Advertisement

Siberian Mathematical Journal

, Volume 49, Issue 2, pp 300–316 | Cite as

The Cauchy problem for one class of parabolic pseudodifferential systems with nonsmooth symbols

  • V. A. LitovchenkoEmail author
Article
  • 21 Downloads

Abstract

In the class of finite-order distributions we establish the well-posedness of the Cauchy problem for parabolic pseudodifferential systems whose symbols are nonsmooth functions at a fixed point h ∈ ℝn generated by homogeneous functions of order γ > 0 depending on time.

Keywords

Cauchy problem pseudodifferential system nonsmooth symbol convolution distribution matriciant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Èidel’man S. D. and Drin’ Ya. M., “Necessary and sufficient conditions of stabilization of solutions of the Cauchy problem for parabolic pseudodifferential equations,” in: Approximate Methods for Mathematical Analysis [in Russian], Kiev Ped. Inst., Kiev, 1974, pp. 60–69.Google Scholar
  2. 2.
    Drin’ Ya. M., “A study of a certain class of parabolic pseudodifferential operators acting in spaces of Holder functions,” Dopov. Akad. Nauk Ukrain RSR Ser. A, No. 1, 19–21 (1974).Google Scholar
  3. 3.
    Drin’ Ya. M., “A fundamental solution of the Cauchy problem for a class of parabolic pseudodifferential equations,” Dopov. Akad. Nauk Ukrain RSR Ser. A, No. 3, 198–202 (1977).Google Scholar
  4. 4.
    Èidel’man S. D. and Drin’ Ya. M., “The construction and study of the classical fundamental solutions of the Cauchy problem for uniformly parabolic pseudodifferential equations,” Mat. Issled., 63, 18–33 (1981).Google Scholar
  5. 5.
    Fedoryuk M. V., “Asymptotics of the Green’s function of parabolic pseudodifferential equations,” Differentsial’nye Uravneniya, 14, No. 7, 1296–1301 (1978).zbMATHMathSciNetGoogle Scholar
  6. 6.
    Kochubei A. N., “Parabolic pseudodifferential equations, hypersingular integrals, and Markov processes,” Izv. Akad. Nauk SSSR Ser. Mat., 52, No. 5, 909–934 (1988).Google Scholar
  7. 7.
    Gorodetskii V. V. and Litovchenko V. A., “The Cauchy problem for parabolic pseudodifferential systems in the spaces of generalized functions of type S′,” tDopov. Akad. Nauk Ukrain RSR Ser. A, No. 10, 6–9 (1992).Google Scholar
  8. 8.
    Gorodetskii V. V., Boundary Values of Smooth Solutions of Parabolic Type Equations on the Ball [in Ukrainian], Ruta, Chernovtsy (1958).Google Scholar
  9. 9.
    Èidel’man S. D. and Drin’ Ya. M., “On the theory of systems of parabolic pseudodifferential equations,” Dopov. Akad. Nauk Ukrain RSR Ser. A, No. 4, 10–12 (1989).Google Scholar
  10. 10.
    Drin’ Ya. M. and Èidel’man S. D., “Fundamental matrices of solutions to pseudodifferential equations with nonsmooth symbols,” in: Boundary-Value Problems with Various Types of Denegation and Singularities [in Ukrainian], Red.-Izd. Otd. Oblpoligr., Chernovtsy, 1990, pp. 21–31.Google Scholar
  11. 11.
    Gelfand I. M. and Shilov G. E., Spaces of Test and Generalized Functions [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  12. 12.
    Schwartz L., Théorie des Distributiones. Vol. 1, Hermann, Paris (1950).Google Scholar
  13. 13.
    Borok V. M., “A solution of the Cauchy problem for some types of systems of linear partial differential equations,” Dokl. Akad. Nauk SSSR, 97, No. 6, 949–952 (1954).zbMATHMathSciNetGoogle Scholar
  14. 14.
    Samko S. G., Kilbas A. A., and Marichev O. M., Integrals and Fractional-Order Derivatives and Some of Their Applications, Gordon and Breach, Amsterdam (1993).Google Scholar
  15. 15.
    Gelfand I. M. and Shilov G. E., Certain Problems of the Theory of Differential Equations [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  16. 16.
    Friedman A., Partial Differential Equations of Parabolic Type [Russian translation], Mir, Moscow (1968).zbMATHGoogle Scholar
  17. 17.
    Gantmakher F. R., The Theory of Matrices [in Russian], Nauka, Moscow (1968).Google Scholar
  18. 18.
    Neri U., Singular Integrals, Springer-Verlag, Berlin; New York (1971) (Lecture Notes Math.; 200).zbMATHGoogle Scholar
  19. 19.
    Samko S. G., Hypersingular Integrals and Their Applications [in Russian], Izdat. Rostovsk. Univ., Rostov-on-Don (1984).zbMATHGoogle Scholar
  20. 20.
    Lemoine C., “Fourier transforms of homogeneous distributions,” Ann. Sci. Norm. Sup. Pisa, 26, No. 1, 117–149 (1972).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Chernovtsy National UniversityChernovtsythe Ukraine

Personalised recommendations