Satisfaction and Tourism Expenditure Behaviour

Abstract

In the literature, the quantification of the effect of satisfaction on tourists’ expenditure behaviour has not been extensively studied. This research aims to fill in this gap, providing additional information about this crucial relation by analysing it from a microdata perspective. In particular, the Fuzzy Double-Hurdle model, a new model which combines the well-known Double-Hurdle model and the fuzzy set theory, is suggested and presented, both technically and by means of a real case study. The proposed model gathers the advantages of the Double-Hurdle model and the fuzzy set theory together producing a suitable model for the analysis of censored observations in presence of imprecise data. Specifically, the Double-Hurdle model allows to efficiently estimate the average values of a non-negative, non-normally distributed variable characterised by high frequency of zero values, as tourists’ expenditure can be, considering the two-stages nature of the decision process. On the other end, the inclusion of the fuzzy set theory in the regression model allows to cope with the imprecision of both collected information (i.e. levels of satisfaction) and kind of measurement used (i.e. Liker-type scale). The results will help tourism managers to more accurately evaluate the efficacy of their policies and marketing strategies in enhancing tourists’ satisfaction and, consequently, in increasing the level of spending at the destination.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Akca, H., Sayili, M., & Cafri, R. (2016). Analysing expenditure of same-day visitors in cave tourism: The case of turkey. Tourism Economics, 22, 47–55.

    Article  Google Scholar 

  2. Alegre, J., & Cladera, M. (2010). Tourist expenditure and quality: Why repeat tourists can spend less than first-timers. Tourism Economics, 16, 517–533.

    Article  Google Scholar 

  3. Alegre, J., Cladera, M., & Sard, M. (2011). Analysing the influence of tourist motivations on tourist expenditure at a sun-and-sand destination. Tourism Economics, 17, 813–832.

    Article  Google Scholar 

  4. Alegre, J., Mateo, S., & Pou, L. (2013). Tourism participation and expenditure by spanish households: The effects of the economic crisis and unemployment. Tourism Management, 39, 37–49.

    Article  Google Scholar 

  5. Almeida, A., & Garrod, B. (2017). Insights from analysing tourist expenditure using quantile regression. Tourism Economics, 23, 1138–1145.

    Article  Google Scholar 

  6. Alrawadieh, Z., Prayag, G., Alrawadieh, Z., & Alsalameen, M. (2019). Self-identification with a heritage tourism site, visitors’ engagement and destination loyalty: The mediating effects of overall satisfaction. The Service Industries Journal, 39, 541–558.

    Article  Google Scholar 

  7. Amemiya, T. (1984). Tobit models: A survey. Journal of Econometrics, 24, 3–61.

    Article  Google Scholar 

  8. Anderson, E., Fornell, C., & Lehmann, D. (1997). Customer satisfaction, market share, and profitability: Findings from Sweden. Journal of Marketing, 58, 53–66.

    Article  Google Scholar 

  9. Apostolakis, A., & Jaffry, S. (2009). Examining expenditure patterns of British tourists to Greece. International Journal of Tourism Policy, 2, 187–205.

    Article  Google Scholar 

  10. Baker, D., & Crompton, J. (2000). Quality, satisfaction and behavioral intentions. Annals of Tourism Research, 27, 785–804.

    Article  Google Scholar 

  11. Barquet, A., Brida, J. G., Osti, L., & Schubert, S. (2011). An analysis of tourists’ expenditure on winter sports events through the tobit censorate model. Tourism Economics, 17, 1197–1217.

    Article  Google Scholar 

  12. Belenkiy, M., & Riker, D. (2013). Modeling the international tourism expenditures of individual travelers. Journal of Travel Research, 52, 202–211.

    Article  Google Scholar 

  13. Benítez, J. M., Martín, J. C., & Román, C. (2007). Using fuzzy number for measuring quality of service in the hotel industry. Tourism Management, 28, 544–555.

    Article  Google Scholar 

  14. Bernini, C., & Cracolici, M. (2015). Demographic change, tourism expenditure and life cycle behaviour. Tourism Management, 47, 191–205.

    Article  Google Scholar 

  15. Bernini, C., & Cracolici, M. (2016). Is participation in the tourism market an opportunity for everyone? Some evidence from Italy. Tourism Economics, 22, 57–79.

