Advertisement

Siberian Mathematical Journal

, Volume 49, Issue 2, pp 317–321 | Cite as

The periodic groups saturated by finitely many finite simple groups

  • D. V. LytkinaEmail author
  • L. R. Tukhvatullina
  • K. A. Filippov
Article

Abstract

Denote by \(\mathfrak{M}\) the set whose elements are the simple 3-dimensional unitary groups U 3(q) and the linear groups L 3(q) over finite fields. We prove that every periodic group, saturated by the groups of a finite subset of \(\mathfrak{M}\), is finite.

Keywords

saturation of a group by a set of groups periodic group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shlepkin A. K. and Rubashkin A. G., “Groups saturated by a finite set of groups,” Siberian Math. J., 42, No. 6, 1140–1142 (2004).CrossRefMathSciNetGoogle Scholar
  2. 2.
    Lytkina D. V., “Periodic groups saturated by the group U 3(9),” Sibirsk. Èlektron. Mat. Izv., 4, 300–303 (2007).zbMATHGoogle Scholar
  3. 3.
    Lytkina D. V., Tukhvatullina L. R., and Filippov K. A., “Periodic groups saturated by the group L 3(11),” Mat. Sistemy, No. 6, 60–64 (2007).Google Scholar
  4. 4.
    Lytkina D. V., Tukhvatullina L. R., and Filippov K. A., “Periodic groups saturated by the group L 3(27),” Mat. Sistemy, No. 6, 65–68 (2007).Google Scholar
  5. 5.
    Alperin J. L., Brauer R., and Gorenstein D., “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups,” Trans. Amer. Math. Soc., 151, No. 1, 1–261 (1970).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Shunkov V. P., “Periodic groups with almost regular involution,” Algebra i Logika, 11, No. 4, 470–493 (1972).MathSciNetGoogle Scholar
  7. 7.
    Rubashkin A. G., Groups Saturated by Given Sets of Finite Groups [in Russian], Dis. Kand. Fiz.-Mat. Nauk, Krasnoyarsk (2006).Google Scholar
  8. 8.
    Filippov K. A., Groups Saturated by Finite Nonabelian Groups and Some of Their Extensions [in Russian], Dis. Kand. Fiz.-Mat. Nauk, Krasnoyarsk (2006).Google Scholar
  9. 9.
    Kargapolov M. I. and Merzlyakov Yu. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York; Heidelberg; Berlin (1979).zbMATHGoogle Scholar
  10. 10.
    Zhurtov A. Kh., “On regular automorphisms of order 3 and Frobenius pairs,” Siberian Math. J., 41, No. 2, 268–277 (2000).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • D. V. Lytkina
    • 1
    Email author
  • L. R. Tukhvatullina
    • 2
  • K. A. Filippov
    • 2
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Krasnoyarsk Agricultural State UniversityKrasnoyarskRussia

Personalised recommendations