150 0.9418 179
Lorraine 0.6535 220 0.6967 221 0.7007 253 0.9478 189 0.9510 234 0.9039 208 0.9039 208 0.9164 214 0.9235 224
Alsace 0.6895 193 0.7366 192 0.7655 206 0.9498 183 0.9520 231 0.9243 154 0.9243 154 0.9374 159 0.9392 191
Franche-Comté 0.6813 201 0.7249 203 0.7352 236 0.9846 93 0.9884 131 0.9313 137 0.9313 137 0.9440 143 0.9497 162
Pays de la Loire 0.7074 168 0.7529 177 0.7685 204 1.0043 59 1.0042 55 0.9256 151 0.9256 151 0.9383 157 0.9432 175
Brittany 0.7173 161 0.7681 163 0.8081 180 0.9992 68 0.9780 159 0.9259 150 0.9259 150 0.9402 153 0.9405 185
Poitou–Charentes 0.6850 197 0.7316 200 0.7412 230 0.9836 96 0.9884 130 0.9144 186 0.9144 186 0.9277 190 0.9341 201
Aquitaine 0.6927 188 0.7384 191 0.7589 216 1.0038 60 1.0037 56 0.9342 130 0.9342 130 0.9482 136 0.9518 156
Midi-Pyrénées 0.7011 176 0.7478 182 0.7544 219 1.0176 38 1.0124 33 0.9332 132 0.9332 132 0.9465 139 0.9529 155
Limousin 0.7100 166 0.7595 170 0.7474 224 0.9953 73 1.0074 48 0.9109 194 0.9109 194 0.9234 198 0.9228 225
Rhône-Alpes 0.7026 175 0.7477 183 0.7627 210 0.9942 76 0.9916 120 0.9474 90 0.9474 90 0.9611 93 0.9652 106
Auvergne 0.6957 181 0.7489 180 0.7457 227 0.9772 114 0.9937 115 0.9380 116 0.9380 116 0.9504 131 0.9573 130
Languedoc-Roussillon 0.6330 241 0.6761 243 0.6833 270 0.9874 90 0.9826 144 0.9162 181 0.9162 181 0.9295 184 0.9303 210
Provence-Alpes-Côte d'Azur 0.6854 196 0.7328 196 0.7233 243 0.9585 163 0.9724 174 0.9069 204 0.9069 204 0.9202 206 0.9221 229
Corsica 0.5542 305 0.5947 307 0.6042 325 0.9000 265 0.8954 298 0.9866 13 0.9866 13 1.0010 17 1.0017 11
Germany CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Baden-Württemberg 0.8547 38 0.9504 36 0.9461 79 0.9671 138 0.9515 232 0.9412 103 0.9412 103 0.9540 114 0.9564 137
Bavaria 0.8674 35 0.9866 23 1.0085 16 0.9764 118 0.9811 151 0.9420 100 0.9420 100 0.9555 108 0.9587 126
Berlin 0.7382 151 0.7844 155 0.8066 184 0.9624 151 0.9781 158 0.9326 134 0.9326 134 0.9451 142 0.9469 166
Brandenburg 0.7957 105 0.8517 110 0.8767 123 0.9755 122 0.9738 170 0.9055 207 0.9055 207 0.9173 213 0.9200 233
Bremen 0.7667 127 0.8258 127 0.9585 71 0.9391 205 0.9772 161 0.9412 103 0.9412 103 0.9549 110 0.9773 69
Hamburg 0.8246 70 0.8857 79 1.0065 18 0.9812 104 1.0072 49 0.9528 71 0.9528 71 0.9669 78 0.9891 48
Hesse 0.8095 89 0.8718 96 0.8980 107 0.9747 124 0.9749 168 0.9224 161 0.9224 161 0.9356 167 0.9387 192
Mecklenburg-Vorpommern 0.7483 145 0.8006 146 0.8245 167 1.0011 65 1.0004 74 0.9305 139 0.9305 139 0.9433 147 0.9500 160
Lower Saxony 0.8121 85 0.8791 88 0.8709 126 0.9716 127 0.9604 204 0.9372 118 0.9372 118 0.9499 133 0.9572 131
North Rhine-Westphalia 0.7760 117 0.8328 120 0.8374 152 0.9628 149 0.9527 228 0.9409 107 0.9409 107 0.9542 113 0.9608 119
Rhineland-Palatinate 0.8248 68 0.9048 71 0.8942 110 0.9677 137 0.9590 209 0.9401 108 0.9401 108 0.9534 118 0.9601 121
Saarland 0.7968 103 0.8660 100 0.9971 41 0.9607 156 1.0032 63 0.9238 156 0.9238 156 0.9372 160 0.9589 125
Saxony 0.8014 97 0.8562 106 0.8475 144 1.0111 45 1.0125 32 0.9280 146 0.9280 146 0.9405 151 0.9416 181
Saxony-Anhalt 0.7730 122 0.8291 123 0.8567 135 0.9839 95 0.9880 132 0.9302 143 0.9302 143 0.9426 148 0.9477 165
Schleswig–Holstein 0.8132 84 0.8764 89 0.8651 132 0.9688 134 0.9636 194 0.9581 53 0.9581 53 0.9714 64 0.9736 79
Thuringia 0.8064 90 0.8682 98 0.8995 105 1.0094 49 1.0058 52 0.9337 131 0.9337 131 0.9462 140 0.9547 148
Hungary CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Central Hungary 0.6403 234 0.6849 231 0.7069 249 0.9421 198 0.9538 225 0.8290 297 0.8290 297 0.8409 297 0.8421 318
Central Transdanubia 0.6265 245 0.6712 246 0.6924 261 0.9045 255 0.9137 284 0.8625 270 0.8625 270 0.8741 275 0.8763 293
Western Transdanubia 0.6404 233 0.6899 228 0.7113 247 0.9095 248 0.9188 277 0.8266 299 0.8266 299 0.8374 302 0.8398 321
Southern Transdanubia 0.5768 288 0.6160 288 0.8321 158 0.8771 289 0.9875 134 0.8647 267 0.8647 267 0.8766 268 0.9602 120
Northern Hungary 0.5461 311 0.5807 320 0.9976 40 0.8738 291 0.9998 91 0.8252 301 0.8252 301 0.8362 304 0.9672 103
