Skip to main content
Log in

Arithmetical D-degrees

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Description is given of the isomorphism types of the principal ideals of the join semilattice of m-degrees which are generated by arithmetical sets. A result by Lachlan of 1972 on computably enumerable m-degrees is extended to the arbitrary levels of the arithmetical hierarchy. As a corollary, a characterization is given of the local isomorphism types of the Rogers semilattices of numberings of finite families, and the nontrivial Rogers semilattices of numberings which can be computed at the different levels of the arithmetical hierarchy are proved to be nonisomorphic provided that the difference between levels is more than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lachlan A. H., “Recursively enumerable many-one degrees,” Algebra i Logika, 11, No. 3, 326–358 (1972).

    MathSciNet  Google Scholar 

  2. Podzorov S. Yu., “Enumerated distributive semilattices,” Mat. Trudy, 9, No. 2, 109–132 (2006).

    MathSciNet  Google Scholar 

  3. Podzorov S. Yu., “Local structure of Rogers semilattices of Σ 0n -computable numberings,” Algebra and Logic, 44, No. 1, 82–94 (2005).

    Article  MathSciNet  Google Scholar 

  4. Podzorov S. Yu., “Initial segments in Rogers semilattices of Σ 0n -computable numberings,” Algebra and Logic, 42, No. 2, 211–226 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. Badaev S. A., Goncharov S. S., and Sorbi A., “Isomorphism types and theories of Rogers semilattices of arithmetical numberings,” in: Computability and Models, Kluwer Plenum Publ., New York, 2003, pp. 79–91.

    Google Scholar 

  6. Badaev S. A., Goncharov S. S., and Sorbi A., “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy,” Algebra and Logic, 45, No. 6, 361–370 (2006).

    Article  MathSciNet  Google Scholar 

  7. Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Comp., New York; St. Louis; San Francisco; Toronto; London; Sydney (1967).

    MATH  Google Scholar 

  8. Grätzer G., General Lattice Theory, Birkhäuser, Basel (1978).

    Google Scholar 

  9. Ershov Yu. L., Theory of Numberings [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  10. Denisov S. D., “The structure of upper semilattices of recursively enumerable m-degrees and related issues. I,” Algebra and Logic, 17, No. 6, 643–683 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  11. Podzorov S. Yu., “The universal Lachlan semilattice without the greatest element,” Algebra and Logic, 46, No. 3, 299–345 (2007).

    Article  MathSciNet  Google Scholar 

  12. Ershov Yu. L., “Rogers semilattices of finite partially ordered sets,” Algebra and Logic, 45, No. 1, 44–84 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  13. Badaev S., Goncharov S., and Sorbi A., “Completeness and universality of arithmetical numberings,” in: Computability and Models, Kluwer Plenum Publ., New York, 2003, pp. 11–44.

    Google Scholar 

  14. Badaev S. A., Goncharov S. S., Podzorov S. Yu., and Sorbi A., “Algebraic properties of Rogers semilattices of arithmetical numberings,” in: Computability and Models, 2003, Kluwer Plenum Publ., New York, pp. 45–78.

    Google Scholar 

  15. Goncharov S. S., Countable Boolean Algebras and Decidability [in Russian], Nauchnaya Kniga, Novosibirsk (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Podzorov.

Additional information

Original Russian Text Copyright © 2008 Podzorov S. Yu.

The author was supported by the Russian Foundation for Basic Research (Grant 08-01-00336) and the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant 4413.2006.1).

__________

Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 49, No. 6, pp. 1391–1410, November–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podzorov, S.Y. Arithmetical D-degrees. Sib Math J 49, 1109–1123 (2008). https://doi.org/10.1007/s11202-008-0107-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-008-0107-8

Keywords

Navigation