    Article  Google Scholar 

  16. Bernini, C., Cracolici, M., & Nijkamp, p. (2017). Place-based attributes and spatial expenditure behavior in tourism. Journal or Regional Science, 57, 218–244.

    Article  Google Scholar 

  17. Bigné, J. E., Andreu, L., & Gnoth, J. (2005). The theme park experience: An analysis of pleasure, arousal and satisfaction. Tourism Management, 26, 833–844.

    Article  Google Scholar 

  18. Brandolini, S. M. D., & Disegna, M. (2012). Demand for the quality conservation of venice, Italy, according to different nationalities. Tourism Economics, 18, 1019–1050.

    Article  Google Scholar 

  19. Brida, J. G., Disegna, M., & Osti, L. (2013a). The effect of authenticity on visitors’ expenditure at cultural events. Current Issues in Tourism, 16, 266–285.

    Article  Google Scholar 

  20. Brida, J. G., Disegna, M., & Osti, L. (2013b). Visitors’ expenditure behaviour at cultural events: The case of christmas markets. Tourism Economics, 19, 1173–1196.

    Article  Google Scholar 

  21. Brida, J. G., Disegna, M., & Scuderi, R. (2013c). Visitors to two types of museums: Do expenditure patterns differ? Tourism Economics, 19, 1027–1047.

    Article  Google Scholar 

  22. Celmiņš, A. (1987). Multidimensional least-squares fitting of fuzzy models. Mathematical modeling, 9, 669–690.

    Article  Google Scholar 

  23. Chang, O. Y.-H., & Ayyub, M. B. (2001). Fuzzy regression methods-A comparative assessment. Fuzzy Sets and Systems, 119, 187–203.

    Article  Google Scholar 

  24. Chang, P.-T., & Lee, E. (1996). A generalized fuzzy weighted least-squares regression. Fuzzy Sets and Systems, 82, 289–298.

    Article  Google Scholar 

  25. Chen, C.-M., & Chang, K.-L. M. (2012). The influence of travel agents on travel expenditures. Annals of Tourism Research, 39, 1258–1263.

    Article  Google Scholar 

  26. Cheng, C. B. (1991). Fuzzy process control: Construction of control charts with fuzzy numbers. Fuzzy Sets and Systems, 154, 287–303.

    Article  Google Scholar 

  27. Chiang, W.-Y. (2011). Establishment and application of fuzzy decision rules: An empirical case of the air passenger market in Taiwan. International Journal of Tourism Research, 13, 447–456.

    Article  Google Scholar 

  28. Chou, T.-Y., Hsu, C.-L., & Chen, M.-C. (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. International Journal of Hospitality Management, 27, 293–301.

    Article  Google Scholar 

  29. Coppi, R., & D’Urso, P. (2003). Regression analysis with fuzzy informational paradigm: A least-squares approach using membership function information. International Journal of Pure and Applied Mathematics, 8, 279–306.

    Google Scholar 

  30. Coppi, R., D’Urso, P., & Giordani, P. (2012). Fuzzy and possibilistic clustering for fuzzy data. Computational Statistics & Data Analysis, 56, 915–927.

    Article  Google Scholar 

  31. Coppi, R., D’Urso, P., Giordani, P., & Santoro, A. (2006). Least squares estimation of a linear regression model with LR fuzzy response. Computational Statistics & Data Analysis, 51, 267–286.

    Article  Google Scholar 

  32. Cragg, J. (1971). Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica, 39, 829–844.

    Article  Google Scholar 

  33. Davidov, E., Meuleman, B., Cieciuch, J., Schmidt, P., & Billiet, J. (2014). Measurement equivalence in cross-national research. Annual Review of Sociology, 40, 55–75.

    Article  Google Scholar 

  34. De la Rosa de Sàa, S., Gil, M., Gonzalez-Rodriguez, G., López, M. T., & Lubiano, M. (2015). Fuzzy rating scale-based questionnaires and their statistical analysis. IEEE Transactions on Fuzzy Systems, 23, 111–126.

    Article  Google Scholar 

  35. Diamond, P. (1988). Fuzzy least squares. Information Sciences, 46, 141–157.

    Article  Google Scholar 

  36. Diamond, P., & Tanaka, H. (1998). Fuzzy regression analysis. In R. Slowinski (Ed.), Fuzzy sets in decision analysis, operations research and statistics (pp. 349–387). Massachusetts, USA: Kluwer Academic Publishers.