Northern Great Plain 0.5524 307 0.5873 314 1.0000 24 0.8640 303 1.0000 78 0.8126 309 0.8126 309 0.8232 314 1.0000 15
Southern Great Plain 0.5802 284 0.6188 285 0.6279 310 0.8796 287 0.8762 308 0.8494 282 0.8494 282 0.8610 282 0.8628 307
Iceland CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Capital Region 0.8134 83 0.8726 94 0.9039 99 1.1314 11 1.0462 11 0.9764 24 0.9764 24 0.9901 25 0.9990 31
Other Regions 0.8151 82 0.8747 90 0.9286 90 1.5009 1 1.0000 78 0.9656 40 0.9656 40 0.9802 45 1.0000 15
Ireland CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Border, Midland and Western 0.6807 203 0.7327 197 1.0000 24 0.9478 188 1.0000 78 0.9662 39 0.9662 39 0.9799 46 1.0000 15
Southern and Eastern 0.6898 192 0.7364 193 1.0000 24 0.9598 160 1.0000 78 0.9705 29 0.9705 29 0.9844 35 1.0000 15
Israel CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Jerusalem District 0.5428 317 0.5815 319 0.8503 140 0.9151 240 1.0000 78 0.9439 96 0.9439 96 0.9599 98 1.0000 15
Northern District 0.5856 280 0.6268 278 0.9781 55 0.8872 278 1.0000 78 0.8564 278 0.8564 278 0.8832 261 1.0000 27
Haifa District 0.6938 186 0.7421 186 0.7738 202 0.9208 232 0.9281 262 0.8970 226 0.8970 226 0.9198 208 0.9285 213
Central District 0.7536 138 0.8068 142 0.8071 183 0.9590 162 0.9684 182 0.9319 136 0.9319 136 0.9505 129 0.9586 127
Tel Aviv District 0.7825 114 0.8381 116 0.8388 149 0.9548 173 0.9649 189 0.9354 126 0.9354 126 0.9591 102 0.9683 96
Southern District 0.6423 229 0.6843 234 0.7053 251 0.9092 251 0.9090 291 0.9363 123 0.9363 123 0.9549 111 0.9557 143
Italy CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Piedmont 0.6772 205 0.7207 207 0.7235 242 0.9105 245 0.9159 281 0.9224 162 0.9224 162 0.9346 169 0.9416 180
Aosta Valley 0.7115 164 0.7607 167 0.7408 231 0.9975 70 0.9054 294 0.8426 285 0.8426 285 0.8646 280 0.8761 294
Liguria 0.6751 207 0.7192 209 0.7093 248 0.9430 197 0.9543 223 0.9219 164 0.9219 164 0.9339 174 0.9332 203
Lombardy 0.7051 171 0.7531 176 0.7455 228 0.9133 242 0.8911 302 0.8784 248 0.8784 248 0.8907 250 0.8931 271
Abruzzo 0.5984 266 0.6384 272 0.6585 288 0.9572 164 0.9619 200 0.9020 210 0.9020 210 0.9144 218 0.9174 236
Molise 0.5714 292 0.6152 289 0.6845 269 0.9799 106 1.0117 38 0.7976 322 0.7976 322 0.8083 323 0.8247 330
Campania 0.5198 336 0.5411 343 0.5959 330 0.9001 264 0.9929 118 0.8411 287 0.8411 287 0.8520 292 0.9090 258
Apulia 0.5264 329 0.5545 336 0.5689 343 0.9413 200 0.9553 220 0.8443 284 0.8443 284 0.8562 287 0.8641 306
Basilicata 0.5381 319 0.5759 325 0.6062 324 0.9864 91 0.9843 141 0.9004 214 0.9004 214 0.9126 221 0.9220 230
Calabria 0.5316 325 0.5674 329 0.5944 331 0.9083 252 0.9605 203 0.8293 295 0.8293 295 0.8406 299 0.8610 309
Sicily 0.5318 324 0.5659 330 1.0000 24 0.8481 310 1.0000 78 0.8532 279 0.8532 279 0.8651 279 1.0000 15
Sardinia 0.5673 295 0.6074 295 0.6155 319 0.9562 167 0.9642 190 0.9111 192 0.9111 192 0.9234 197 0.9309 209
Province of Bolzano-Bozen 0.7705 124 0.8312 121 0.8475 143 0.9932 78 0.9656 188 0.9302 141 0.9302 141 0.9434 146 0.9553 147
Province of Trento 0.7109 165 0.7598 169 0.7488 222 0.9777 111 0.9567 215 0.9302 141 0.9302 141 0.9435 145 0.9456 172
Veneto 0.6982 178 0.7487 181 0.7810 199 0.9617 155 0.9727 171 0.8848 243 0.8848 243 0.8972 245 0.8989 264
Friuli-Venezia Giulia 0.7040 173 0.7543 175 0.7612 212 0.9209 231 0.8955 297 0.9216 165 0.9216 165 0.9344 171 0.9373 195
Emilia–Romagna 0.7235 158 0.7717 159 0.7690 203 0.9605 158 0.9348 254 0.8736 256 0.8736 256 0.8856 258 0.8878 276
Tuscany 0.6930 187 0.7385 190 0.7816 198 0.9652 143 0.9659 186 0.8891 238 0.8891 238 0.9012 242 0.9034 262
Umbria 0.6593 215 0.7022 217 0.6946 258 0.9694 131 0.9808 154 0.8167 307 0.8167 307 0.8286 309 0.8312 327
Marche 0.6758 206 0.7206 208 0.7505 221 1.0125 43 1.0120 36 0.8615 273 0.8615 273 0.8727 277 0.8758 295
Lazio 0.6384 238 0.6805 240 0.6684 282 0.9646 145 0.9641 191 0.9076 202 0.9076 202 0.9196 210 0.9199 234
Japan CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Hokkaido 0.8035 93 0.8645 102 0.9277 91 1.0213 37 1.0107 40 0.8655 264 0.8655 264 0.8771 267 0.8862 278
