Skip to main content
Log in

Gröbner-Shirshov bases for Rota-Baxter algebras

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We establish the composition-diamond lemma for associative nonunitary Rota-Baxter algebras of weight λ. To give an application, we construct a linear basis for a free commutative and nonunitary Rota-Baxter algebra, show that every countably generated Rota-Baxter algebra of weight 0 can be embedded into a two-generated Rota—Baxter algebra, and prove the 1-PBW theorems for dendriform dialgebras and trialgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shirshov A. I., “Some algorithmic problems for ε-algebras,” Sibirsk. Mat. Zh., 3, No. 1, 132–137 (1962).

    MATH  Google Scholar 

  2. Shirshov A. I., “Some algorithmic problems for Lie algebras,” ACM SIGSAM Bull., 33, No. 2, 3–6 (1999).

    Article  MATH  Google Scholar 

  3. Selected Works of A. I. Shirshov, Eds.: L. Bokut, V. Latyshev, I. Shestakov, and E. Zelmanov, Birkhäuser, Basel, Boston, and Berlin (2009).

    Google Scholar 

  4. Bokut L. A., “Imbeddings into simple associative algebras,” Algebra i Logika, 15, 117–142 (1976).

    MATH  MathSciNet  Google Scholar 

  5. Bergman G. M., “The diamond lemma for ring theory,” Adv. Math., 29, 178–218 (1978).

    Article  MathSciNet  Google Scholar 

  6. Hironaka H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I and II, Ann. Math., 79, I: 109–203, II: 205-326 (1964).

    Article  MathSciNet  Google Scholar 

  7. Buchberger B., “An algorithmical criterion for the solvability of algebraic systems of equations,” Aequationes Math., 4, 374–383 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  8. Bokut L. A. and Kukin G., Algorithmic and Combinatorial Algebra, Kluwer Academic Publishing, Dordrecht (1994).

    MATH  Google Scholar 

  9. Bokut L. A., Fong Y., Ke W.-F., and Kolesnikov P. S., “Gróbner and Gróbner-Shirshov bases in algebra and conformal algebras,” Fundam. Prikl. Mat., 6, No. 3, 669–706 (2000).

    MATH  MathSciNet  Google Scholar 

  10. Bokut L. A. and Kolesnikov P. S., “Gróbner-Shirshov bases: from their incipiency to the present,” J. Math. Sci. (New York), 116, No. 1, 2894–2916 (2003).

    Article  Google Scholar 

  11. Bokut L. A. and Kolesnikov P. S., “Gröbner-Shirshov bases, conformal algebras and pseudo-algebras”, J. Math. Sci. (New York), 131, No. 5, 5962–6003 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  12. Buchberger B. and Winkler F., Gröbner Bases and Applications, Cambridge University Press, Cambridge (1998) (London Math. Soc. Lecture Note Ser.; 251).

    MATH  Google Scholar 

  13. Mikhalev A. A., “The junction lemma and the equality problem for color Lie superalgebras,” Moscow Univ. Math. Bull., 44, 87–90 (1989).

    MATH  MathSciNet  Google Scholar 

  14. Mikhalev A. A., “The composition lemma for color Lie superalgebras and for Lie p-superalgebras,” Contemp. Math., 131, No. 2, 91–104 (1992).

    MathSciNet  Google Scholar 

  15. Mikhalev A. A., “Shirshov’s composition techniques in Lie superalgebra (non-commutative Gr óbner bases),” J. Math. Sci. (New York), 80, 2153–2160 (1996).

    Article  MathSciNet  Google Scholar 

  16. Bokut L. A., Fong Y., and Ke W.-F., “Composition-diamond lemma for associative conformal algebras,” J. Algebra, 272, 739–774 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  17. Kang S.-J. and Lee K.-H., “Gröbner-Shirshov bases for irreducible sln+1-modules,” J. Algebra, 232, 1-20 (2000).

  18. Chibrikov E. S., “On free conformal Lie algebras,” Vestnik NGU, Mat., Mekh., 4, No. 1, 65–83 (2004).

    Google Scholar 

  19. Chen Yuqun, Chen Yongshan, and Zhong Chanyan, “Composition-diamond lemma for modules,” Czechoslovak Math. J., 60(135), No. 1, 59–76 (2010).

