Skip to main content
Log in

The spectrum of the elasticity problem for a spiked body

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We establish the existence of continuous spectrum for the operator of the linear elasticity problem in a three-dimensional domain with a sufficiently sharp spiked singularity of the boundary. We obtain some information about the structure of the spectrum and verify the weighted Korn inequality, which enables us to prove that the spectrum is discrete for insufficiently sharp spikes. We state some open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nazarov S. A., Asymptotic Theory of Thin Plates and Rods: Reduction of Dimension and Integral Estimates [in Russian], Nauchnaya Kniga, Novosibirsk (2002).

    Google Scholar 

  2. Birman M. Sh. and Solomyak M. Z., Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publ. Co., Dordrecht (1987).

    Google Scholar 

  3. Nazarov S. A., “Weighted Korn inequalities in paraboloidal domains,” Math. Notes, 62, No. 5–6, 629–641 (1997); Erratum: Math. Notes, 63, No. 3–4, 565 (1998).

    Article  MATH  Google Scholar 

  4. Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson-Academia, Paris-Prague (1967).

    Google Scholar 

  5. Kondrat’ev V. A. and Oleĭnik O. A., “Boundary value problems for a system of elasticity in unbounded domains. Korn inequalities,” Russian Math. Surveys, 43, No. 5, 65–119 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  6. Lekhnitskiĭ S. G., Elasticity of an Anisotropic Body [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  7. Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York etc. (1985).

    Google Scholar 

  8. Fichera G., Existence Theorems in Elasticity, Springer-Verlag, Berlin (1972).

    Google Scholar 

  9. Kozlov V. A., Maz’ya V. G., and Rossmann J., Elliptic Boundary Value Problems in Domains with Point Singularities, Amer. Math. Soc., Providence, RI (1997).

    MATH  Google Scholar 

  10. Nazarov S. A., “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates,” J. Math. Sci., 97, No. 4, 4245–4279 (1999).

    Article  MathSciNet  Google Scholar 

  11. Nazarov S. A. and Slutskiĭ A. S., “One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification,” Izv. Math., 64, No. 3, 531–562 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  12. Nazarov S. A., “The structure of solutions of elliptic boundary value problems in slender domains,” Vestnik Leningrad Univ. Math., 15, 99–104 (1983).

    MATH  Google Scholar 

  13. Nazarov S. A., “A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains,” St. Petersburg Math. J., 7, No. 5, 681–748 (1996).

    MathSciNet  Google Scholar 

  14. Mazja W. G., Nasarow S. A., and Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 2, Akademie-Verlag, Berlin (1991) (English transl.: Maz’ya V., Nazarov S., and Plamenevskij B. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. V. 2, Birkhäuser-Verlag, Basel (2000)).

    Google Scholar 

  15. Nazarov S. A., “Minimal requirements on the smoothness of data preserving accuracy of a one-dimensional model of rods,” J. Math. Sci., 101, No. 2, 2987–3000 (2000).

    Article  MathSciNet  Google Scholar 

  16. Evans D. V., Levitin M., and Vassil’ev D., “Existence theorems for trapped modes,” J. Fluid Mech., 261, No. 1, 21–31 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  17. Roitberg I., Vassiliev D., and Weidl T., “Edge resonance in an elastic semi-strip,” Quart. J. Appl. Math., 51, No. 1, 1–13 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  18. Nazarov S. A., “On the asymptotics of the spectrum of a thin plate problem of elasticity,” Siberian Math. J., 41, No. 4, 744–759 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Dedicated to the Memory of Sergeĭ L’vovich Sobolev.

Original Russian Text Copyright © 2008 Nazarov S. A.

The author was partially supported by the Netherlands Organization for Scientific Research (NWO) and the Russian Foundation for Basic Research (Joint Grant 047.017.020).

__________

St. Petersburg. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 49, No. 5, pp. 1105–1127, September–October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. The spectrum of the elasticity problem for a spiked body. Sib Math J 49, 874–893 (2008). https://doi.org/10.1007/s11202-008-0087-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-008-0087-8

Keywords

Navigation