Advertisement

Siberian Mathematical Journal

, Volume 49, Issue 2, pp 257–272 | Cite as

Varieties of dialgebras and conformal algebras

  • P. S. KolesnikovEmail author
Article

Abstract

We introduce and study the concept of a variety of dialgebras which is closely related to the concept of a variety of conformal algebras: Each dialgebra of a given variety embeds into an appropriate conformal algebra of the same variety. In particular, the Leibniz algebras are exactly Lie dialgebras, and each Leibniz algebra embeds into a conformal Lie algebra.

Keywords

Leibniz algebra dialgebra conformal algebra operad pseudoalgebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loday J.-L., “Une version non commutative des algèbres de Lie: les algèbres de Leibniz,” Enseign. Math., 39, No. 3–4, 269–293 (1993).zbMATHMathSciNetGoogle Scholar
  2. 2.
    Loday J.-L. and Pirashvili T., “Universal enveloping algebras of Leibniz algebras and (co)homology,” Math. Ann., 296, No. 1, 139–158 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Loday J.-L., “Dialgebras,” in: Dialgebras and Related Operads, Springer-Verlag, Berlin, 2001, pp. 7–66 (Lecture Notes in Math.; 1763).CrossRefGoogle Scholar
  4. 4.
    Liu D., “Steinberg-Leibniz algebras and superalgebras,” J. Algebra, 283, No. 1, 199–221 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Faulkner J. R., “Barbilian planes,” Geom. Dedicata, 30, 125–181 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kac V. G., Vertex Algebras for Beginners, Amer. Math. Soc., Providence, RI (1996) (Univ. Lecture Series; 10).zbMATHGoogle Scholar
  7. 7.
    Roitman M., “On free conformal and vertex algebras,” J. Algebra, 217, No. 2, 496–527 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kolesnikov P. S., “Identities of conformal algebras and pseudoalgebras,” Comm. Algebra, 34, No. 6, 1965–1979 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bakalov B., D’Andrea A., and Kac V. G., “Theory of finite pseudoalgebras,” Adv. Math., 162, No. 1, 1–140 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chapoton F., “Un endofoncteur de la catégorie des opérades,” in: Dialgebras and Related Operads, Springer-Verlag, Berlin, 2001, pp. 105–110 (Lecture Notes in Math.; 1763).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations