Constructing Composite Indicators with Individual Judgements and Best–Worst Method: An Illustration of Value Measure

Abstract

In practice, a variety of composite indicators are created using the arithmetic average of different sub-indicators. However, this scheme is typically criticized of the possibility of compensation. For this reason, this paper re-constructs these composite indicators by means of a new methodology. Comprehensive individual judgements among the sub-indicators have been considered to determine the maximum total utilities. Then the best–worst method is introduced to determine the preference associated with various individual judgements. An illustration of Value Measure of health systems is presented to demonstrate the validity and usefulness of our methodology.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    https://www.futurehealthindex.com/value-measure/.

References

  1. Areal, F. J., & Riesgo, L. (2015). Probability functions to build composite indicators: A methodology to measure environmental impacts of genetically modified crops. Ecological Indicators, 52, 498–516.

    Article  Google Scholar 

  2. Badea, A. C., Claudio, M. R. S., Tarantola, S., & Bolado, R. (2011). Composite indicators for security of energy supply using ordered weighted averaging. Reliability Engineering & System Safety, 96(6), 651–662.

    Article  Google Scholar 

  3. Barron, F. H., & Barrett, B. E. (1996). Decision quality using ranked attribute weights. Management Science, 42(11), 1515–1523.

    Article  Google Scholar 

  4. Becker, W., Saisana, M., Paruolo, P., & Vandecasteele, I. (2017). Weights and importance in composite indicators: Closing the gap. Ecological Indicators, 80, 12–22.

    Article  Google Scholar 

  5. Bordley, R. F. (1982). A multiplicative formula for aggregating probability assessments. Management Science, 28(10), 1137–1148.

    Article  Google Scholar 

  6. Cherchye, L., Moesen, W., Rogge, N., & Van Puyenbroeck, T. (2007). An introduction to ‘benefit of the doubt’ composite indicators. Social Indicators Research, 82(1), 111–145.

    Article  Google Scholar 

  7. Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T., Saisana, M., Saltelli, A., et al. (2008). Creating composite indicators with DEA and robustness analysis: The case of the Technology Achievement Index. Journal of the Operational Research Society, 59(2), 239–251.

    Article  Google Scholar 

  8. Claveria, O., Monte, E., & Torra, S. (2018). A data-driven approach to construct survey-based indicators by means of evolutionary algorithms. Social Indicators Research, 135(1), 1–14.

    Article  Google Scholar 

  9. Ding, Y., Fu, Y., Lai, K. K., & Leung, W. J. (2018). Using ranked weights and acceptability analysis to construct composite indicators: A case study of regional sustainable society index. Social Indicators Research, 139(3), 871–885.

    Article  Google Scholar 

  10. Ebert, U., & Welsch, H. (2004). Meaningful environmental indices: A social choice approach. Journal of Environmental Economics and Management, 47(2), 270–283.

    Article  Google Scholar 

  11. Fusco, E. (2015). Enhancing non-compensatory composite indicators: A directional proposal. European Journal of Operational Research, 242(2), 620–630.

    Article  Google Scholar 

  12. Gnaldi, M., & Del Sarto, S. (2018). Variable weighting via multidimensional IRT models in composite indicators construction. Social Indicators Research, 136(3), 1139–1156.

    Article  Google Scholar 

  13. Hatefi, S., & Torabi, S. (2010). A common weight MCDA-DEA approach to construct composite indicators. Ecological Economics, 70(1), 114–120.

    Article  Google Scholar 

  14. Hochbaum, D. S., & Levin, A. (2006). Methodologies and algorithms for group-rankings decision. Management Science, 52(9), 1394–1408.

    Article  Google Scholar 

  15. Karagiannis, G. (2017). On aggregate composite indicators. Journal of the Operational Research Society, 68(7), 741–746.

    Article  Google Scholar 

  16. Lauro, N. C., Grassia, M. G., & Cataldo, R. (2018). Model based composite indicators: New developments in partial least squares-path modeling for the building of different types of composite indicators. Social Indicators Research, 135(2), 421–455.

    Article  Google Scholar 

  17. Lee, S., & Yu, J. (2013). Composite indicator development using utility function and fuzzy theory. Journal of the Operational Research Society, 64(8), 1279–1290.

    Article  Google Scholar 

  18. Luzzati, T., & Gucciardi, G. (2015). A non-simplistic approach to composite indicators and rankings: An illustration by comparing the sustainability of the EU countries. Ecological Economics, 113, 25–38.

    Article  Google Scholar 

  19. Morris, P. A. (1977). Combining expert judgments: A Bayesian approach. Management Science, 23(7), 679–693.

    Article  Google Scholar 

  20. Munda, G. (2012). Choosing aggregation rules for composite indicators. Social Indicators Research, 109(3), 337–354.

    Article  Google Scholar 

  21. Munda, G., & Nardo, M. (2009). Noncompensatory/nonlinear composite indicators for ranking countries: A defensible setting. Applied Economics, 41(12), 1513–1523.