Tohoku 0.8529 41 0.9187 60 1.0022 21 1.0000 66 0.9938 113 0.8655 265 0.8655 265 0.8766 269 0.8860 279
Northern-Kanto, Koshin 0.8702 33 0.9381 48 0.9670 65 0.9882 86 0.9861 136 0.9133 189 0.9133 189 0.9259 193 0.9266 219
Southern-Kanto 0.8480 47 0.9124 66 0.9021 101 1.0105 46 1.0090 43 0.8827 246 0.8827 246 0.8943 248 0.8953 267
Hokuriku 0.9029 21 0.9807 25 0.9595 70 0.9975 72 0.9910 121 0.8703 259 0.8703 259 0.8825 262 0.8820 283
Toukai 0.8783 26 0.9612 30 0.9497 76 1.0058 55 1.0076 46 0.8932 233 0.8932 233 0.9055 236 0.9090 257
Kansai region 0.8319 62 0.9012 72 0.9384 83 1.0083 51 0.9984 101 0.8969 227 0.8969 227 0.9093 232 0.9121 250
Chugoku 0.8719 32 0.9477 38 0.9310 88 1.0083 52 1.0036 58 0.8746 255 0.8746 255 0.8862 257 0.8858 280
Shikoku 0.8494 44 0.9129 65 0.9985 39 0.9659 139 0.9810 152 0.8706 258 0.8706 258 0.8821 264 0.8927 273
Kyushu, Okinawa 0.8210 73 0.8800 83 1.0010 23 0.9750 123 1.0032 64 0.8862 242 0.8862 242 0.8985 244 0.9171 237
South Korea CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Capital Region (KR) 0.7001 177 0.7601 168 0.7953 192 0.9992 69 1.0070 50 0.8003 320 0.8003 320 0.8123 321 0.8136 334
Gyeongnam Region 0.6973 179 0.7849 154 0.8075 182 1.0173 39 1.0022 69 0.7899 326 0.7899 326 0.8022 327 0.8317 325
Gyeonbuk Region 0.7372 152 0.8023 145 0.8517 139 0.9924 79 1.0056 53 0.7375 341 0.7375 341 0.7499 341 0.7512 347
Jeolla Region 0.7415 148 0.8341 118 0.9052 97 0.9822 100 0.9951 111 0.7703 334 0.7703 334 0.7821 334 0.7838 343
Chungcheong Region 0.7308 155 0.7992 148 0.8279 162 0.9777 112 0.9719 177 0.7958 323 0.7958 323 0.8074 324 0.8389 322
Gangwon Region 0.6941 184 0.7756 158 0.8005 188 0.9827 99 0.9747 169 0.7584 338 0.7584 338 0.7700 338 0.7966 340
Jeju 0.7911 107 0.9147 64 0.9496 77 0.9878 88 0.9854 137 0.7748 330 0.7748 330 0.7865 332 0.8141 333
Luxembourg CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Luxembourg 0.7345 153 0.7956 150 0.8225 171 1.0440 26 1.0447 13 0.8889 239 0.8889 239 0.9037 239 0.9410 183
Mexico CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Aguascalientes 0.5774 287 0.6183 286 0.6587 286 0.8016 319 0.8444 324 0.8182 306 0.8182 306 0.8478 293 0.8423 317
Baja California Norte 0.5999 265 0.6437 269 0.6790 276 0.7045 340 0.7068 343 0.8366 291 0.8366 291 0.8595 285 0.8666 302
Baja California Sur 0.6352 239 0.6820 238 0.6412 300 0.7988 322 0.7941 333 0.9500 82 0.9500 82 0.9783 48 0.9688 93
Campeche 0.6023 262 0.6573 258 0.7324 238 0.7869 323 0.7882 334 1.0000 1 1.0000 1 1.0382 1 1.0040 9
Coahuila 0.6076 260 0.6538 261 1.0000 24 0.6904 342 0.8894 304 0.7899 325 0.7899 325 0.8169 318 0.9025 263
Colima 0.6507 223 0.6967 222 0.6947 257 0.6817 347 0.6850 347 0.8578 276 0.8578 276 0.8751 271 0.8795 289
Chiapas 0.5218 334 0.5819 318 0.9942 45 0.7314 334 1.0000 78 0.8013 318 0.8013 318 0.8251 313 1.0000 15
Chihuahua 0.5905 274 0.6507 265 0.7460 225 0.6170 350 0.6178 351 0.9192 174 0.9192 174 0.9346 170 0.9395 190
Federal District (MX) 0.6218 250 0.6638 252 0.6619 283 0.7574 329 0.7495 337 0.9152 183 0.9152 183 0.9437 144 0.9600 122
Durango 0.5611 299 0.6015 301 0.6490 294 0.6865 345 0.6927 346 0.8626 269 0.8626 269 0.8863 256 0.8755 296
Guanajuato 0.5878 277 0.6325 277 0.9956 42 0.7264 335 0.9198 274 0.8012 319 0.8012 319 0.8299 307 0.9970 35
Guerrero 0.5933 270 0.6847 232 1.0000 24 0.6055 351 0.6272 350 0.7724 332 0.7724 332 0.7905 330 0.8413 319
Hidalgo 0.5866 278 0.6335 276 0.7819 197 0.7608 326 0.7962 332 0.7774 328 0.7774 328 0.7974 328 0.8462 316
Jalisco 0.6015 263 0.6468 266 0.6397 301 0.7152 337 0.7203 341 0.8808 247 0.8808 247 0.9100 229 0.9157 240
Mexico 0.5774 286 0.6193 284 1.0000 24 0.7080 339 1.0000 78 0.8582 275 0.8582 275 0.8835 260 1.0000 15
Michoacan 0.5913 272 0.6416 271 0.8622 133 0.6897 343 0.7127 342 0.9034 209 0.9034 209 0.9362 162 0.9989 33
Morelos 0.5889 276 0.6341 275 0.7001 255 0.6642 348 0.6738 348 0.9128 190 0.9128 190 0.9253 194 0.9356 200
Nayarit 0.6196 252 0.6602 254 0.7038 252 0.7220 336 0.7279 338 0.8837 245 0.8837 245 0.9091 233 0.8951 268
