Measuring Unidimensional Inequality: Practical Framework for the Choice of an Appropriate Measure

Abstract

Inequality and its analysis have received increasing attention in the literature over the last decades, which has led to the development of a large number of inequality measurement methodologies. In the analysis of inequality, results rely heavily on the choice of a measurement methodology and, very often, different methodologies do not lead to the same rankings. Therefore, in the assessment of inequality, the choice of an appropriate measure is crucial. Important as this choice may be, to the best of the authors’ knowledge, there exists no research on the development of a systematic and unified framework for the selection of an adequate inequality measure depending on the context. In consideration of the foregoing, this paper provides a framework with practical guidelines for researchers and practitioners to facilitate the task of choosing the most appropriate inequality measure for their specific needs. The proposed guidelines are based on seven main properties of inequality indexes and are preceded by a comprehensive review of the different methods developed so far, focusing specifically on the advantages and drawbacks of each. Besides, they are accompanied by an empirical application of the different methodologies reviewed in order to better illustrate the various properties of the different inequality measures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abul Naga, R. H., & Yalcin, T. (2008). Inequality measurement for ordered response health data. Journal of Health Economics. https://doi.org/10.1016/j.jhealeco.2008.07.015.

    Article  Google Scholar 

  2. Allanson, P. (2017). Monitoring income-related health differences between regions in Great Britain: A new measure for ordinal health data. Social Science and Medicine,175, 72–80.

    Article  Google Scholar 

  3. Allison, R. A., & Foster, J. E. (2004). Measuring health inequality using qualitative data. Journal of Health Economics. https://doi.org/10.1016/j.jhealeco.2003.10.006.

    Article  Google Scholar 

  4. Amato, V. (1968). Metodologia Statistica Strutturale (Vol. 1). Bari: Cacucci.

    Google Scholar 

  5. Apouey, B. (2007). Measuring health polarization with self-assessed health data. Health Economics. https://doi.org/10.1002/hec.1284.

    Article  Google Scholar 

  6. Arnold, B. C. (2012). On the Amato inequality index. Statistics and Probability Letters. https://doi.org/10.1016/j.spl.2012.04.020.

    Article  Google Scholar 

  7. Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory,2, 244–263.

    Article  Google Scholar 

  8. Atkinson, A. B. (1983). Social justice and public policy. Sussex: Wheatsheaf Books.

    Google Scholar 

  9. Bonferroni, C. (1930). Elementi di Statistica Generale. Firenze: Seeber.

    Google Scholar 

  10. Bourguignon, F. (1979). Decomposable income inequality measures. Econometrica. https://doi.org/10.2307/1914138.

    Article  Google Scholar 

  11. Boyce, J. K., Zwickl, K. & Ash, M. (2016). Measuring environmental inequality. Ecological Economics. https://doi.org/10.1016/j.ecolecon.2016.01.014.

    Article  Google Scholar 

  12. Chakravarty, S. R. (1988). Extended Gini indices of inequality. International Economic Review,29(1), 147–156.

    Article  Google Scholar 

  13. Chiu, W. H. (2007). Intersecting Lorenz curves, the degree of downside inequality aversion, and tax reforms. Social Choice and Welfare. https://doi.org/10.1007/s00355-006-0170-7.

    Article  Google Scholar 

  14. Cobham, A., Schlögl, L., & Sumner, A. (2015). Inequality and the tails: The Palma proposition and ratio. Global Policy. https://doi.org/10.1111/1758-5899.12320.

    Article  Google Scholar 

  15. Cobham, A., & Sumner, A. (2013). Is it all about the tails? The Palma measure of income inequality. Center for Global Development Working Paper 343.

  16. Coulter, F. A. E., Cowell, F. A., & Jenkins, S. P. (1992). Differences in needs and assessment of income distributions. Bulletin of Economic Research. https://doi.org/10.1111/j.1467-8586.1992.tb00538.x.

    Article  Google Scholar 

  17. Cowell, F. A. (1980). Generalized entropy and the measurement of distributional change. European Economic Review. https://doi.org/10.1016/0014-2921(80)90051-3.

