Skip to main content

Quality Assessment of the Oncology Health Service in a Public Hospital

Abstract

Quality assessment is a crucial issue in the strategic management of the public health sector. The objective of this study is to investigate the patients’ perception of the health system quality and explore the relationships between doctors and long-term cancer patients. The data under study have been collected during a survey conducted with long-term cancer patients who follow an oncological therapy in a Public Hospital. In the study, exploratory factorial analysis is developed and two structural equation models are proposed. The first model describes the service quality as perceived by the patients, which is influenced by four important factors, namely tangible aspects, reliability, empathy (doctor–patient human relations) and hospital organization. The second model describes the relationship between doctors and long-term cancer patients, which is influenced by three factors, that is reliability, empathy and hospital organization. The discussion highlights the contribution that the results of the study may make to the investigation of the possible strategies for improving health care service quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Anderson, L. A., & Dedrick, R. F. (1990). Development of the trust in physicians scale: A measure to assess interpersonal trust in patient-physician relationships. Psychological Reports, 67(3f), 1091–1100.

    Google Scholar 

  • Arbuckle, J. L. (1997). Amos users’guide version 3.6. Chicago: Small Waters Corporation.

    Google Scholar 

  • Babakus, E., & Mangold, W. G. (1992). Adapting the SERVQUAL scale to hospital services: An empirical investigation. Health Services Research, 26(6), 767–86.

    Google Scholar 

  • Barnett, V. (1991). Sample survey principles and methods. London: Edward Arnold.

    Google Scholar 

  • Bentler, P. M. (1990). Comparative Fit Indexes in Structural Models. Psychological Bulletin, 10(2), 238–246.

    Google Scholar 

  • Bentler, P. M., & Bonett, D. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606.

    Google Scholar 

  • Bollen, K. (1989). Structural equations with latent variables. New York: Wiley.

    Google Scholar 

  • Bouranta, N., Chitiris, L., & Paravantis, J. (2009). The relationship between internal and external service quality. International Journal of Contemporary Hospitality Management, 21(3), 275–293.

    Google Scholar 

  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. Sage Focus Editions, 154, 136–136.

    Google Scholar 

  • Byrne, B. (2001). Structural equation modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. International Journal of Testing, 1(1), 55–86.

    Google Scholar 

  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276.

    Google Scholar 

  • Cerny, C. A., & Kaiser, H. F. (1977). A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate Behavioral Research, 12(1), 43–47.

    Google Scholar 

  • Child, D. (1990). The essentials of factor analysis (II ed.). New York: Cassell Educational.

    Google Scholar 

  • Cochran, W. G. (2007). Sampling techniques. New York: Wiley.

    Google Scholar 

  • Coenders, G., Batista-Foguet, J. M., & Saris, W. E. (2008). Simple, efficient and distribution-free approach to interaction effects in complex structural equation models. Quality & Quantity, 42(3), 369–396.

    Google Scholar 

  • Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.

    Google Scholar 

  • Devlin, S. J., Dong, H. K., & Brown, M. (1993). Selecting a scale for measuring quality. Marketing Research, 5, 12–17.

    Google Scholar 

  • Dinc, L., Korkmaz, F., & Karabulut, E. (2013). A validity and reliability study of the Multidimensional Trust in Health-Care Systems Scale in a Turkish patient population. Social Indicators Research, 113(1), 107–120.

    Google Scholar 

  • Ding, L., Velicer, W. F., & Harlow, L. L. (1995). Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices. Structural Equation Modeling: A Multidisciplinary Journal, 2(2), 119–143.

    Google Scholar 

  • Donabedian, A. (1980). The definition of quality and approaches to its assessment. Health Services Research, 16(2), 236.

    Google Scholar 

  • Dzubian, C. D., & Shirkey, E. C. (1974). When is a correlation matrix appropriate for factor analysis. Psychological Bulletin, 81(6), 358–361.

    Google Scholar 

  • Everitt, B., & Hothorn, T. (2011). An introduction to applied multivariate analysis with R. Berlin: Springer.

    Google Scholar 

  • Finney, S. J., & DiStefano, C. (2008). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. D. Mueller (Eds.), Structural Equation Modeling: A Second Course (pp. 269-314). Information Age Publishing.

  • Gefen, D., Straub, D., & Boudreau, M. C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(1), 7.

    Google Scholar 

  • Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica, 40(6), 979–1001.

    Google Scholar 

  • Goldberger, A. S. (2008). Selection bias in evaluating treatment effects: Some formal illustrations. Advances in Econometrics, 21(1), 31.

    Google Scholar 

  • Guttman, L. (1954). A new approach to factor analysis: the Radex. In Paul F. Lazarsfeld (Ed.), Mathematical Thinking in the Social Sciences (pp. 258–348). New York: Free Press.

    Google Scholar 

  • Hall, M. A., Camacho, F., Dugan, E., & Balkrishnan, R. (2002). Trust in the medical profession: Conceptual and measurement issues. Health Service Research, 37(5), 1419–1439.

    Google Scholar 

  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6). Upper Saddle River, NJ: Pearson Prentice Hall.

    Google Scholar 

  • Hatcher, L. (2005). A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. Cary: SAS Institute.