Nuevo Leon 0.6095 259 0.6527 262 0.6413 299 0.7346 333 0.7248 339 0.9063 205 0.9063 205 0.9327 178 0.9531 152
Oaxaca 0.5932 271 0.6511 264 1.0000 24 0.6876 344 0.9847 139 0.8283 298 0.8283 298 0.8572 286 0.9544 150
Puebla 0.5967 267 0.6427 270 0.9985 38 0.7409 331 0.9892 127 0.8104 311 0.8104 311 0.8371 303 0.9939 43
Queretaro 0.5336 323 0.5790 322 0.9948 44 0.7604 327 0.9902 124 0.8984 223 0.8984 223 0.9260 192 1.0000 15
Quintana Roo 0.6209 251 0.6644 251 0.6251 312 0.7781 324 0.7733 336 1.0000 1 1.0000 1 1.0276 4 1.0024 10
San Luis Potosi 0.5905 273 0.6443 268 0.8708 127 0.7457 330 0.7852 335 0.7742 331 0.7742 331 0.8051 326 0.8573 310
Sinaloa 0.5819 283 0.6227 282 0.6324 303 0.6604 349 0.6603 349 0.9292 144 0.9292 144 0.9631 89 0.9617 114
Sonora 0.6385 237 0.6837 235 0.6418 298 0.7102 338 0.7065 344 0.9190 175 0.9190 175 0.9523 123 0.9411 182
Tabasco 0.5463 310 0.5859 317 0.6389 302 0.7584 328 0.8022 331 0.8934 232 0.8934 232 0.9079 235 0.9223 227
Tamaulipas 0.5934 269 0.6367 273 0.6610 284 0.6995 341 0.6995 345 0.9410 106 0.9410 106 0.9748 55 0.9760 74
Tlaxcala 0.5826 281 0.6231 281 0.7005 254 0.7651 325 0.8042 330 0.8922 236 0.8922 236 0.9201 207 0.9620 112
Veracruz 0.5392 318 0.6001 302 0.9078 95 0.7408 332 0.8201 329 0.8190 304 0.8190 304 0.8407 298 0.9492 163
Yucatan 0.6398 235 0.7033 216 0.8211 172 0.8594 304 0.8599 317 1.0000 1 1.0000 1 1.0306 3 1.0080 5
Zacatecas 0.5524 306 0.5988 303 0.7649 207 0.6821 346 0.7212 340 0.9074 203 0.9074 203 0.9192 211 0.9531 153
Norway CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Oslo and Akershus 0.8479 49 0.9411 45 0.9307 89 1.0702 22 1.0412 14 0.9624 45 0.9624 45 0.9814 41 0.9856 55
Hedmark and Oppland 0.8283 67 0.9536 33 0.9666 66 1.0744 19 1.1343 4 0.9538 64 0.9538 64 0.9700 68 0.9765 73
South-Eastern Norway 0.8024 96 0.8919 75 0.9016 103 1.0051 57 1.0135 30 0.9700 30 0.9700 30 0.9878 28 0.9947 38
Agder and Rogaland 0.8475 51 0.9797 26 0.9924 46 1.0782 16 0.9951 110 0.9536 67 0.9536 67 0.9738 60 0.9734 82
Western Norway 0.8453 54 1.0063 17 0.9767 57 1.0269 32 1.0001 76 0.9563 58 0.9563 58 0.9737 61 0.9697 91
Trøndelag 0.8300 64 0.9711 28 0.8500 141 1.4655 3 1.0113 39 0.9831 18 0.9831 18 1.0012 16 0.9895 47
Northern Norway 0.8197 75 0.9354 49 0.9377 84 1.0757 17 1.0008 72 0.9361 124 0.9361 124 0.9593 101 0.9580 128
Poland CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Lodzkie 0.6953 182 0.7419 188 0.7395 232 0.9092 250 0.9153 282 0.8779 249 0.8779 249 0.8902 252 0.8957 266
Mazovia 0.6964 180 0.7437 184 0.7412 229 0.9541 175 0.9581 210 0.8894 237 0.8894 237 0.9018 240 0.9077 259
Lesser Poland 0.5666 296 0.6031 298 0.6078 322 0.9554 171 0.9630 197 0.8923 235 0.8923 235 0.9044 238 0.9103 254
Silesia 0.5856 279 0.6241 280 0.6286 308 0.9474 190 0.9560 218 0.8754 254 0.8754 254 0.8871 254 0.8932 270
Lublin Province 0.6340 240 0.6727 244 0.6885 265 0.9222 228 0.9235 268 0.9082 200 0.9082 200 0.9206 205 0.9221 228
Podkarpacia 0.5294 327 0.5599 334 0.5719 340 0.9652 142 0.9756 164 0.9001 216 0.9001 216 0.9121 223 0.9136 247
Swietokrzyskie 0.6262 247 0.6663 250 0.6793 275 0.9170 237 0.9177 280 0.8687 261 0.8687 261 0.8802 265 0.8819 284
Podlasie 0.5735 290 0.6086 292 0.6234 314 0.9361 212 0.9392 249 0.8972 225 0.8972 225 0.9097 231 0.9110 252
Greater Poland 0.5605 301 0.6017 300 0.5970 329 0.9567 166 0.9623 199 0.9001 215 0.9001 215 0.9119 224 0.9169 239
West Pomerania 0.5314 326 0.5685 328 0.5717 341 0.9222 229 0.9279 265 0.9235 158 0.9235 158 0.9360 164 0.9404 187
Lubusz 0.5636 297 0.6031 297 0.5978 328 0.9170 236 0.9223 270 0.8628 268 0.8628 268 0.8745 273 0.8780 291
Lower Silesia 0.5542 304 0.5912 310 0.5887 336 0.9481 187 0.9534 226 0.8591 274 0.8591 274 0.8709 278 0.8754 297
Opole region 0.5555 302 0.5963 306 0.5911 332 0.9391 206 0.9447 241 0.8650 266 0.8650 266 0.8764 270 0.8816 285
Kuyavian-Pomerania 0.5375 320 0.5707 327 0.5902 334 0.9326 216 0.9333 256 0.8991 220 0.8991 220 0.9113 226 0.9133 248
Warmian-Masuria 0.5262 330 0.5654 331 0.5842 338 0.9093 249 0.9112 288 0.8985 222 0.8985 222 0.9110 227 0.9129 249
Pomerania 0.5707 294 0.6080 293 0.6281 309 0.9597 161 0.9600 206 0.8754 253 0.8754 253 0.8868 255 0.8892 275
Portugal CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
North (PT) 0.6445 228 0.6856 230 0.7882 195 0.9045 256 1.0033 61 0.8322 293 0.8322 293 0.8435 296 0.8750 298
Algarve 0.6901 191 0.7320 199 0.8330 157 0.8797 286 0.9570 214 0.8094 313 0.8094 313 0.8203 316 0.8508 314
Central Portugal 0.7242 157 0.7708 160 0.8959 108 0.8880 277 0.9687 181 0.8365 292 0.8365 292 0.8472 294 0.8792 290
Lisbon 0.6830 198 0.7245 204 0.8305 160 0.9229 227 1.0075 47 0.8494 281 0.8494 281 0.8607 283 0.8928 272
Alentejo 0.6722 211 0.7147 212 0.8245 168 0.8882 276 0.9926 119 0.7866 327 0.7866 327 0.7973 329 0.8268 329
Azores (PT) 0.6179 255 0.6567 260 0.7536 220 0.8715 292 1.0302 18 0.8760 252 0.8760 252 0.8879 253 0.9202 232
Madeira (PT) 0.6295 244 0.6671 249 0.6914 262 0.8709 294 0.9906 122 0.8014 317 0.8014 317 0.8120 322 0.8377 323
Slovakia CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Bratislava Region 0.7406 150 0.7907 153 0.8161 175 0.9621 152 0.9777 160 0.8838 244 0.8838 244 0.8969 247 0.8987 265
West Slovakia 0.6195 253 0.6592 255 0.6741 280 0.9459 191 0.9596 208 0.8674 262 0.8674 262 0.8795 266 0.8826 282
Central Slovakia 0.5801 285 0.6147 290 0.6309 305 0.9206 233 0.9337 255 0.8961 228 0.8961 228 0.9087 234 0.9109 253
East Slovakia 0.5555 303 0.5866 316 0.5859 337 0.9349 214 0.9395 248 0.8929 234 0.8929 234 0.9048 237 0.9091 256
Slovenia CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Eastern Slovenia 0.6422 230 0.6829 236 0.6754 278 0.9117 244 0.9190 276 0.8974 224 0.8974 224 0.9098 230 0.9099 255
Western Slovenia 0.6700 212 0.7135 213 0.7376 233 0.9433 196 0.9539 224 0.9079 201 0.9079 201 0.9198 209 0.9227 226
Spain CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Galicia 0.6264 246 0.6721 245 0.6535 289 0.9776 113 0.9934 116 0.9122 191 0.9122 191 0.9243 195 0.9271 216
Asturias 0.6138 258 0.6570 259 0.6432 297 0.9680 135 0.9904 123 0.9412 105 0.9412 105 0.9539 115 0.9569 135
Cantabria 0.6256 248 0.6673 248 0.6530 290 0.9834 97 0.9861 135 0.9930 7 0.9930 7 1.0061 10 1.0062 6
Basque Country 0.6749 209 0.7170 211 0.7954 191 1.0607 23 1.0651 6 0.9613 47 0.9613 47 0.9745 56 0.9768 71
Navarra 0.6780 204 0.7222 206 0.7598 215 1.0052 56 0.9818 149 0.9777 22 0.9777 22 0.9917 23 0.9939 42
La Rioja 0.6590 216 0.7020 218 0.6898 263 1.1576 8 1.1982 1 0.8202 303 0.8202 303 0.8320 306 0.8341 324
Aragon 0.6490 224 0.6935 226 0.6814 272 0.9786 107 0.9884 129 0.9109 193 0.9109 193 0.9240 196 0.9278 215
Madrid 0.6552 219 0.6914 227 0.6960 256 1.0706 21 1.0467 10 0.9270 148 0.9270 148 0.9399 155 0.9467 169
Castile and León 0.6488 225 0.6992 219 0.6880 266 0.9920 80 0.9770 162 0.9219 163 0.9219 163 0.9343 172 0.9332 202
Castile-La Mancha 0.5739 289 0.6107 291 0.7609 213 0.9709 128 1.0000 78 0.9436 97 0.9436 97 0.9564 105 0.9833 60
Extremadura 0.5825 282 0.6224 283 0.6522 291 0.9403 203 1.0063 51 0.9463 93 0.9463 93 0.9593 100 0.9823 62
Catalonia 0.6417 231 0.6790 241 0.6744 279 0.9701 130 0.9753 165 0.9085 199 0.9085 199 0.9208 204 0.9252 221
Valencia 0.5897 275 0.6245 279 0.6442 296 0.9488 184 0.9705 178 0.9203 172 0.9203 172 0.9327 180 0.9423 178
Balearic Islands 0.6408 232 0.6806 239 0.6507 293 0.9520 179 0.9851 138 0.9160 182 0.9160 182 0.9296 183 0.9170 238
Andalusia 0.5443 316 0.5792 321 0.6108 320 0.9304 217 1.0001 77 0.9205 171 0.9205 171 0.9332 176 0.9561 139
Murcia 0.5712 293 0.6025 299 0.6773 277 0.9629 148 0.9792 155 0.9549 61 0.9549 61 0.9679 75 0.9940 41
Ceuta 0.5141 341 0.5312 345 0.9768 56 0.8818 285 0.9999 90 0.9769 23 0.9769 23 0.9902 24 1.0000 15
Melilla 0.5149 340 0.5303 346 0.5160 351 0.9041 258 0.9014 296 0.9688 32 0.9688 32 0.9815 40 0.9696 92
Canary Islands 0.5346 322 0.5622 332 0.6004 326 0.9406 201 1.0001 75 0.9264 149 0.9264 149 0.9394 156 0.9570 133
Sweden CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Stockholm 0.8155 81 0.8734 92 0.8687 129 1.0220 36 1.0121 35 0.9388 109 0.9388 109 0.9562 106 0.9615 116
East Middle Sweden 0.7656 128 0.8179 134 0.8137 177 1.0240 33 1.0173 22 0.9367 121 0.9367 121 0.9528 122 0.9591 124