    Google Scholar 

  37. Disegna, M., Durante, F., & Foscolo, E. (2017a). A multivariate analysis of tourists’ spending behaviour. In B. Vantaggi, M. B. Ferraro, P. Giordani, M. A. Gil, M. Gagolewski, P. Grzegorzewski, & O. Hryniewicz (Eds.), Soft methods in probability and statistics, Advances in intelligent systems and computing (Vol. 456, pp. 187–195). Cham: Springer.

    Google Scholar 

  38. Disegna, M., D’Urso, P., & Durante, F. (2017b). Copula-based fuzzy clustering of spatial time series. Spatial Statistics, 21, 209–225.

    Article  Google Scholar 

  39. Disegna, M., D’Urso, P., & Massari, R. (2018). Analysing cluster evolution using repeated cross-sectional ordinal data. Tourism Management, 69, 524–536.

    Article  Google Scholar 

  40. Disegna, M., & Osti, L. (2016). Tourists’ expenditure behaviour: The influence of satisfaction and the dependence of spending categories. Tourism Economics, 22, 5–30.

    Article  Google Scholar 

  41. Dmitrović, T., Knežević Cvelbar, L., Kolar, T., Makovec Brenčič, M., Ograjenšek, I., & Žabkar, V. (2009). Conceptualizing tourist satisfaction at the destination level. International Journal of Culture, Tourism and Hospitality Research, 3, 116–126.

    Article  Google Scholar 

  42. Dolnicar, S. (2019). Market segmentation analysis in tourism: A perspective paper. Tourism Review, ahead-of-print.

  43. Dolnicar, S., Coltman, T., & Sharma, R. (2015). Do satisfied tourists really intend to come back? Three concerns with empirical studies of the link between satisfaction and behavioral intention. Journal of Travel Research, 54, 152–178.

    Article  Google Scholar 

  44. Downward, P., & Lumsdon, L. (2000). The demand for day-visits: An analysis of visitor spending. Tourism Economics, 6, 251–261.

    Article  Google Scholar 

  45. Downward, P., & Lumsdon, L. (2003). Beyond the demand for day-visits: An analysis of visitor spending. Tourism Economics, 9, 67–76.

    Article  Google Scholar 

  46. Downward, P., & Lumsdon, L. (2004). Tourism transport and visitor spending: A study in the North York Moors National Park, UK. Journal of Travel Research, 42, 415–420.

    Article  Google Scholar 

  47. Downward, P., Lumsdon, L., & Weston, R. (2009). Visitor expenditure: The case of cycle recreation and tourism. Journal of Sport & Tourism, 14, 25–42.

    Article  Google Scholar 

  48. Dubois, D., & Prade, H. (1988). Possibility theory. New York: Plenum press.

    Google Scholar 

  49. D’Urso, P. (2003). Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. Computational Statistics & Data Analysis, 42, 47–72.

    Article  Google Scholar 

  50. D’Urso, P. (2007). Clustering of fuzzy data. In J. V. De Oliveira & W. Pedrycz (Eds.), Advances in fuzzy clustering and its applications (pp. 155–192). Hoboken: Wiley.

    Google Scholar 

  51. D’Urso, P., De Giovanni, L., Disegna, M., & Massari, R. (2013). Bagged clustering and its application to tourism market segmentation. Expert Systems with Applications, 40, 4944–4956.

    Article  Google Scholar 

  52. D’Urso, P., De Giovanni, L., Disegna, M., & Massari, R. (2019). Fuzzy clustering with spatial-temporal information. Spatial Statistics, 30, 71–102.

    Article  Google Scholar 

  53. D'Urso, P., Disegna, M., & Massari, R. (2019). Fuzzy clustering in travel and tourism analytics. In P. Moscato & N. de Vries (Eds.), Business and consumer analytics: New Ideas (pp. 839–863). Cham: Springer.

    Google Scholar 

  54. D’Urso, P., Disegna, M., Massari, R., & Osti, L. (2016). Fuzzy segmentation of postmodern tourists. Tourism Management, 55, 297–308.

    Article  Google Scholar 

  55. D’Urso, P., Disegna, M., Massari, R., & Prayag, G. (2015). Bagged fuzzy clustering for fuzzy data: An application to a tourism market. Knowledge-Based Systems, 73, 335–346.

    Article  Google Scholar 

  56. D’Urso, P., & Gastaldi, T. (2000). A least-squares approach to fuzzy linear regression analysis. Computational Statistics & Data Analysis, 34, 427–440.

