Skip to main content
Log in

Area and coarea formulas for the mappings of Sobolev classes with values in a metric space

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove the metric differentiability and approximate metric differentiability for some broad classes of mappings with values in a metric space, including Sobolev classes. By way of application, we derive some metric analogs of area and coarea formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirchheim B., “Rectifiable metric spaces: local structure and regularity of the Hausdorff measure,” Proc. Amer. Math. Soc., 121, No. 1, 113–123 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  2. Reshetnyak Yu. G., “Sobolev-type classes of functions with values in a metric space,” Siberian Math. J., 38, No. 3, 567–583 (1997).

    Article  MathSciNet  Google Scholar 

  3. Evans L. C. and Gariepy R. F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton (1992).

    MATH  Google Scholar 

  4. Lin F. and Yang X., Geometric Measure Theory—An Introduction, Sci. Press, Beijing etc. (2002).

    MATH  Google Scholar 

  5. Federer H., Geometric Measure Theory, Springer-Verlag, New York (1969).

    MATH  Google Scholar 

  6. Giaquinta M., Modica G., and Souček J., Cartesian Currents in the Calculus of Variations. Vol. 1 and 2, Springer-Verlag, Berlin (1998).

    Google Scholar 

  7. Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton (1970).

    MATH  Google Scholar 

  8. Vodop’yanov S. K., “℘-Differentiability on Carnot groups in different topologies and related topics,” in: Studies on Analysis and Geometry, Izdat. Inst. Mat., Novosibirsk, 2000, pp. 603–670.

  9. Vodop’yanov S. K., “Topological and geometrical properties of mappings with summable Jacobian in Sobolev classes. I,” Siberian Math. J., 41, No. 1, 19–39 (2000).

    Article  MathSciNet  Google Scholar 

  10. Reshetnyak Yu. G., “Some geometric properties of functions and mappings with generalized derivatives,” Siberian Math. J., 7, No. 4, 704–732 (1966).

    Article  MATH  Google Scholar 

  11. Malý J. and Martio O., “Lusin’s condition (N) and mappings of the class W 1,n,” J. Reine Angew. Math., 458, 19–36 (1995).

    MATH  MathSciNet  Google Scholar 

  12. Vodop’yanov S. K., “Monotone functions and quasiconformal mappings on Carnot groups,” Siberian Math. J., 37, No. 6, 1113–1336 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  13. Heinonen J., Koskela P., Shanmugalingam N., and Tyson J., “Sobolev classes of Banach space-valued functions and quasiconformal mappings,” J. Anal. Math., 85, 87–139 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. Vodop’yanov S. K., “Geometry of Carnot-Carathédory spaces, quasiconformal analysis, and geometric measure theory,” Vladikavkazsk. Mat. Zh., 5, No. 1, 1–14 (2003).

    MathSciNet  Google Scholar 

  15. Karmanova M. B., “The metric Rademacher theorem and the area formula for metric-valued mappings, ” Vestnik Novosibirsk Univ., 6, No. 4, 50–69 (2006).

    Google Scholar 

  16. Karmanova M. B., “Metric differentiability of mappings and geometric measure theory,” Dokl. Ross. Akad. Nauk, 401, No. 4, 443–447 (2005).

    MathSciNet  Google Scholar 

  17. Ambrosio L. and Kirchheim B., “Rectifiable sets in metric and Banach spaces,” Math. Ann., 318, No. 3, 527–555 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  18. Hajłasz P., “Sobolev mappings, co-area formula and related topics,” in: Studies on Analysis and Geometry, Izdat. Inst. Mat., Novosibirsk, 2000, pp. 227–254.

    Google Scholar 

  19. Malý J., “Coarea integration in metric spaces,” in: Proc. of the Spring School. Prague, 2002 (B. Opic, J. Rakosnik, eds.). Nonlinear Analysis, Function Spaces and Applications, Math. Inst. Acad. Sci. Czech Republic, Prague, 2003, 7, pp. 142–192.

    Google Scholar 

  20. Malý J., “Coarea properties of Sobolev functions,” in: Function Spaces, Differential Operators and Nonlinear Analysis (Teistungen, 2001), Basel, Birkhauser, 2003, pp. 371–381.

    Google Scholar 

  21. Malý J., Swanson D., and Ziemer W. P., “The coarea formula for Sobolev mappings,” Trans. Amer. Math. Soc., 355, No. 2, 477–492 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  22. Karmanova M., “Geometric measure theory formulas on rectifiable metric spaces,” Contemp. Math., 424, 103–136 (2007).

    MathSciNet  Google Scholar 

  23. Karmanova M., “Rectifiable sets and the coarea formula for metric-valued mappings,” Dokl. Ross. Akad. Nauk, 408, No. 1, 16–21 (2006).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 48, No. 4, pp. 778–788, July–August, 2007.

Original Russian Text Copyright © 2007 Karmanova M. B.

The author was partially supported by the Russian Foundation for Basic Research (Grant 05-01-00482) and the State Maintenance Program for the Junior Scientists and the Leading Scientific Schools of the Russian Federation (Grant NSh-8526.2006.1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmanova, M.B. Area and coarea formulas for the mappings of Sobolev classes with values in a metric space. Sib Math J 48, 621–628 (2007). https://doi.org/10.1007/s11202-007-0064-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-007-0064-7

Keywords

Navigation