Småland with Islands 0.8044 92 0.8589 105 0.8387 150 1.0981 15 1.0005 73 0.9568 56 0.9568 56 0.9770 51 0.9705 88
South Sweden 0.7467 146 0.7937 152 0.7851 196 0.9943 75 1.0079 45 0.9538 66 0.9538 66 0.9710 66 0.9734 81
West Sweden 0.7930 106 0.8452 113 0.8423 147 1.0234 34 1.0124 34 0.9498 83 0.9498 83 0.9663 81 0.9719 83
North Middle Sweden 0.7581 135 0.8099 139 0.7647 208 1.0329 29 0.9824 146 0.9536 68 0.9536 68 0.9681 74 0.9569 134
Central Norrland 0.7858 112 0.8380 117 0.8784 122 1.2006 7 1.0016 70 0.9236 157 0.9236 157 0.9459 141 0.9457 171
Upper Norrland 0.7735 120 0.8241 129 0.7805 200 1.1086 13 1.0014 71 0.9344 129 0.9344 129 0.9530 121 0.9404 186
Switzerland CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Lake Geneva Region 0.7646 132 0.8174 135 0.8058 185 0.9603 159 0.9640 192 0.9579 54 0.9579 54 0.9744 57 0.9766 72
Espace Mittelland 0.8513 42 0.9122 67 0.9078 96 0.9439 194 0.9481 238 0.9686 33 0.9686 33 0.9847 33 0.9868 53
Northwestern Switzerland 0.8480 48 0.9094 68 0.9194 93 0.9786 109 0.9786 157 0.9675 37 0.9675 37 0.9827 39 0.9867 54
Zurich 0.8778 28 0.9436 41 0.9713 60 1.0046 58 1.0023 68 0.9654 41 0.9654 41 0.9872 29 0.9964 36
Eastern Switzerland 0.8732 31 0.9417 44 0.9328 85 0.9702 129 0.9751 167 0.9848 14 0.9848 14 1.0042 13 1.0045 8
Central Switzerland 0.8859 24 0.9518 34 0.9596 69 0.9816 102 0.9842 142 0.9835 16 0.9835 16 1.0043 12 0.9989 32
Ticino 0.7557 137 0.8087 141 0.8397 148 1.0416 28 1.0154 24 0.9213 167 0.9213 167 0.9404 152 0.9498 161
Turkey CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Istanbul 0.5128 342 0.5426 341 0.5670 344 0.8830 284 0.9060 293 0.7584 339 0.7584 339 0.7688 339 0.8001 339
Thrace 0.5517 308 0.5888 312 0.6231 315 0.9007 263 0.9275 266 0.7359 342 0.7359 342 0.7493 342 0.8085 335
Southern Marmara—West 0.5364 321 0.5942 308 0.6265 311 0.8941 271 0.9181 279 0.8100 312 0.8100 312 0.8210 315 0.8523 313
Izmir 0.5155 339 0.5498 339 0.5658 346 0.8941 270 0.8792 306 0.7346 343 0.7346 343 0.7448 343 0.7462 349
Southern Aegean 0.5453 312 0.5868 315 0.6170 318 0.8845 281 0.9086 292 0.7681 336 0.7681 336 0.7784 336 0.8072 336
Northern Aegean 0.5451 313 0.6166 287 0.6832 271 0.8893 274 0.8707 312 0.7439 340 0.7439 340 0.7546 340 0.7563 346
Eastern Marmara—South 0.5278 328 0.5762 324 0.6078 323 0.8946 268 0.9216 271 0.8116 310 0.8116 310 0.8252 312 0.8807 288
Eastern Marmara—North 0.5251 332 0.5595 335 0.5909 333 0.8942 269 0.9152 283 0.8075 314 0.8075 314 0.8184 317 0.8485 315
Ankara 0.5199 335 0.5524 337 0.5707 342 0.9022 262 0.8891 305 0.8135 308 0.8135 308 0.8255 311 0.8271 328
Central Anatolia—West and South 0.5243 333 0.5776 323 0.6250 313 0.8710 293 0.8543 320 0.7711 333 0.7711 333 0.7821 333 0.7838 344
Mediterranean region—West 0.5481 309 0.5882 313 0.6171 317 0.8777 288 0.9036 295 0.7627 337 0.7627 337 0.7733 337 0.8071 337
Mediterranean region—Middle 0.5056 346 0.5353 344 0.5568 348 0.8378 313 0.8240 326 0.7233 345 0.7233 345 0.7349 345 0.7359 350
Mediterranean region—East 0.4971 347 0.5174 348 0.5270 350 0.8486 309 0.8704 313 0.6680 348 0.6680 348 0.6770 349 0.6994 351
Central Anatolia—Middle 0.5165 338 0.5599 333 0.5901 335 0.8526 308 0.8363 325 0.7697 335 0.7697 335 0.7802 335 0.7822 345
Central Anatolia—East 0.5083 343 0.5419 342 0.5614 347 0.8702 295 0.8944 299 0.7332 344 0.7332 344 0.7445 344 0.7885 342
Western Black Sea—West 0.5448 314 0.5964 305 0.6310 304 0.8865 279 0.8700 314 0.8515 280 0.8515 280 0.8628 281 0.8654 303
Western Black Sea—Middle and East 0.5634 298 0.6048 296 0.6295 307 0.8677 299 0.8523 321 0.8027 315 0.8027 315 0.8141 319 0.8166 331
Middle Black Sea 0.5193 337 0.5719 326 0.6081 321 0.8697 297 0.8554 319 0.7762 329 0.7762 329 0.7875 331 0.7890 341
Eastern Black Sea 0.5448 315 0.5898 311 0.6186 316 0.8662 300 0.8479 323 0.8413 286 0.8413 286 0.8527 290 0.8550 311
Northeastern Anatolia—West 0.5059 344 0.5505 338 0.5730 339 0.8572 307 0.8775 307 0.8242 302 0.8242 302 0.8351 305 0.8649 304
Northeastern Anatolia—East 0.5258 331 0.5917 309 0.6301 306 0.8015 320 0.8217 328 0.8185 305 0.8185 305 0.8292 308 0.8610 308
