Skip to main content
Log in

Large deviations of the first passage time for a random walk with semiexponentially distributed jumps

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Suppose that ξ, ξ(1), ξ(2), ... are independent identically distributed random variables such that −ξ is semiexponential; i.e., \(P( - \xi \geqslant t) = e^{ - t^\beta L(t)} \) is a slowly varying function as t → ∞ possessing some smoothness properties. Let E ξ = 0, D ξ = 1, and S(k) = ξ(1) + ⋯ + ξ(k). Given d > 0, define the first upcrossing time η +(u) = inf{k ≥ 1: S(k) + kd > u} at nonnegative level u ≥ 0 of the walk S(k) + kd with positive drift d > 0. We prove that, under general conditions, the following relation is valid for \(u = (n) \in \left[ {0, dn - N_n \sqrt n } \right]\):

$$P(\eta + (u) > n) \sim \frac{{E\eta + (u)}}{n}P(S(n) \leqslant x) as n \to \infty $$
(0.1)

, where x = und < 0 and an arbitrary fixed sequence N n not exceeding \(d\sqrt n \) tends to ∞.

The conditions under which we prove (0.1) coincide exactly with the conditions under which the asymptotic behavior of the probability P(S(n) ≤ x) for \(x \leqslant - \sqrt n \) was found in [1] (for \(x \in \left[ { - \sqrt n ,0} \right]\) it follows from the central limit theorem).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Borovkov A. A. and Mogul’skii A. A., “Integro-local and integral theorems for sums of random variables with semiexponential distributions,” Siberian Math. J., 47, No. 6, 990–1026 (2006).

    Google Scholar 

  2. Doney R. A., “On the asymptotic behavior of the first passage times for transient random walk,” Probab. Theory Related Fields, 81, No. 2, 239–246 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  3. Borovkov A. A., “On the asymptotics of distributions of the first passage times. I,” Mat. Zametki, 75, No. 1, 24–39 (2004).

    MathSciNet  Google Scholar 

  4. Borovkov A. A., “On the asymptotics of distributions of the first passage times. II,” Mat. Zametki, 75, No. 3, 350–359 (2004).

    MathSciNet  Google Scholar 

  5. Borovkov A. A., “Limit theorems on the distribution of maxima of sums of bounded lattice random variables. I,” Theory Probab. Appl., 5, 125–155 (1960).

    Article  MathSciNet  Google Scholar 

  6. Borovkov A. A., “New limit theorems for boundary problems for sums of independent summands,” Sibirsk. Mat. Zh., 3, No. 5, 654–694 (1962).

    Google Scholar 

  7. Mogul’skii A. A. and Rogozin B. A., “Random walks in a positive quadrant. III: Constants in integral and local theorems,” Mat. Trudy, 4, No. 1, 68–93 (2001).

    MathSciNet  Google Scholar 

  8. Mogul’skii A. A. and Rogozin B. A., “A local theorem for the first hitting time of a fixed level by a random walk,” Siberian Adv. Math., 15, No. 3, 1–27 (2005).

    MathSciNet  Google Scholar 

  9. Borovkov A. A. and Borovkov K. A., Asymptotic Analysis of Random Walks. Part I: Slowly Decreasing Jumps [in Russian], Nauka, Moscow (to appear).

  10. Bertoin J. and Doney R. A., “Some asymptotic results for transient random walks,” Adv. in Appl. Probab., 28, No. 1, 207–226 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  11. Pinelis I. F., “A problem on large deviations in a space of trajectories,” Theory Probab. Appl., 26, 69–84 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  12. Rozovskii L. V., “Probabilities of large deviations of sums of independent random variables with a common distribution function that belongs to the domain of attraction of a normal law,” Theory Probab. Appl., 34, No. 4, 625–644 (1989).

    Article  MathSciNet  Google Scholar 

  13. Asmussen S., Kluppelberg C., and Sigman K., “Sampling at sub-exponential times, with queueing applications,” Stochastic Process. Appl., 79, 265–286 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  14. Baltrunas A., Daley D., and Kluppelberg C., “Tail behaviour of the busy period of a GI/GI/1S queue with subexponential service times,” Stochastic Process. Appl., 111, 237–258 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  15. Jelenkovich P. R. and Momucilovic P., “Large deviations of square root insensitive random sums,” Math. Oper. Res., 29, No. 2, 398–406 (2004).

    Article  MathSciNet  Google Scholar 

  16. Denisov D., “Asymptotics for first passage times of Levi processes and random walks,” in: Abstracts: IV Intern. Conf. “Limit Theorems in Probability Theory and Their Applications,” Novosibirsk, 2006, p. 14.

  17. Denisov D. and Shneer V., “Asymptotics for first passage times of Levi processes and random walks,” Ann. Appl. Prob. (to appear).

  18. Borovkov A. A., “Large deviation probabilities for random walks with semiexponential distributions,” Siberian Math. J., 41, No. 6, 1061–1093 (2000).

    Article  MathSciNet  Google Scholar 

  19. Rozovskii L. V., “Probabilities of large deviations on the whole axis,” Teor. Veroyatnost. i Primenen., 38, No. 1, 79–109 (1993).

    MathSciNet  Google Scholar 

  20. Mikosh T. and Nagaev A. V., “Large deviations of heavy-tailed sums with applications in insurance,” Extremes, 1, No. 1, 81–110 (1998).

    Article  MathSciNet  Google Scholar 

  21. Nagaev A. V., “Integral limit theorems taking deviations into account when Cramér’s condition does not hold,” Teor. Veroyatnost. i Primenen., 14, I: No. 1, 51–64; II: No 2, 203–214 (1969).

    MATH  MathSciNet  Google Scholar 

  22. Ibragimov I. A. and Linnik Yu. V., Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing Company, Groningen (1971).

    MATH  Google Scholar 

  23. Feller W., An Introduction to Probability Theory and Its Applications. Vol. 2 [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  24. Borovkov A. A., “On the limit conditional distributions connected with large deviations,” Siberian Math. J., 37, No. 4, 635–646 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  25. Borovkov A. A. and Mogul’skii A. A., “Integro-local theorems for sums of random vectors in a series scheme,” Mat. Zametki, 79, No. 4, 505–521 (2006).

    MathSciNet  Google Scholar 

  26. Borovkov A. A., Stochastic Processes in Queueing Theory, Springer, New York etc. (1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2006 Mogul’skiĭ A. A.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 47, No. 6, pp. 1323–1341, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogul’skii, A.A. Large deviations of the first passage time for a random walk with semiexponentially distributed jumps. Sib Math J 47, 1084–1101 (2006). https://doi.org/10.1007/s11202-006-0117-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-006-0117-3

Keywords

Navigation