    Article  Google Scholar 

  57. D’Urso, P., & Gastaldi, T. (2002). An “orderwise” polynomial regression procedure for fuzzy data. Fuzzy Sets and Systems, 130, 1–19.

    Article  Google Scholar 

  58. D’Urso, P., & Giordani, P. (2003). Fitting of fuzzy linear regression models with multivariate response. International Mathematical Journal, 3, 655–664.

    Google Scholar 

  59. D’Urso, P., & Massari, R. (2013). Weighted least squares and least median squares estimation for the fuzzy linear regression analysis. Metron, 71, 279–306.

    Article  Google Scholar 

  60. D’Urso, P., Massari, R., & Santoro, A. (2011). Robust fuzzy regression analysis. Information Sciences, 181, 4154–4174.

    Article  Google Scholar 

  61. D’Urso, P., & Santoro, A. (2006). Goodness of fit and variable selection in the fuzzy multiple linear regression. Fuzzy Sets and Systems, 157, 2627–2647.

    Article  Google Scholar 

  62. Gil, M. Á., & González-Rodríguez, G. (2012). Fuzzy vs. likert scale in statistics. In E. Trillas, P. P. Bonissone, L. Magdalena, & J. Kacprzyk (Eds.), Combining experimentation and theory, Studies in fuzziness and soft computing (Vol. 271, pp. 407–420). Berlin, Heidelberg: Springer.

    Google Scholar 

  63. Gómez-Déniz, E., Pérez-Rodríguez, J., & Boza-Chirino, J. (2019). Modelling tourist expenditure at origin and destination. Fast Track: Tourism Economics, 1–24

  64. Ham, S., Hwang, J. H., & Kim, W. G. (2004). Household profiles affecting food-away-from-home expenditures: A comparison of Korean and US households. International Journal of Hospitality Management, 23, 363–379.

    Article  Google Scholar 

  65. Heckman, J. (1976). Sample selection bias as a specification error. Econometrica, 47, 153–161.

    Article  Google Scholar 

  66. Heien, D., & Wessells, C. (1990). Demand system estimation with micro data: A censored regression approach. Journal of Business & Economic Statistics, 8, 356–371.

    Google Scholar 

  67. Homburg, C., Koschate, N., & Hoyer, W. (2005). Do satisfied customers really pay more? A study of the relationship between customers satisfaction and willingness to pay. Journal of Marketing, 69, 84–96.

    Article  Google Scholar 

  68. Hsu, T.-H., & Lin, L.-Z. (2006). Using fuzzy set theoretic techniques to analyze travel risk: An empirical study. Tourism Management, 27, 968–981.

    Article  Google Scholar 

  69. Hsu, T.-K., Tsai, Y.-F., & Wu, H.-H. (2009). The preference analysis for tourist choice of destination: A case study of Taiwan. Tourism Management, 30, 288–297.

    Article  Google Scholar 

  70. Hu, H.-Y., Lee, Y.-C., & Yen, T.-M. (2010). Service quality gaps analysis based on fuzzy linguistic SERVQUAL with a case study in hospital out-patient services. The TQM Journal, 22, 499–515.

    Article  Google Scholar 

  71. Huang, J.-H., & Peng, K.-H. (2012). Fuzzy rasch model in TOPSIS: A new approach for generating fuzzy numbers to assess the competitiveness of the tourism industries in Asian countries. Tourism Management, 33, 456–465.

    Article  Google Scholar 

  72. Hung, W., Shang, J., Wang, F., et al. (2012). Another look at the determinants of tourism expenditure. Annals of Tourism Research, 39, 495–498.

    Article  Google Scholar 

  73. Jang, S. S., & Ham, S. (2009). A double-hurdle analysis of travel expenditure: Baby boomer seniors versus older seniors. Tourism Management, 30, 372–380.

    Article  Google Scholar 

  74. Jian, L., & Ning, Z. (2012). Empirical research of intercity high-speed rail passengers’ travel behavior based on fuzzy clustering model. Journal of Transportation Systems Engineering and Information Technology, 12, 100–105.

    Article  Google Scholar 

  75. Jingwen, W., & Mingzhu, L. (2018). Characteristics of visitor expenditure in macao and their impact on its economic growth. Tourism Economics, 24, 218–233.