Eastern Anatolia—West 0.5057 345 0.5464 340 0.5669 345 0.8578 306 0.8748 309 0.6635 349 0.6635 349 0.6847 348 0.7467 348
Eastern Anatolia—East 0.4915 348 0.5150 349 1.0000 24 0.8113 318 1.0000 78 0.7176 346 0.7176 346 0.7273 346 1.0000 15
Southeastern Anatolia—West 0.4910 349 0.5262 347 0.9735 58 0.8215 317 0.9494 235 0.6543 350 0.6543 350 0.6643 350 0.8807 287
Southeastern Anatolia—Middle 0.4896 351 0.5075 350 0.9034 100 0.8006 321 1.0000 78 0.5937 351 0.5937 351 0.6033 351 0.9437 174
Southeastern Anatolia—East 0.4897 350 0.5027 351 0.5446 349 0.8254 316 0.9511 233 0.6954 347 0.6954 347 0.7044 347 0.8044 338
United Kingdom CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
North East England 0.7272 156 0.7789 157 0.7919 193 0.9607 157 0.9895 126 0.9213 166 0.9213 166 0.9339 175 0.9361 197
North West England 0.7413 149 0.7951 151 0.7884 194 0.9531 178 0.9752 166 0.9425 98 0.9425 98 0.9559 107 0.9561 140
Yorkshire and The Humber 0.7460 147 0.7982 149 0.8187 174 0.9571 165 0.9817 150 0.9565 57 0.9565 57 0.9696 69 0.9719 84
East Midlands 0.7838 113 0.8422 115 0.8265 164 0.9849 92 0.9944 112 0.9501 81 0.9501 81 0.9634 88 0.9634 110
West Midlands 0.7493 143 0.8024 144 0.8273 163 0.9549 172 0.9818 148 0.9498 85 0.9498 85 0.9630 90 0.9650 108
East of England 0.8196 76 0.8794 85 0.8867 117 0.9658 140 0.9610 202 0.9468 92 0.9468 92 0.9601 97 0.9666 105
Greater London 0.7745 119 0.8293 122 0.8196 173 0.9975 71 0.9900 125 0.9278 147 0.9278 147 0.9413 149 0.9424 177
South East England 0.8283 66 0.8924 74 0.9122 94 1.0014 63 0.9972 105 0.9388 112 0.9388 112 0.9521 124 0.9556 144
South West England 0.8198 74 0.8791 87 0.8760 124 0.9945 74 0.9809 153 0.9503 80 0.9503 80 0.9636 86 0.9704 89
Wales 0.7504 142 0.8044 143 0.8125 178 0.9640 146 0.9983 102 0.9474 90 0.9474 90 0.9603 96 0.9612 118
Scotland 0.7652 130 0.8164 136 0.8084 179 0.9557 169 0.9563 217 0.9635 44 0.9635 44 0.9772 50 0.9794 64
Northern Ireland 0.7173 160 0.7640 165 0.8009 187 0.9560 168 0.9681 183 0.9536 69 0.9536 69 0.9671 76 0.9736 80
United States CI r   CI r m   CI r m,z   CI r   CI r m   CI r m,   CI r   CI r m   CI r m,z  
Alabama 0.8457 52 0.9241 54 0.9810 51 0.8885 275 0.9284 261 0.9587 50 0.9587 50 0.9753 54 0.9839 58
Alaska 0.8335 61 0.9475 40 0.9318 86 0.9875 89 0.9566 216 0.9369 120 0.9369 120 0.9500 132 0.9376 194
Arizona 0.7958 104 0.8622 103 0.9605 67 0.9168 238 0.9959 108 0.9098 195 0.9098 195 0.9233 199 0.9468 167
Arkansas 0.8284 65 0.9090 69 0.9953 43 0.8919 272 0.9572 213 0.9189 176 0.9189 176 0.9331 177 0.9565 136
California 0.7969 102 0.8886 77 0.8845 119 0.9267 221 0.9405 245 0.9490 86 0.9490 86 0.9655 83 0.9771 70
Colorado 0.8801 25 0.9673 29 0.8921 112 0.9803 105 0.9792 156 0.9522 74 0.9522 74 0.9689 71 0.9529 154
Connecticut 0.9342 13 1.0637 9 1.0515 6 0.9819 101 0.9931 117 0.8865 241 0.8865 241 0.9018 241 0.9068 260
Delaware 0.9140 16 0.9969 19 1.0010 22 0.9379 209 0.9358 252 0.9992 6 0.9992 6 1.0272 5 1.0238 1
District of Columbia 1.0000 1 1.2828 1 1.0737 3 0.8588 305 0.8639 315 0.9377 117 0.9377 117 0.9513 128 0.9600 123
Florida 0.8448 55 0.9174 62 0.9719 59 0.9506 182 0.9892 128 0.9383 113 0.9383 113 0.9520 125 0.9614 117
Georgia 0.8049 91 0.8792 86 0.9228 92 0.9042 257 0.9279 264 0.9165 180 0.9165 180 0.9315 181 0.9400 189
Hawaii 0.8174 78 0.9394 47 0.8528 138 1.0733 20 1.0025 67 0.9922 8 0.9922 8 1.0080 9 0.9929 44
Idaho 0.8377 58 0.9203 58 0.9419 82 0.9842 94 1.0265 20 0.8565 277 0.8565 277 0.8744 274 0.9268 218
Illinois 0.8453 53 0.9212 56 0.9522 74 0.9203 234 0.9202 273 0.9380 115 0.9380 115 0.9514 127 0.9546 149
Indiana 0.8498 43 0.9224 55 0.9450 81 0.9104 247 0.9121 287 0.9206 170 0.9206 170 0.9347 168 0.9429 176
Iowa 0.9415 11 1.0271 15 0.9985 37 0.9889 83 0.9879 133 0.9595 49 0.9595 49 0.9768 52 0.9789 66
Kansas 0.9021 22 0.9883 21 1.0437 8 0.9436 195 0.9433 242 0.9691 31 0.9691 31 0.9846 34 0.9868 52
Kentucky 0.8241 71 0.9010 73 0.9782 54 0.9257 222 0.9987 99 0.9208 168 0.9208 168 0.9357 166 0.9619 113
