Skip to main content
Log in

On Isotopies and Homologies of Subvarieties of Toric Varieties

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

In ℂn we consider an algebraic surface Y and a finite collection of hypersurfaces Si. Froissart’s theorem states that if Y and Si are in general position in the projective compactification of ℂn together with the hyperplane at infinity then for the homologies of Y \∪ Si we have a special decomposition in terms of the homology of Y and all possible intersections of Si in Y. We prove the validity of this homological decomposition on assuming a weaker condition: there exists a smooth toric compactification of ℂn in which Y and Si are in general position with all divisors at infinity. One of the key steps of the proof is the construction of an isotopy in Y leaving invariant all hypersurfaces Y ∩ Sk with the exception of one Y ∩ Si, which is shifted away from a given compact set. Moreover, we consider a purely toric version of the decomposition theorem, taking instead of an affine surface Y the complement of a surface in a compact toric variety to a collection of hypersurfaces in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fotiadi D., Froissart M., Lascoux J., and Pham F., “Applications of an isotopy theorem,” Topology, 4, No. 2, 159–191 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  2. Leray J., “Le calcul différentiel et intégral sur une variété analytique complexe (Probléme de Cauchy III),” Bull. Math. Soc. France, 87, 81–180 (1959).

    MATH  MathSciNet  Google Scholar 

  3. Tsikh A. K., Multidimensional Residues and Their Applications, Amer. Math. Soc., Providence, RI (1992) (Transl. Math. Monographs; Vol. 103).

    Google Scholar 

  4. Aleksandrov A. G. and Tsikh A. K., “Multi-logarithmic differential forms on complete intersections,” J. Siberian Fed. Univ. Math. Phys., 1, No. 2, 105–124 (2008).

    Google Scholar 

  5. Khovanskiĭ A. G., “Newton polyhedra (solution of singularities),” in: Contemporary Problems of Mathematics. Fundamental Trends. Vol. 22, VINITI, Moscow, 1985, pp. 207–239 (Itogi Nauki i Tekhniki).

    Google Scholar 

  6. Cox D. A., “The homogeneous coordinate ring of a toric variety,” J. Algebr. Geom., 4, No. 1, 17–50 (1995).

    MATH  Google Scholar 

  7. Shchuplev A., Tsikh A., and Yger A., “Residual kernels with singularities on coordinate planes,” Proc. Steklov Inst. Math., 253, No. 2, 256–274 (2006).

    Article  MathSciNet  Google Scholar 

  8. Pham F., Introduction à l’Étude Topologique des Singularités de Landau, Gauthier-Villars Editeur, Paris (1967).

    MATH  Google Scholar 

  9. Mather J. N., “Stratifications and mappings,” in: Dynamical Systems, Academic Press, New York and London, 1973, pp. 195–232.

    Google Scholar 

  10. Spanier E. N., Algebraic Topology, Springer-Verlag, Berlin (1995).

    MATH  Google Scholar 

  11. Danilov V. I. and Khovanskiĭ A. G., “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers,” Izv. Akad. Nauk SSSR Ser. Mat., 50, No. 5, 925–945 (1986).

    MathSciNet  Google Scholar 

  12. Grauert H. and Remmert R., Theory of Stein Spaces, Springer-Verlag, Berlin (2004).

    MATH  Google Scholar 

  13. Alexandroff P. S., Combinatorial Topology [in Russian], Gostekhizdat, Moscow and Leningrad (1947).

    Google Scholar 

  14. Milnor J. W., Singular Points of Complex Hypersurfaces, Princeton University Press and the University of Tokyo Press, Princeton (1968).

    MATH  Google Scholar 

  15. Pham F., “Generalized Picard–Lefschetz formulas and branching of the integrals,” Matematika, 13, No. 4, 61–93 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Bushueva.

Additional information

Original Russian Text Copyright © 2010 Bushueva N. A.

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 51, No. 5, pp. 974-989, September-October, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushueva, N.A. On Isotopies and Homologies of Subvarieties of Toric Varieties. Sib Math J 51, 776–788 (2010). https://doi.org/10.1007/s11202-010-0078-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-010-0078-4

Keywords

Navigation