    Article  Google Scholar 

  18. Cowell, F. (1988). Inequality decomposition: Three bad measures. Bulletin of Economic Research,40(4), 309–312.

    Article  Google Scholar 

  19. Cowell, F. (2009). Measuring inequality. London: London School of Economics Perspectives in Economic Analysis.

    Google Scholar 

  20. Cowell, F. A., & Fiorio, C. V. (2011). Inequality decompositions—A reconciliation. The Journal of Economic Inequality. https://doi.org/10.1007/s10888-011-9176-1.

    Article  Google Scholar 

  21. Cowell, F. A., & Flachaire, E. (2017). Inequality with Ordinal Data. Economica. https://doi.org/10.1111/ecca.12232.

    Article  Google Scholar 

  22. Cowell, F. A., & Kuga, K. (1981). Additivity and the entropy concept: An axiomatic approach to inequality measurement. Journal of Economic Theory. https://doi.org/10.1016/0022-0531(81)90020-X.

    Article  Google Scholar 

  23. Creedy, J. (1977). The principle of transfers and the variance of logarithms. Oxford Bullletin of Economics and Statistics,39, 152–158.

    Google Scholar 

  24. Dagum, C. (1997). A new approach to the decomposition of the gini income inequality ratio. Empirical Economics,22, 515–531.

    Article  Google Scholar 

  25. Dalton, H. (1920). The measurement of the inequality of incomes. Royal Economic Society,30(119), 348–361.

    Google Scholar 

  26. De Maio, F. G. (2007). Income inequality measures. Journal of Epidemiology and Community Health. https://doi.org/10.1136/jech.2006.052969.

    Article  Google Scholar 

  27. Decancq, K., Decoster, A., & Schokkaert, E. (2009). The evolution of World inequality in well-being. World Development. https://doi.org/10.1016/j.worlddev.2007.12.006.

    Article  Google Scholar 

  28. Démurger, S., Fournier, M., & Li, S. (2006). Urban income inequality in China revisited (1988–2002). Economics Letters. https://doi.org/10.1016/j.econlet.2006.06.010.

    Article  Google Scholar 

  29. Donaldson, D., & Weymark, J. A. (1980). A single-parameter generalization of the Gini indices of inequality. Journal of Economic Theory. https://doi.org/10.1016/0022-0531(80)90065-4.

    Article  Google Scholar 

  30. Dorfman, R. (1979). A formula for the Gini coefficient. The Review of Economics and Statistics,61(1), 146–149.

    Article  Google Scholar 

  31. Druckman, A., & Jackson, T. (2008). Measuring resource inequalities: The concepts and methodology for an area-based Gini coefficient. Ecological Economics. https://doi.org/10.1016/j.ecolecon.2007.12.013.

    Article  Google Scholar 

  32. Duncan, O. D., & Duncan, B. (1955). A methodological analysis of segregation indexes. American Sociological Review,20(2), 210–217.

    Article  Google Scholar 

  33. Ebert, U. (2010). The decomposition of inequality reconsidered: Weakly decomposable measures. Mathematical Social Sciences. https://doi.org/10.1016/j.mathsocsci.2010.05.001.

    Article  Google Scholar 

  34. Eliazar, I. (2015a). The sociogeometry of inequality: Part I. Physica A: Statistical Mechanics and Its Applications. https://doi.org/10.1016/j.physa.2015.01.016.

    Article  Google Scholar 

  35. Eliazar, I. (2015b). The sociogeometry of inequality: Part II. Physica A: Statistical Mechanics and Its Applications. https://doi.org/10.1016/j.physa.2014.12.021.

    Article  Google Scholar 

  36. Eliazar, I. (2016). Harnessing inequality. Physics Reports. https://doi.org/10.1016/j.physrep.2016.07.005.

    Article  Google Scholar 

  37. Eliazar, I., & Sokolov, I. M. (2012). Measuring statistical evenness: A panoramic overview. Physica A: Statistical Mechanics and its Applications. https://doi.org/10.1016/j.physa.2011.09.007.

    Article  Google Scholar 

  38. Erreygers, G. (2006). Beyond the health Concentration Index: an Atkinson alternative for the measurement of the socioeconomic inequality of health. Paper presented at the conference Advancing Health Equity. Helsinki: WIDER-UNU.

