Siberian Mathematical Journal

, Volume 47, Issue 4, pp 779–786 | Cite as

Estimates for interval probabilities of the sums of random variables with locally subexponential distributions

  • V. V. Shneer


Let {i} i=1 be a sequence of independent identically distributed nonnegative random variables, S n = ξ1 + ⋯ +ξn. Let Δ = (0, T] and x + Δ = (x, x + T]. We study the ratios of the probabilities P(S n ε x + Δ)/P1 ε x + Δ) for all n and x. The estimates uniform in x for these ratios are known for the so-called Δ-subexponential distributions. Here we improve these estimates for two subclasses of Δ-subexponential distributions; one of them is a generalization of the well-known class LC to the case of the interval (0, T] with an arbitrary T ≤ ∞. Also, a characterization of the class LC is given.


subexponential distribution locally subexponential distribution sums of random variables estimates for interval probabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Athreya K. B. and Ney P. E., Branching Processes, Springer-Verlag, Berlin (1972).Google Scholar
  2. 2.
    Shneer V. V., “Estimates for the distributions of the sums of subexponential random variables, ” Siberian Math. J., 45, No. 6, 1143–1158 (2004).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asmussen S., Foss S., and Korshunov D., “Asymptotics for sums of random variables with local subexponential behaviour,” J. Theory Probab., 16, No. 2, 489–518 (2003).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Borovkov A. A., “Integro-local and integral limit theorems on the large deviations of sums of random vectors: Regular distributions,” Siberian Math. J., 43, No. 3, 402–417 (2002).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bingham N. H., Goldie C. M., and Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge (1989).Google Scholar
  6. 6.
    Chistyakov V. P., “A theorem on sums of independent positive random variables and its applications to branching random processes,” Teor. Veroyatnost. i Primenen., 9, No. 4, 710–718 (1964).zbMATHGoogle Scholar
  7. 7.
    Nagaev A. V., “On a property of sums of independent random variables,” Teor. Veroyatnost. i Primenen., 22, No. 2, 335–346 (1977).zbMATHMathSciNetGoogle Scholar
  8. 8.
    Embrechts P., Kluppelberg C., and Mikosch T., Modelling Extremal Events, Springer-Verlag, Berlin (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Shneer
    • 1
  1. 1.Heriot-Watt UniversityEdinburgh ScotlandUK

Personalised recommendations