    Article  Google Scholar 

  22. Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., & Giovannini, E. (2005). Handbook on constructing composite indicators. Paris: OECD Publishing.

    Google Scholar 

  23. Peng, C., Wu, X., Fu, Y., & Lai, K. K. (2017). Alternative approaches to constructing composite indicators: An application to construct a sustainable energy index for APEC economies. Operational Research, 17(3), 747–759.

    Article  Google Scholar 

  24. Rezaei, J. (2015). Best–worst multi-criteria decision-making method. Omega, 53, 49–57.

    Article  Google Scholar 

  25. Rezaei, J. (2016). Best–worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130.

    Article  Google Scholar 

  26. Rogge, N. (2018). On aggregating benefit of the doubt composite indicators. European Journal of Operational Research, 264(1), 364–369.

    Article  Google Scholar 

  27. Rogge, N., & Van Nijverseel, I. (2018). Quality of life in the European Union: A multidimensional analysis. Social Indicators Research, 141(2), 765–789. https://doi.org/10.1007/s11205-018-1854-y.

    Article  Google Scholar 

  28. Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy process. Management Science, 32(7), 841–855.

    Article  Google Scholar 

  29. Saisana, M., & Tarantola, S. (2002). State-of-the-art report on current methodologies and practices for composite indicator development. European Commission, Joint Research Centre.

  30. Saltelli, A. (2007). Composite indicators between analysis and advocacy. Social Indicators Research, 81(1), 65–77.

    Article  Google Scholar 

  31. Shen, Y., Hermans, E., Brijs, T., & Wets, G. (2013). Data envelopment analysis for composite indicators: A multiple layer model. Social Indicators Research, 114(2), 739–756.

    Article  Google Scholar 

  32. Song, L., & Liu, F. (2018). An improvement in DEA cross-efficiency aggregation based on the Shannon entropy. International Transactions in Operational Research, 25(2), 705–714.

    Article  Google Scholar 

  33. Song, L., Fu, Y., Zhou, P., & Lai, K. K. (2017). Measuring national energy performance via energy trilemma index: A stochastic multicriteria acceptability analysis. Energy Economics, 66, 313–319.

    Article  Google Scholar 

  34. Van Puyenbroeck, T., & Rogge, N. (2017). Geometric mean quantity index numbers with Benefit-of-the-Doubt weights. European Journal of Operational Research, 256(3), 1004–1014.

    Article  Google Scholar 

  35. Verbunt, P., & Rogge, N. (2018). Geometric composite indicators with compromise Benefit-of-the-Doubt weights. European Journal of Operational Research, 264(1), 388–401.

    Article  Google Scholar 

  36. Wang, H. (2015). A generalized MCDA-DEA (multi-criterion decision analysis-data envelopment analysis) approach to construct slacks-based composite indicator. Energy, 80, 114–122.

    Article  Google Scholar 

  37. Wu, S., Fu, Y., Shen, H., & Liu, F. (2018). Using ranked weights and Shannon entropy to modify regional sustainable society index. Sustainable cities and society, 41, 443–448.

    Article  Google Scholar 

  38. Yakowitz, D., Lane, L., & Szidarovszky, F. (1993). Multi-attribute decision making: dominance with respect to an importance order of the attributes. Applied Mathematics and Computation, 54(2–3), 167–181.

    Article  Google Scholar 

  39. Zhang, L., & Zhou, P. (2018). A non-compensatory composite indicator approach to assessing low-carbon performance. European Journal of Operational Research, 270(1), 352–361.

    Article  Google Scholar 

  40. Zhou, P., Delmas, M., & Kohli, A. (2017). Constructing meaningful environmental indices: A nonparametric frontier approach. Journal of Environmental Economics and Management, 85, 21–34.

    Article  Google Scholar 

  41. Zhou, P., & Ang, B. (2009). Comparing MCDA aggregation methods in constructing composite indicators using the Shannon-Spearman measure. Social Indicators Research, 94(1), 83–96.

    Article  Google Scholar 

  42. Zhou, P., Ang, B., & Poh, K. (2006). Comparing aggregating methods for constructing the composite environmental index: An objective measure. Ecological Economics, 59(3), 305–311.

    Article  Google Scholar 

  43. Zhou, P., Ang, B., & Poh, K. (2007). A mathematical programming approach to constructing composite indicators. Ecological Economics, 62(2), 291–297.

    Article  Google Scholar 

  44. Zhou, P., Ang, B., & Zhou, D. (2010). Weighting and aggregation in composite indicator construction: A multiplicative optimization approach. Social Indicators Research, 96(1), 169–181.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yelin Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Fu, Y. Constructing Composite Indicators with Individual Judgements and Best–Worst Method: An Illustration of Value Measure. Soc Indic Res 149, 1–14 (2020). https://doi.org/10.1007/s11205-019-02236-3

Download citation

Keywords

  • Composite indicators
  • Individual judgement
  • Best–worst method
  • Value Measure