A frequency-domain test for long range dependence

  • Gennadi Gromykov
  • Mohamedou Ould Haye
  • Anne Philippe


A new frequency-domain test statistic is introduced to test for short memory versus long memory. We provide its asymptotic distribution under the null hypothesis and show that it is consistent under any long memory alternative. Some simulation studies show that this test is more robust than various standard tests in terms of empirical size when the normality of observed process is lost.


Long memory Dependence Time series Limit theorem Hypothesis test 



The authors would like to thank the two anonymous referees for their invaluable comments and questions that greatly helped improve the first version of the paper.


  1. Bailey N, Giraitis L (2016) Spectral approach to parameter-free unit root testing. J Comput Stat Data Anal 100:4–16MathSciNetCrossRefGoogle Scholar
  2. Beran J, Feng Y, Ghosh S, Kulik R (2013) Long-memory processes. Probabilistic properties and statistical methods. Springer-Verlag, BerlinGoogle Scholar
  3. Brockwell P, Davis R (1991) Time series: theory and methods. Springer, New YorkCrossRefMATHGoogle Scholar
  4. Deo RS (1997) Asymptotic theory for certain regression models with long memory errors. J Time Ser Anal 18(4):385–393MathSciNetCrossRefMATHGoogle Scholar
  5. Giraitis L, Koul HL, Surgailis D (2012) Large sample inference for long memory processes. Imperial College Press, LondonCrossRefMATHGoogle Scholar
  6. Giraitis L, Kokoszka P, Leipus R, Teyssière G (2003) Rescaled variance and related tests for long memory in volatility and levels. J Econom 112:256–294MathSciNetCrossRefMATHGoogle Scholar
  7. Giraitis L, Leipus R, Philippe A (2006) A test for stationarity versus trends and unit roots for a wide class of dependent errors. J Econom Theory 22:989–1029MathSciNetMATHGoogle Scholar
  8. Hurst H (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:770Google Scholar
  9. Kwiatkowski D, Phillips P, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root. J Econom 54:159–178CrossRefMATHGoogle Scholar
  10. Lee D, Schmidt P (1996) On the power of the KPSS test of stationarity against fractionally-integrated alternatives. J Econom 73:285–302MathSciNetCrossRefMATHGoogle Scholar
  11. Lobato I, Robinson P (1998) A nonparametric test for I(0). Rev Econom Stud 65(3):475–495MathSciNetCrossRefMATHGoogle Scholar
  12. Mandelbrot B, Wallis J (1969) Computer experiments with fractional Gaussian noises, parts 1, 2, and 3. Water Resour Res 5(1):228–267CrossRefGoogle Scholar
  13. Moulines E, Soulier P (2003) Semiparametric spectral estimation for fractional processes. In: Doukhan P, Oppenheim G, Taqqu M (eds) Theory and applications of long range dependence. Birkhäuser, Boston, pp 251–301Google Scholar
  14. Reisen A, Moulines E, Soulier P, Franco G (2010) On the properties of the periodogram of a stationary long-memory process over different epochs with applications. J Time Ser Anal 31(1):20–36MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Gennadi Gromykov
    • 1
  • Mohamedou Ould Haye
    • 1
  • Anne Philippe
    • 2
  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada
  2. 2.Laboratoire de Mathématiques Jean Leray, 2 rue de la HoussiniereUniversité de NantesNantesFrance

Personalised recommendations