  39. Erreygers, G. (2009a). Can a single indicator measure both attainment and shortfall inequality? Journal of Health Economics. https://doi.org/10.1016/j.jhealeco.2009.03.005.

    Article  Google Scholar 

  40. Erreygers, G. (2009b). Correcting the concentration index. Journal of Health Economics,28, 504–515.

    Article  Google Scholar 

  41. Erreygers, G. (2009c). Correcting the concentration index: A reply to Wagstaff. Journal of Health Economics,28, 521–524.

    Article  Google Scholar 

  42. Erreygers, G., Kessels, R., Chen, L., & Clarke, P. (2018). Subgroup decomposability of income-related inequality of health, with an application to Australia. Economic Record, 94, 39–50. https://doi.org/10.1111/1475-4932.12373.

    Article  Google Scholar 

  43. Fei, J. C. H., Ranis, G., & Kuo, S. W. Y. (1978). Growth and the family distribution of income by factor components. Quarterly Journal of Economics. https://doi.org/10.2307/1885997.

    Article  Google Scholar 

  44. Fernández-Tschieder, E., & Binkley, D. (2018). Linking competition with growth dominance and production ecology. Forest Ecology and Management. https://doi.org/10.1016/j.foreco.2018.01.052.

    Article  Google Scholar 

  45. Formby, J. P., & Seaks, T. G. (1980). Paglin’s Gini measure of inequality: A modification. American Economic Association,70(3), 479–482.

    Google Scholar 

  46. Foster, J. E. (1985). Inequality measurement. In H. P. Young (Ed.), Fair allocation. Providence: American Mathematical Society Proceedings in Applied Mathematics.

    Google Scholar 

  47. Foster, J. E., & Ok, E. A. (1999). Lorenz dominance and the variance of logarithms. Econometrica,67(4), 901–907.

    Article  Google Scholar 

  48. Foster, J. E., & Shneyerov, A. A. (1999). A general class of additively decomposable inequality measures. Economic Theory,111, 89–111.

    Article  Google Scholar 

  49. Foster, J. E., & Shneyerov, A. A. (2000). Path independent inequality measures. Journal of Economic Theory. https://doi.org/10.1006/jeth.1999.2565.

    Article  Google Scholar 

  50. Foster, J. E., & Shorrocks, A. F. (1988). Poverty orderings. Econometrica,56, 173–177.

    Article  Google Scholar 

  51. Francois, J., & Rojas-Romagosa, H. (2011). Household inequality, social welfare, and trade. Journal of Development Economics. https://doi.org/10.1016/j.jdeveco.2010.08.006.

    Article  Google Scholar 

  52. Futing Liao, T. (2006). Measuring and analyzing class inequality with the Gini index informed by model-based clustering. Sociological Methodology,36, 201–224.

    Article  Google Scholar 

  53. Gächter, M., & Theurl, E. (2011). Health status convergence at the local level: Empirical evidence from Austria. International Journal for Equity in Health. https://doi.org/10.1186/1475-9276-10-34.

    Article  Google Scholar 

  54. Gayant, J.-P., & Le Pape, N. (2017). Increasing Nth degree inequality. Journal of Mathematical Economics. https://doi.org/10.1016/j.jmateco.2017.02.010.

    Article  Google Scholar 

  55. Ghosh, A., Chattopadhyay, N., & Chakrabarti, B. K. (2014). Inequality in societies, academic institutions and science journals: Gini and k-indices. Physica A: Statistical Mechanics and Its Applications. https://doi.org/10.1016/j.physa.2014.05.026.

    Google Scholar 

  56. Gini, C. (1912). Variabilità e mutabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. Bologna: C. Cuppini.

    Google Scholar 

  57. Giorgi, G. M., & Crescenzi, M. (2001). A proposal of poverty measures based on the Bonferroni inequality index. Metron,59(3–4), 3–16.

    Google Scholar 

  58. Hagedorn, L., Nora, A., & Pascarella, E. (1996). Preoccupational segregation among first-year college students: An application of the Duncan dissimilarity index. Journal of College Student Development,37, 425–437.

    Google Scholar 

  59. Hao, L., & Naiman, D. Q. (2010). Assessing inequality. Newcastle upon Tyne: SAGE.

    Google Scholar 

  60. Harper, S., & Lynch, J. (2005). Methods for measuring cancer disparities: Using data relevant to healthy people 2010 cancer related objectives. Michigan: University of Michigan, Center for Social Epidemiology and Population Health.

    Google Scholar 

  61. Hart, P. E. (1975). Moment distributions in economics: An exposition. Journal of the Royal Statistical Society, A,138, Part 3, 423–434.

    Article  Google Scholar 

  62. Harvey, J. (2005). A note on the “natural rate of subjective inequality” hypothesis and the approximate relationship between the Gini coefficient and the Atkinson index. Journal of Public Economics. https://doi.org/10.1016/j.jpubeco.2004.05.002.

    Article  Google Scholar 

  63. Herrero, C., Martínez, R., & Villar, A. (2018). Population structure and the Human Development Index. Social Indicators Research. https://doi.org/10.1007/s11205-018-1852-0.

    Article  Google Scholar 

  64. Howarth, R. B., & Kennedy, K. (2016). Economic growth, inequality, and well-being. Ecological Economics. https://doi.org/10.1016/j.ecolecon.2015.10.005.

    Article  Google Scholar 

  65. Hutchens, R. M. (1991). Segregation curves, Lorenz curves, and inequality in the distribution of people across occupations. Mathematical Social Sciences. https://doi.org/10.1016/0165-4896(91)90038-S.

    Article  Google Scholar 

  66. Hutchens, R. (2015). Symmetric measures of segregation, segregation curves, and Blackwell’s criterion. Mathematical Social Sciences. https://doi.org/10.1016/j.mathsocsci.2014.11.007.

    Article  Google Scholar 

  67. Imedio-Olmedo, L. J., Bárcena-Martín, E., & Parrado-Gallardo, E. M. (2011). A class of Bonferroni inequality indices. Journal of Public Economic Theory. https://doi.org/10.1111/j.1467-9779.2010.01494.x.

    Article  Google Scholar 

  68. James, D. R., & Taeuber, K. E. (1985). Measures of segregation. Sociological Methodology,15, 1–32.

    Article  Google Scholar 

  69. Kakwani, N. (1980). Income inequality and poverty: Methods of estimation and policy applications. New York: Oxford University Press.

    Google Scholar 

  70. Kakwani, N., Wagstaff, A., & van Doorslaer, E. (1997). Socioeconomic inequalities in health: Measurement, computation, and statistical inference. Journal of Econometrics. https://doi.org/10.1016/S0304-4076(96)01807-6.

    Article  Google Scholar 

  71. Kalmijn, W., & Veenhoven, R. (2005). Measuring inequality of happiness in nations: In search for proper statistics. Journal of Happiness Studies. https://doi.org/10.1007/s10902-005-8855-7.

    Article  Google Scholar 

  72. Kjellsson, G., & Gerdtham, U.-G. (2013). On correcting the concentration index for binary variables. Journal of Health Economics. https://doi.org/10.1016/j.jhealeco.2012.10.012.

    Article  Google Scholar 

  73. Kobayashi, D., Otsubo, T., & Imanaka, Y. (2015). The effect of centralization of health care services on travel time and its equality. Health Policy. https://doi.org/10.1016/j.healthpol.2014.11.008.

    Article  Google Scholar 

  74. Kobus, M., & Miłoś, P. (2012). Inequality decomposition by population subgroups for ordinal data. Journal of Health Economics. https://doi.org/10.1016/j.jhealeco.2011.11.005.

    Article  Google Scholar 

  75. Kobus, M., Półchłopek, O., & Yalonetzky, G. (2018). Inequality and welfare in Quality of Life among OECD countries: Non-parametric treatment of ordinal data. Social Indicators Research. https://doi.org/10.1007/s11205-018-1962-8.

    Article  Google Scholar 

  76. Kondor, Y. (1971). An old-new measure of income inequality. Econometrica. https://doi.org/10.2307/1909676.

    Article  Google Scholar 

  77. Lahelma, E., & Valkonen, T. (1990). Health and social inequities in Finland and elsewhere. Social Science & Medicine. https://doi.org/10.1016/0277-9536(90)90272-T.