    Google Scholar 

  • Hayes, B. E. (1992). Measurement Customer Satisfaction: Development and Use of Questionnaire. Milwaukee, WI: ASQC Quality Press.

    Google Scholar 

  • Hoyle, R. H. (1995). The structural equation modeling approach: Basic concepts and fundamental issues. In R. H. Hoyle (Ed.), Structural equation modelling: Concepts, issues, and applications (pp. 1–15). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

    Google Scholar 

  • Hutcheson, G. D., & Sofroniou, N. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. London: Sage.

    Google Scholar 

  • Intelligence, D. F. (2010). Intelligent Board 2010-patient experience. London: Dr Foster Intelligence.

    Google Scholar 

  • Joliffe, I. (2002). Principal component analysis. New York: Wiley.

    Google Scholar 

  • Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York, NY: Academic Press.

  • Jöreskog, K. G. (1994) Structural equation modeling with ordinal variables. In Multivariate analysis and its applications (pp. 297–310). Hayward, CA: Institute of Mathematical Statistics.

    Google Scholar 

  • Joreskog, K. G. (1996). Applied factor analysis in the natural sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  • Joreskog, K. G., Sorbom, D., Du Toit, S. H. C., Du Toit, M., & Stam, L. (2003). LISREL 8: New statistical features. Lincolnwood (III): Scientific Software International.

    Google Scholar 

  • Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415.

    Google Scholar 

  • Kao, A. C., Green, D. C., Davis, N. A., Koplan, J. P., & Cleary, P. D. (1998). Patients trust in their physicians. Journal of General Internal Medicine, 13(10), 681–686.

    Google Scholar 

  • Kaplan, D. (2008). Structural equation modeling: Foundations and extensions. Thousand Oaks: Sage Publications.

    Google Scholar 

  • Kotler, P. R. (1997). Marketing management: Analysis, planning, implementation, and control (IX ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Linder-Pelz, S. (1982). Toward a theory of patient satisfaction. Social Science & Medicine, 16(5), 577–582.

    Google Scholar 

  • MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological methods, 1(2), 130–149.

    Google Scholar 

  • Marcoulides, G. A. (1998). Modern methods for business research. Hove: Psychology Press.

    Google Scholar 

  • Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11(3), 320–341.

    Google Scholar 

  • Nitecki, D. A., & Hernon, P. (2007). Measuring service quality at yale university’s libraries. The Journal of Academic Librarianship, 24(4), 259–273.

    Google Scholar 

  • Nunnally, J. C. (1978). Psychometric theory (II ed.). New York: McGraw-Hill.

    Google Scholar 

  • Olckers, C., & van Zyl, L. (2016). The relationship between employment equity perceptions and psychological ownership in a south african mining house: The role of ethnicity. Social Indicators Research, 127(2), 887–901.

    Google Scholar 

  • Ovretveit, J. (1992). Health Service Quality: An introduction to quality methods for health services. Oxford: Blackwell.

    Google Scholar 

  • Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. The Journal of Marketing, 49, 41–50.

    Google Scholar 

  • Pascoe, G. C. (1983). Patient satisfaction in primary health care: A literature review and analysis. Evaluation Program Planning, 6(3), 185–210.

    Google Scholar 

  • Radwin, L. E., & Cabral, H. J. (2010). Trust in nurses scale: Construct validity and internal reliability evaluation. Journal of Advanced Nursing, 66(3), 683–689.

    Google Scholar 

  • Roshnee Ramsaran-Fowdar, R. (2008). The relative importance of service dimensions in a health care setting. International Journal of Health Care Quality Assurance, 21(1), 104–124.

    Google Scholar 

  • Saris, W. (1982). Different questions, different variables (pp. 78–95). New York: Preager.

    Google Scholar 

  • Schuster, M. A., McGlynn, E. A., & Brook, R. H. (1998). How good is the quality of health care in the United States? Milbank Quarterly, 76(4), 517–563.

    Google Scholar 

  • Shevlin, M., & Miles, J. N. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25(1), 85–90.

    Google Scholar 

  • Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors. In Paper presented at the annual Spring Meeting of the Psychometric Society in Iowa City, May 30, 1980.

  • Tinsley, H. E., & Brown, S. D. (2000). Handbook of applied multivariate statistics and mathematical modeling. London: Academic Press.

    Google Scholar 

  • Ullman, J. B., & Bentler, P. M. (2003). Structural equation modeling. New York: Wiley.

    Google Scholar 

  • Wang, J., & Wang, X. (2012). Structural equation modeling: Applications using Mplus. New York: Wiley.

    Google Scholar 

  • Werts, C. E., Linn, R. L., & Joreskog, K. G. (1974). Intraclass reliability estimates: Testing structural assumptions. Educational and Psychological measurement, 34(1), 25–33.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor and the reviewers, whose comments contribute to improve the paper. The authors thank Prof. A. Calogiuri for her useful contribution in reviewing the English usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Palma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palma, M., Distefano, V. & Spennato, A. Quality Assessment of the Oncology Health Service in a Public Hospital. Soc Indic Res 146, 327–343 (2019). https://doi.org/10.1007/s11205-018-1889-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11205-018-1889-0

Keywords

  • Patients’ customer satisfaction
  • Health system quality
  • Exploratory factorial analysis
  • Structural equation models