    Article  MathSciNet  Google Scholar 

  20. Bokut L. A., Chen Y.-Q., and Liu C.-H., “Gröbner-Shirshov bases for dialgebras,” Internat. J. Algebra Comput., 20, No. 3, 391–415 (2010) [arXiv:0804.0638v4].

    Article  MATH  MathSciNet  Google Scholar 

  21. Drensky V. and Holtkamp R., “Planar trees, free nonassociative algebras, invariants, and elliptic integrals,” Algebra Discrete Math., 2, 1–41 (2008).

    MathSciNet  Google Scholar 

  22. Bokut L. A., Chen Y.-Q., and Qiu J.-J., “Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras, ” J. Pure Appl. Algebra, 214, 89–100 (2010) [arXiv:0805.0640v2].

    Article  MATH  MathSciNet  Google Scholar 

  23. Baxter G., “An analytic problem whose solution follows from a simple algebraic identity,” Pacific J. Math., 10, 731–742 (1960).

    MathSciNet  Google Scholar 

  24. Rota G.-C., “Baxter algebras and combinatorial identities. I, II,” Bull. Amer. Math. Soc., 5, 325–329, 330-334 (1969).

    Article  MathSciNet  Google Scholar 

  25. Connes A. and Kreimer D., “Hopf algebras, renormalization and noncommutative geometry,” Comm. Math. Phys., 199, No. 1, 203–242 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  26. Ebrahimi-Fard K., “Loday-type algebras and the Rota-Baxter relation,” Let. Math. Phys., 61, No. 2, 139–147 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  27. Ebrahimi-Fard K. and Manchon D., “The combinatorics of Bogoliubov’s recursion in renormalization,” in: Renormalization and Galois Theories (Eds. A. Connes, F. Fauvet, J.-P. Ramis), European Mathematical Society Publishing House, Zürich, 2009, pp. 179–208 [arXiv:0710.3675v2].

    Chapter  Google Scholar 

  28. Ebrahimi-Fard K. and Guo L., “Rota-Baxter algebras in renormalization of perturbative quantum field theory,” Fields Inst. Commun., 50, 47–105 (2007).

    MathSciNet  Google Scholar 

  29. Ebrahimi-Fard K. and Guo L., “Rota-Baxter algebras and dendriform algebras,” J. Pure Appl. Algebra, 212, No. 2, 320–339 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  30. Ebrahimi-Fard K. and Guo L., “Free Rota-Baxter algebras and rooted trees,” J. Algebra Appl., 7, 167–194 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  31. Guo L. and Keigher W., “Baxter algebras and shuffle products,” Adv. Math., 150, No. 1, 117–149 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  32. Guo L. and Keigher W., “On differential Rota-Baxter algebras,” J. Pure Appl. Algebra, 212, No. 3, 522–540 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  33. Manin Yu. I., “Computation and renormalization. I: Motivation and background; II: Time cut-off and the halting problem” [arXiv:0904.4921v2; arXiv:0908.3430v1].

  34. Cartier P., “On the structure of free Baxter algebras,” Adv. Math., 9, 253–265 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  35. Loday J.-L., “Dialgebras,” in: Dialgebras and Related Operads, Springer-Verlag, Berlin, 2001, pp. 7–66 (Lecture Notes in Math.; 1763; Preprint 2001, arXiv:mathe.QA/0102053).

    Book  Google Scholar 

  36. Loday J.-L. and Ronco M., “Algébres de Hopf colibres,” C. R. Acad. Sci. Paris, 337, No. 3, 153–158 (2003).

    MATH  MathSciNet  Google Scholar 

  37. Mal’cev A. I., Algebraic Systems, Springer-Verlag and Akademie-Verlag, Berlin, Heidelberg, and New York (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.A. Bokut.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 51, No. 6, pp. 1237–1250, November–December

Original Russian Text Copyright © 2010 Bokut L. A., Chen Yu., and Deng X.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokut, L., Chen, Y. & Deng, X. Gröbner-Shirshov bases for Rota-Baxter algebras. Sib Math J 51, 978–988 (2010). https://doi.org/10.1007/s11202-010-0097-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-010-0097-1

Keywords

Navigation