    Article  Google Scholar 

  78. Lambert, P., & Aronson, J. (1993). Inequality decomposition analysis and the Gini coefficient revisited. The Economic Journal. https://doi.org/10.2307/2234247.

    Article  Google Scholar 

  79. Lasso de la Vega, C., & Urrutia, A. (2008). The “Extended” Atkinson family: The class of multiplicatively decomposable inequality measures, and some new graphical procedures for analysts. Journal of Economic Inequality. https://doi.org/10.1007/s10888-006-9053-5.

    Article  Google Scholar 

  80. Latty, K. (2011). Income distribution, growth and social-welfare: towards an economic solution to the growth-equality trade-off problem. University of Sydney. http://hdl.handle.net/2123/8260.

  81. Lazar, A., & Silber, J. (2013). On the cardinal measurement of health inequality when only ordinal information is available on individual health status. Health Economics. https://doi.org/10.1002/hec.1821.

    Article  Google Scholar 

  82. Le Grand, J. (1989). An international comparison of distributions of ages-at-death. In J. Fox (Ed.), Health inequality in European countries. Gower: Aldershot.

    Google Scholar 

  83. Le Grand, J., & Rabin, M. (1986). Trends in British health inequality. In A. J. Culyer & B. Jonsson (Eds.), Public and private health services: Complementarities and conflicts (pp. 1931–1983). Oxford: Basil Blackwell.

    Google Scholar 

  84. Leclerc, A., Lert, F., & Fabien, C. (1990). Differential mortality: some comparisons between England and Wales, Finland and France, based on inequality measures. International Journal of Epidemiology. https://doi.org/10.1093/ije/19.4.1001.

    Article  Google Scholar 

  85. Leon, D., Vågerö, D., & Olausson, P. (1992). Social class differences in infant mortality in Sweden: A comparison with England and Wales. BMJ Clinical Research. https://doi.org/10.1136/bmj.305.6855.687.

    Article  Google Scholar 

  86. Lerman, R. I., & Yitzhaki, S. (1984). A note on the calculation and interpretation of the Gini index. Economics Letters. https://doi.org/10.1016/0165-1765(84)90126-5.

    Article  Google Scholar 

  87. Lerman, R. I., & Yitzhaki, S. (1985). Income inequality effects by income source: A new approach and applications to the United States. The Review of Economics and Statistics,87(1), 184–193.

    Google Scholar 

  88. Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the American Statistical Association,9(70), 209–219.

    Article  Google Scholar 

  89. Lv, G., Wang, Y., & Xu, Y. (2015). On a new class of measures for health inequality based on ordinal data. The Journal of Economic Inequality. https://doi.org/10.1007/s10888-014-9289-4.

    Article  Google Scholar 

  90. Mackenbach, J. P. (1992). Socio-economic health differences in the Netherlands: A review of recent empirical findings. Social Science and Medicine. https://doi.org/10.1016/0277-9536(92)90264-Q.

    Article  Google Scholar 

  91. Madden, D. (2010). Ordinal and cardinal measures of health inequality: An empirical comparison. Health Economics. https://doi.org/10.1002/hec.1472.

    Article  Google Scholar 

  92. Maffenini, W., & Polisicchio, M. (2014). The potential of the I(p) inequality curve in the analysis of empirical distributions. Statistica & Applicazioni. https://doi.org/10.1400/229468.

    Article  Google Scholar 

  93. Majumdar, A. (2015). An alternative measure of economic inequality under the Lorenz curve framework in analogue to the index of refraction of geometrical optics. Economics Bulletin,35, 1076–1086.

    Google Scholar 

  94. Mehran, F. (1976). Linear measures of income inequality. Econometrica,44, 805–809.

    Article  Google Scholar 

  95. Mussard, S., Seyte, F., & Terraza, M. (2003). Decomposition of Gini and the generalized entropy inequality measures. Economics Bulletin,4(7), 1–6.

    Google Scholar 

  96. Nair, K. R. M., & Sreelakshmi, N. (2016). The New Zenga curve in the context of reliability analysis. Communications in Statistics - Theory and Methods,10, 12. https://doi.org/10.1080/03610926.2013.763510.

    Article  Google Scholar 

  97. Ogaki, M., Ostry, J., & Reinhart, C. (1996). Saving behavior in low- and middle-income developing countries: A comparison. Staff Papers (International Monetary Fund). https://doi.org/10.2307/3867352.

