Advertisement

Siberian Mathematical Journal

, Volume 49, Issue 2, pp 273–286 | Cite as

The ranks of primitive parabolic permutation representations of the simple groups B l (q), C l (q), and D l (q)

  • V. V. KorablevaEmail author
Article

Abstract

We determine the ranks of the permutation representations of the simple groups B l (q), C l (q), and D l (q) on the cosets of the parabolic maximal subgroups.

Keywords

group of Lie type parabolic subgroup Weyl group permutation representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aschbacher M., “Permutation groups using the classification of the finite simple groups,” Algebras Groups Geom., 2, No. 4, 380–389 (1985).zbMATHMathSciNetGoogle Scholar
  2. 2.
    Kondrat’ev A. S., “Subgroups of finite Chevalley groups,” Uspekhi Mat. Nauk, 41, No. 1, 57–96 (1986).MathSciNetGoogle Scholar
  3. 3.
    Liebeck M. W. and Saxl J., “The primitive permutation groups of odd degree,” J. London Math. Soc., 31, No. 2, 250–264 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Liebeck M. W. and Saxl J., “The finite primitive permutation groups of rank three,” Bull. London Math. Soc., 18, No. 2, 165–172 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kantor W. M., “Primitive permutation groups of odd degree, and an application to finite projective planes,” J. Algebra, 106, No. 1, 15–45 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cooperstein B. N., “Minimal degree for a permutation representation of a classical group,” Israel J. Math., 30, No. 3, 213–235 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Liebeck M. W. and Saxl J., “On the orders of maximal subgroups of the finite exceptional groups of Lie type,” Proc. London Math. Soc., 55, 299–330 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kleidman P. and Liebeck M., The Subgroup Structure of the Finite Classical Groups, Cambridge Univ. Press, Cambridge (1990) (London Math. Soc. Lecture Notes; 129).zbMATHGoogle Scholar
  9. 9.
    Mazurov V. D., “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups,” Algebra i Logika, 32, No. 3, 267–287 (1993).zbMATHMathSciNetGoogle Scholar
  10. 10.
    Vasil’ev V. A. and Mazurov V. D., “Minimal permutation representations of finite simple orthogonal groups,” Algebra i Logika, 33, No. 6, 603–627 (1994).MathSciNetGoogle Scholar
  11. 11.
    Vasil’ev V. A., “Minimal permutation representations of finite simple exceptional groups of types G 2 and F 4,” Algebra i Logika, 35, No. 6, 663–684 (1996).zbMATHMathSciNetGoogle Scholar
  12. 12.
    Vasil’ev V. A., “Minimal permutation representations of finite simple exceptional groups of types E 6, E 7, and E 8,” Algebra i Logika, 36, No. 5, 518–530 (1997).zbMATHMathSciNetGoogle Scholar
  13. 13.
    Vasil’ev V. A., “Minimal permutation representations of finite simple exceptional twisted groups,” Algebra i Logika, 37, No. 1, 17–35 (1998).zbMATHMathSciNetGoogle Scholar
  14. 14.
    Tits J., “A local approach to buildings,” in: Geometric Vein (Coxeter Festschrift), Springer-Verlag, New York etc., 1981, pp. 519–547.Google Scholar
  15. 15.
    Korableva V. V., “Parabolic permutation representations of the group F 4(q),” Trudy IMM Ural Otdel. Ross. Akad. Nauk, 5, 39–59 (1998).Google Scholar
  16. 16.
    Korableva V. V., “Parabolic permutation representations of groups E 6(q) and E 7(q),” in: Combinatorial and Numerical Methods in Mathematics [in Russian], Omsk Univ., Omsk, 1999, pp. 160–189.Google Scholar
  17. 17.
    Korableva V. V., “Parabolic permutation representations of the group E 8(q),” submitted to VINITI on October 29, 1999, No. 3224.Google Scholar
  18. 18.
    Korableva V. V., “Parabolic permutation representations of the groups 2 F 4(q) and 3 D 4(q 3),” Math. Notes, 67, No. 1, 55–60 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Korableva V. V., “Parabolic permutation representations of the group 2 E 6(q),” Math. Notes, 67, No. 6, 758–770 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Korableva V. V., “Ranks of primitive parabolic permutation representations of classical groups of Lie type A l(q),” Trudy Inst. Mat. Mekh. Ural’sk. Otdel. Ross. Akad. Nauk, 7, 188–193 (2001).Google Scholar
  21. 21.
    Carter R. W., Simple Groups of Lie Type, Wiley & Sons, London (1972).zbMATHGoogle Scholar
  22. 22.
    Bourbaki N., Lie Groups and Algebras. Vol. 2. Chapters 4–6 [Russian translation], Mir, Moscow (1972).Google Scholar
  23. 23.
    Stumbo F., “Minimal length coset representatives for quotients of parabolic subgroups in Coxeter groups,” Boll. Un. Mat. Ital. B (7), 8, No. 3, 699–715 (2000).MathSciNetGoogle Scholar
  24. 24.
    Carter R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley & Sons, London (1993).Google Scholar
  25. 25.
    Schönert M. et al., GAP-Groups, Algorithms, and Programming. 6th ed. Lehrstuhl D für Mathematik, RWTH, Aachen, Germany (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Chelyabinsk State UniversityChelyabinskRussia

Personalised recommendations