    Article  Google Scholar 

  76. Jurdana, D., & Frleta, D. (2017). Satisfaction as a determinant of tourist expenditure. Current Issues in Tourism, 20, 691–704.

    Article  Google Scholar 

  77. Kim, K., Moskowitz, H., & Koksalan, M. (1996). Fuzzy versus statistical linear regression. European Journal of Operational Research, 92, 417–434.

    Article  Google Scholar 

  78. Kim, S. S., Han, H., & Chon, K. (2008). Estimation of the determinants of expenditures by festival visitors. Tourism Analysis, 13, 387–400.

    Google Scholar 

  79. Kim, S. S., Prideaux, B., & Chon, K. (2010). A comparison of results of three statistical methods to understand the determinants of festival participants’ expenditures. International Journal of Hospitality Management, 29, 297–307.

    Article  Google Scholar 

  80. Kozak, M., & Rimmington, M. (2000). Tourist satisfaction with Mallorca, Spain, as an off-season holiday destination. Journal of Travel Research, 38, 260–269.

    Article  Google Scholar 

  81. Lee, H.-C. (2001). Determinants of recreational boater expenditures on trips. Tourism Management, 22, 659–667.

    Article  Google Scholar 

  82. Leisch, F. (1999). Bagged clustering. Working paper 51 SFB adaptive information systems and modelling in economics and management science WU Vienna University of Economics and Business.

  83. Lew, A. A., & Ng, P. T. (2012). Using quantile regression to understand visitor spending. Journal of Travel Research, 51, 278–288.

    Article  Google Scholar 

  84. Li, X., Meng, F., Uysal, M., & Mihalik, B. (2013). Understanding China’s long-haul outbound travel market: An overlapped segmentation approach. Journal of Business Research, 66, 786–793.

    Article  Google Scholar 

  85. Lin, L.-Z., Chen, W.-C., & Chang, T.-J. (2011). Using FQFD to analyze island accommodation management in fuzzy linguistic preferences. Expert Systems with Applications, 38, 7738–7745.

    Article  Google Scholar 

  86. Lin, L.-Z., & Yeh, H.-R. (2013). A means-end chain of fuzzy conceptualization to elicit consumer perception in store image. International Journal of Hospitality Management, 33, 376–388.

    Article  Google Scholar 

  87. Marrocu, E., Paci, R., & Zara, A. (2015). Micro-economic determinants of tourist expenditure: A quantile regression approach. Tourism Management, 50, 13–30.

    Article  Google Scholar 

  88. Martin, J., Saayman, M., & du Plessis, E. (2019). Determining satisfaction of international tourist: A different approach. Journal of Hospitality and Tourism Management, 40, 1–10.

    Article  Google Scholar 

  89. Ming, M., Friedman, M., & Kandel, A. (1997). General fuzzy least squares. Fuzzy Sets and Systems, 88, 107–118.

    Article  Google Scholar 

  90. Mortazavi, R. (2018). Research note: Endogeneity of satisfaction as a predictor for spending. Annals of Tourism Research, 72, 168–171.

    Article  Google Scholar 

  91. Munier, C., & Camelis, C. (2013). Toward an identification of elements contributing to satisfaction with the tourism experience. Journal of Vacation Marketing, 19, 19–39.

    Article  Google Scholar 

  92. Ngai, E., & Wat, F. (2003). Design and development of a fuzzy expert system for hotel selection. Omega, 31, 275–286.

    Article  Google Scholar 

  93. Oliver, R. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 17, 460–469.

    Article  Google Scholar 

  94. Oliveri, A., Polizzi, G., & Parroco, A. (2018). Measuring tourist satisfaction through a dual approach: The 4q methodology. Social Indicators Research, 146, 1–22.

    Google Scholar 

  95. Pérez-Gladish, B., Gonzalez, I., Bilbao-Terol, A., & Arenas-Parra, M. (2010). Planning a tv advertising campaign: A crisp multiobjective programming model from fuzzy basic data. Omega, 38, 84–94.

    Article  Google Scholar 

  96. Rangel-Buitrago, N., Correa, I. D., Anfuso, G., Ergin, A., & Williams, A. T. (2013). Assessing and managing scenery of the Caribbean Clast of Columbia. Tourism Management, 35, 41–58.

    Article  Google Scholar 

  97. Saayman, M., & Saayman, A. (2012). Determinants of spending: An evaluation of three major sporting events. International Journal of Tourism Research, 14, 124–138.