    Article  Google Scholar 

  98. Osberg, L. (2017). On the limitations of some current usages of the Gini index. Review of Income and Wealth. https://doi.org/10.1111/roiw.12256.

    Article  Google Scholar 

  99. Paglin, M. (1975). The measurement and trend of inequality: A basic revision. Economics Letters,65(598–609), 389–393.

    Google Scholar 

  100. Palma, J. G. (2006). Globalizing inequality: “centrifugal” and “centripetal” forces at work. DESA working paper, 35.

  101. Palma, J. G. (2014). Has the income share of the middle and upper-middle been stable around the “50/50 Rule”, or has it converged towards that level? The “Palma Ratio” revisited. Development and Change. https://doi.org/10.1111/dech.12133.

    Article  Google Scholar 

  102. Pamuk, E. R. (1985). Social class inequality in mortality from 1921 to 1972 in England and Wales. Population Studies. https://doi.org/10.1080/0032472031000141256.

    Article  Google Scholar 

  103. Paul, S. (2004). Income sources effects on inequality. Journal of Development Economics. https://doi.org/10.1016/j.jdeveco.2003.02.004.

    Article  Google Scholar 

  104. Pearcy, J. N., & Keppel, K. G. (2002). A summary measure of health disparity. Public Health Reports,117(3), 273–280.

    Article  Google Scholar 

  105. Pietra, G. (1915). Delle relazioni tra gli indici di variabilità. Nota I. Atti Regio Istituto Veneto,74, Parte II, 775–792.

    Google Scholar 

  106. Polisicchio, M., & Porro, F. (2009). A comparison between Lorenz L(p) curve and Zenga I(p) curve. Statistica Applicata - Italian Journal of Applied Statistics,21(3–4), 289–301.

    Google Scholar 

  107. Preston S. H., Haines M. R., & Pamuk E. (1981). Effects of industrialization and urbanization on mortality in developed countries. In Solicited papers Vol 2, HJSSP 19th international population conference, Manila. IUSSP, Liege.

  108. Pyatt, G. (1976). On the interpretation and disaggregation of Gini coefficients. The Economic Journal. https://doi.org/10.2307/2230745.

    Article  Google Scholar 

  109. Ruitenbeek, H. J. (1996). Distribution of ecological entitlements: Implications for economic security and population movement. Ecological Economics. https://doi.org/10.1016/0921-8009(95)00103-4.

    Article  Google Scholar 

  110. Sastry, D. V. S., & Kelkar, U. R. (1994). Note on the decomposition of Gini inequality. The Review of Economics and Statistics,76(3), 584–586.

    Article  Google Scholar 

  111. Seidl, R., Albrich, K., Thom, D., & Rammer, W. (2018). Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2017.12.014.

    Article  Google Scholar 

  112. Sen, A. (1974). Informational bases of alternative welfare approaches. Aggregation and income distribution. Journal of Public Economics. https://doi.org/10.1016/0047-2727(74)90006-1.

    Article  Google Scholar 

  113. Sen, A. (1997). From income inequality to economic inequality. Southern Economic Journal. https://doi.org/10.2307/1060857.

    Article  Google Scholar 

  114. Shalit, H. (1985). Calculating the Gini index of inequality for individual data. Oxford Bulletin of Economics and Statistics. https://doi.org/10.1111/j.1468-0084.1985.mp47002006.x.

    Article  Google Scholar 

  115. Shorrocks, A. F. (1980). The class of additively decomposable inequality measures. Econometrica,48(3), 613–625.

    Article  Google Scholar 

  116. Shorrocks, A. F. (1982). Inequality decomposition by factor components. Econometrica,50(1), 193–211.

    Article  Google Scholar 

  117. Shorrocks, A. F. (1984). Inequality decomposition by population subgroups. Econometrica. https://doi.org/10.2307/1913511.

    Article  Google Scholar 

  118. Silber, J. (1989). Factor components. Population Subgroups and the Computation of the Gini Index of Inequality,71(1), 107–115.