Louisiana 0.8157 79 0.8874 78 1.0042 19 0.8643 302 0.9599 207 0.9306 138 0.9306 138 0.9504 130 0.9991 30
Maine 0.9464 10 1.0366 13 1.0302 10 1.0090 50 1.0080 44 0.9152 184 0.9152 184 0.9280 188 0.9323 206
Maryland 0.9281 14 1.0334 14 1.0098 14 0.9219 230 0.9274 267 0.9683 34 0.9683 34 0.9832 37 0.9875 50
Massachusetts 0.9245 15 1.0427 12 1.0421 9 1.0059 54 0.9991 98 0.9536 69 0.9536 69 0.9671 77 0.9678 99
Michigan 0.8533 40 0.9314 50 0.9512 75 0.9282 219 0.9319 259 0.9678 36 0.9678 36 0.9811 42 0.9904 46
Minnesota 0.9395 12 1.0442 11 1.0237 11 0.9919 81 0.9996 93 0.9514 77 0.9514 77 0.9688 72 0.9755 75
Mississippi 0.7858 111 0.8545 107 0.9461 78 0.8995 266 0.9960 107 0.9681 35 0.9681 35 0.9830 38 1.0013 12
Missouri 0.8763 30 0.9563 32 0.9568 72 0.9254 223 0.9225 269 0.8956 230 0.8956 230 0.9175 212 0.9156 242
Montana (US) 0.9122 17 1.0000 18 1.0081 17 0.9901 82 1.0028 65 0.9525 73 0.9525 73 0.9653 84 0.9881 49
Nebraska 0.9582 7 1.1185 5 1.0797 1 0.9555 170 0.9521 229 0.9443 95 0.9443 95 0.9743 59 0.9683 97
Nevada 0.7892 109 0.8532 108 0.9693 63 0.9026 260 0.9701 179 0.9232 160 0.9232 160 0.9362 163 0.9562 138
New Hampshire 0.9623 6 1.0764 8 1.0691 4 1.0130 42 1.0167 23 0.9734 27 0.9734 27 0.9863 30 0.9944 39
New Jersey 0.8933 23 1.0174 16 1.0134 12 0.9446 193 0.9399 247 0.9059 206 0.9059 206 0.9227 201 0.9244 222
New Mexico 0.7804 115 0.8531 109 0.9314 87 0.9078 253 0.9843 140 0.9345 128 0.9345 128 0.9488 134 0.9710 87
New York 0.8476 50 0.9750 27 0.9600 68 0.9421 199 0.9553 219 0.9369 119 0.9369 119 0.9516 126 0.9616 115
North Carolina 0.8347 60 0.9169 63 0.9918 47 0.9297 218 0.9985 100 0.9350 127 0.9350 127 0.9536 116 0.9672 104
North Dakota 1.0000 1 1.2110 3 1.0088 15 0.9884 85 0.9769 163 0.9561 59 0.9561 59 0.9855 31 0.9686 94
Ohio 0.8767 29 0.9611 31 0.9844 50 0.9397 204 0.9399 246 0.9586 51 0.9586 51 0.9723 62 0.9790 65
Oklahoma 0.8493 45 0.9432 42 1.0132 13 0.8979 267 0.9280 263 0.9238 155 0.9238 155 0.9377 158 0.9467 170
Oregon 0.8096 88 0.8745 91 0.8941 111 1.0121 44 1.0035 59 0.9141 188 0.9141 188 0.9293 185 0.9317 207
Pennsylvania 0.9051 19 0.9867 22 0.9987 36 0.9382 208 0.9365 251 0.9415 101 0.9415 101 0.9553 109 0.9572 132
Rhode Island 0.8653 36 0.9400 46 0.9542 73 0.9619 153 0.9575 212 0.9791 21 0.9791 21 0.9947 21 0.9962 37
South Carolina 0.8489 46 0.9292 51 0.9806 52 0.9105 246 0.9471 239 0.9304 140 0.9304 140 0.9605 95 0.9368 196
South Dakota 0.9484 9 1.0817 7 0.9694 62 0.9653 141 0.9633 195 0.9675 38 0.9675 38 0.9810 43 0.9684 95
Tennessee 0.8447 56 0.9197 59 0.9917 48 0.9150 241 0.9721 176 0.9538 64 0.9538 64 0.9707 67 0.9838 59
Texas 0.8248 69 0.9176 61 0.9858 49 0.9035 259 0.9193 275 0.9175 177 0.9175 177 0.9369 161 0.9380 193
Utah 0.8310 63 0.9263 52 0.8371 153 1.0102 47 0.9833 143 0.9498 84 0.9498 84 0.9641 85 0.9504 159
Vermont 1.0000 1 1.1177 6 1.0652 5 0.9880 87 0.9954 109 0.9920 9 0.9920 9 1.0180 6 1.0175 3
Virginia 0.9044 20 0.9908 20 0.9711 61 0.9516 180 0.9580 211 0.9357 125 0.9357 125 0.9546 112 0.9543 151
Washington 0.8590 37 0.9509 35 0.9456 80 1.0015 62 0.9994 97 0.9517 76 0.9517 76 0.9664 80 0.9677 100
West Virginia 0.8681 34 0.9483 37 1.0023 20 0.9247 224 0.9980 103 0.9208 169 0.9208 169 0.9343 173 0.9576 129
Wisconsin 0.9079 18 0.9815 24 0.9683 64 0.9766 117 0.9725 172 0.9388 111 0.9388 111 0.9531 120 0.9555 145
Wyoming 0.9559 8 1.0600 10 0.9793 53 0.9786 108 0.9636 193 1.0000 1 1.0000 1 1.0174 7 1.0010 14

CIr = non-robust, unconditional BoD-estimated composite score, CIrm = robust, unconditional BoD-estimated composite score, CIrm,z = robust, conditional BoD-estimated composite score.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dardha, E., Rogge, N. How's Life in Your Region? Measuring Regional Material Living Conditions, Quality of Life and Subjective Well-Being in OECD Countries Using a Robust, Conditional Benefit-of-the-Doubt Model. Soc Indic Res (2020). https://doi.org/10.1007/s11205-020-02411-x

Download citation

Keywords

  • Data envelopment analysis
  • Benefit-of-the-doubt model
  • Composite indicator
  • Regional well-being
  • Conditional order-m BoD
  • OECD