    Article  Google Scholar 

  98. Sanna, U., Atzeni, C., & Spanu, N. (2008). A fuzzy number ranking in project selection for cultural heritage sites. Journal of Cultural Heritage, 9, 311–316.

    Article  Google Scholar 

  99. Sohrabi, B., Vanani, I. R., Tahmasebipur, K., & Fazli, S. (2012). An exploratory analysis of hotel selection factors: A comprehensive survey of Tehran hotels. International Journal of Hospitality Management, 31, 96–106.

    Article  Google Scholar 

  100. Song, H., Van der Veen, R., Li, G., & Chen, J. L. (2012). The Hong Kong tourist satisfaction index. Annals of Tourism Research, 39, 459–479.

    Article  Google Scholar 

  101. Tanaka, H., Uejima, S., & Asai, K. (1982). Linear regression analysis with fuzzy model. IEEE Transactions on Systems, Man and Cybernetics, SMC–12, 903–907.

    Google Scholar 

  102. Tanaka, H., & Watada, J. (1988). Possibilistic linear systems and their application to the linear regression model. Fuzzy Sets and Systems, 27, 275–289.

    Article  Google Scholar 

  103. Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica, 26, 24–36.

    Article  Google Scholar 

  104. Wang, Y., Ma, X., Lao, Y., & Wang, Y. (2014). A fuzzy-based customer clustering approach with hierarchical structure for logistics network optimization. Expert Systems with Applications, 41, 521–534.

    Article  Google Scholar 

  105. Wang, Y., Rompf, P., Severt, D., & Peerapatdit, N. (2006). Examining and identifying the determinants of travel expenditure patterns. International Journal of Tourism Research, 8, 333–346.

    Article  Google Scholar 

  106. Weagley, R. O., & Huh, E. (2004). Leisure expenditures of retired and near-retired households. Journal of Leisure Research, 36, 101–127.

    Article  Google Scholar 

  107. Wu, H.-C. (2003). Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data. Computational Statistics and Data Analysis, 42, 203–217.

    Article  Google Scholar 

  108. Wu, Y.-Y., Hsiao, H.-L., & Ho, Y.-F. (2010). Urban ecotourism: Defining and assessing dimensions using fuzzy number construction. Tourism Management, 31, 739–743.

    Article  Google Scholar 

  109. Yoon, Y., & Uysal, M. (2005). An examination of the effects of motivation and satisfaction on destination loyalty: A structural model. Tourism Management, 26, 45–56.

    Article  Google Scholar 

  110. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  111. Zhang, E., Prater, J., & Lipkin, I. (2013). Feedback reviews and bidding in online auctions: An integrated hedonic regression and fuzzy logic expert system approach. Decision Support Systems, 55, 894–902.

    Article  Google Scholar 

  112. Zhang, L., Qu, H., & Ma, J. E. (2010). Examining the relationship of exhibition attendees’ satisfaction and expenditure: The case of two major exhibitions in China. Journal of Convention & Event Tourism, 11, 100–118.

    Article  Google Scholar 

  113. Zheng, B., & Zhang, Y. (2013). Household expenditures for leisure tourism in the USA, 1996 and 2006. International Journal of Tourism Research, 15, 197–208.

    Article  Google Scholar 

  114. Zimmermann, H. J. (1996). Fuzzy sets and its application (3rd ed.). Norwell, MA: Kluwer Academic.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers and the editor for the useful feedbacks on previous versions of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo D’Urso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5, 6, 7, 8, 9 and 10.

Table 5 Estimated coefficients of the first stage models (Probit regression)
Table 6 Expenditure on accommodation: estimated coefficients of the second stage
Table 7 Expenditure on food and beverages: estimated coefficients of the second stage
Table 8 Expenditure on shopping: estimated coefficients of the second stage
Table 9 Expenditure on transportation: estimated coefficients of the second stage
Table 10 Expenditure on other services: estimated coefficients of the second stage

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Urso, P., Disegna, M. & Massari, R. Satisfaction and Tourism Expenditure Behaviour. Soc Indic Res 149, 1081–1106 (2020). https://doi.org/10.1007/s11205-020-02272-4

Download citation

Keywords

  • Satisfaction
  • Expenditures behaviour
  • Imprecise data
  • Likert-type scale
  • Fuzzy numbers
  • Fuzzy regression
  • Fuzzy Double-Hurdle