    Google Scholar 

  119. Silber, J. (1999). Handbook of income inequality measurement. New York: Springer.

    Google Scholar 

  120. Stymne, S., & Jackson, T. (2000). Intra-generational equity and sustainable welfare: A time series analysis for the UK and Sweden. Ecological Economics. https://doi.org/10.1016/S0921-8009(99)00144-5.

    Article  Google Scholar 

  121. Subramanian, S. (2010). Tricks with the Lorenz curve. Economics Bulletin,30(2), 1594–1602.

    Google Scholar 

  122. Subramanian, S. (2015). More tricks with the Lorenz curve. Economics Bulletin,35(1), 580–589.

    Google Scholar 

  123. Taeuber, K. E., & Taeuber, A. F. (1976). A practitioner’s perspective on the Index of dissimilarity. American Sociological Review,41(5), 884–889.

    Article  Google Scholar 

  124. Tavits, M., & Potter, J. D. (2014). The effect of inequality and social identity on party strategies. American Journal of Political Science. https://doi.org/10.1111/ajps.12144.

    Article  Google Scholar 

  125. Theil, H. (1967). Economics and information theory. Amsterdam: North-Holland.

    Google Scholar 

  126. Toyoda, T. (1975). Inequalities of income distributions: Their comparisons and inequality measures. Kokumin Keizai,134, 15–41. In Japanese.

    Google Scholar 

  127. Toyoda, T. (1980). Decomposability of inequality measures. Economic Studies Quarterly,31, 207–216.

    Google Scholar 

  128. United Nations (1999). Standard country or area codes for statistical use. ST/ESA/STAT/SER.M/49/Rev.4.

  129. United Nations. (2018). Human development indices and indicators: 2018 statistical update. Technical notes. https://unstats.un.org/unsd/publication/SeriesM/Series_M49_Rev3(1996)_en.pdf. Accessed September 10, 2019.

  130. United Nations Development Programme. (2016). Human Development Report 2016: Human Development for Everyone. Resource document. http://hdr.undp.org/sites/default/files/2016_human_development_report.pdf. Accessed July 25, 2018.

  131. van Doorslaer, E., & Jones, A. M. (2003). Inequalities in self-reported health: Validation of a new approach to measurement. Journal of Health Economics. https://doi.org/10.1016/S0167-6296(02)00080-2.

    Article  Google Scholar 

  132. van Doorslaer, E., Wagstaff, A., Bleichrodt, H., Calonge, S., Gerdtham, U.-G., Gerfin, M., et al. (1997). Income-related inequalities in health: Some international comparisons. Journal of Health Economics. https://doi.org/10.1016/S0167-6296(96)00532-2.

    Article  Google Scholar 

  133. van Doorslaer, E., Wagstaff, A., van der Burg, H., Christiansen, T., Graeve, D. De, Duchesne, I., et al. (2000). Equity in the delivery of health care in Europe and the US. Journal of Health Economics. https://doi.org/10.1016/S0167-6296(00)00050-3.

    Article  Google Scholar 

  134. Voas, D., & Williamson, P. (2004). The scale of dissimilarity: Concepts, measurement and an application to socio-economic variation across England and Wales. Transactions of the Institute of British Geographers. https://doi.org/10.1111/j.0020-2754.2000.00465.x.

    Article  Google Scholar 

  135. Wagstaff, A. (2005). The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. Health Economics. https://doi.org/10.1002/hec.953.

    Article  Google Scholar 

  136. Wagstaff, A. (2009). Correcting the concentration index: A comment. Journal of Health Economics,28, 516–520.

    Article  Google Scholar 

  137. Wagstaff, A. (2011). The concentration index of binary outcome revisited. Health Economics,20, 1155–1160.

    Article  Google Scholar 

  138. Wagstaff, A., Paci, P., & Van Doorslaer, E. (1991). On the measurement of inequalities in health. Social Science & Medicine. https://doi.org/10.1016/0277-9536(91)90212-U.

    Article  Google Scholar 

  139. Wagstaff, A., & Van Doorslaer, E. (1994). Measuring inequalities in health in the presence of multiple-category morbidity indicators. Health Economics. https://doi.org/10.1002/hec.4730030409.

    Article  Google Scholar 

  140. Wagstaff, A., Van Doorslaer, E., & Paci, P. (1989). Equity in the finance and delivery of health care: Some tentative cross-country comparisons. Oxford Review of Economic Policy. https://doi.org/10.1093/oxrep/5.1.89.

    Article  Google Scholar 

  141. Wagstaff, A., van Doorslaer, E., van der Burg, H., Calonge, S., Christiansen, T., Citoni, G., et al. (1999). Equity in the finance of health care: Some further international comparisons. Journal of Health Economics. https://doi.org/10.1016/S0167-6296(98)00044-7.

    Article  Google Scholar 

  142. Weiss, D. J., Nelson, A., Gibson, H. S., Temperley, W., Peedell, S., Lieber, A., et al. (2018). A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature. https://doi.org/10.1038/nature25181.

    Article  Google Scholar 

  143. Weymark, J. A. (1981). Generalized Gini inequality indices. Mathematical Social Sciences. https://doi.org/10.1016/0165-4896(81)90018-4.

    Article  Google Scholar 

  144. Wing, S., Casper, M., Davis, W., Hayes, C., Riggan, W., & Tyroler, H. A. (1990). Trends in the geographic inequality of cardiovascular disease mortality in the United States, 1962-1982. Social Science & Medicine (1982). https://doi.org/10.1016/0277-9536(90)90181-Q.

    Article  Google Scholar 

  145. Xu, K. (2003). How has the literature on Gini’s index evolved in the past 80 years? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.423200.

    Article  Google Scholar 

  146. Yalonetzky, G. (2015). Index of dissimilarity. In The Wiley Blackwell encyclopedia of race, ethnicity, and nationalism. American Cancer Society. http://doi.org/10.1002/9781118663202.wberen484.

  147. Yeracaris, C. A., & Kim, J. H. (1978). Socioeconomic differentials in selected causes of death. American Journal of Public Health,68(4), 342–351.

    Article  Google Scholar 

  148. Yitzhaki, S. (1983). On an extension of the Gini inequality index. International Economic Review. https://doi.org/10.2307/2648789.

    Article  Google Scholar 

  149. Yitzhaki, S., & Schechtman, E. (2013). The Gini methodology: A primer on a statistical methodology. Springer Series in Statistics. https://doi.org/10.1007/978-1-4614-4720-7.

    Article  Google Scholar 

  150. Zenga, M. (1984). Tendenza alla massima ed alla minina concentrazione per variabili casuali continue. Statistica, 44, 3–27.

  151. Zenga, M. (2007). Inequality curve and inequality index based on the ratios between lower and upper arithmetic means. Statistica & Applicazioni,5, 3–28.

    Google Scholar 

  152. Zenga, M., Pasquazzi, L., Polisicchio, M., & Zenga, M. (2011). More on M.M. Zenga’s new three-parameter distribution for nonnegative variables. Statistica & Applicazioni,9(1), 5–33.

    Google Scholar 

  153. Zheng, B. (2007). Unit-consistent decomposable inequality measures. Economica. https://doi.org/10.1111/j.1468-0335.2006.00524.x.

    Article  Google Scholar 

  154. Zheng, B. (2008). Measuring inequality with ordinal data: A note. In J. Bishop & B. Zheng (Eds.), Research on Economic Inequality (Vol. 16, pp. 177–188). Emerald Group: Bingley.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions and comments, which led to an improved version of this paper. Irene Josa was supported by the Catalan Government through the grant of Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR), with reference number 2018 FI_B 00655. Besides, the authors are also grateful to Mon Culleré for his valuable insights into the topic and to Nirvan Makoond for proof reading.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Josa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 shows how countries have been grouped according to the indicator “mean years of schooling”. The value of 15 has been chosen as the maximum as it is considered the projected maximum of the indicator for 2025 (United Nations 2018). The number of countries in each group is also shown for 6 years for illustrative purposes.

Table 2 Groups used for the empirical application of inequality between countries grouped by socioeconomic classes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Josa, I., Aguado, A. Measuring Unidimensional Inequality: Practical Framework for the Choice of an Appropriate Measure. Soc Indic Res 149, 541–570 (2020). https://doi.org/10.1007/s11205-020-02268-0

Download citation

Keywords

  • Unidimensional inequality
  • Dominance
  • Cardinal approach
  • Ordinal approach
  • Inequality index